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Abstract: Selective Laser Melting (SLM) is an additive manufacturing technology, ideal for the
production of complex-shaped components. Design against fatigue is fundamental in the presence of
cyclic loads, particularly for these materials which typically have significant porosity, high surface
roughness and residual stresses. The main objective here is to study fatigue crack growth (FCG)
in the 18Ni300 steel obtained by SLM. Typical da/dN-∆K curves were obtained in C(T) specimens,
indicating that cyclic plastic deformation may be the controlling mechanism. A complementary
analysis, based on plastic CTOD range, showed a relatively low level of crack tip plastic deformation,
and consequently a reduced level of plasticity induced crack closure. The curve da/dN versus plastic
CTOD range is clearly above the curves for other materials.

Keywords: fatigue crack growth; Selective Laser Melting (SLM); Crack tip Opening Displacement
(CTOD); crack tip plastic deformation; ∆K

1. Introduction

Selective Laser Melting (SLM) is a technology for additive manufacturing consisting of the fusion
of a fine metal power layer by layer. It is an iterative procedure consisting of (1) deposition of a thin
layer of powder; (2) selective melting with a laser; and (3) descent of the manufacturing platform.
The laser moves in the build area with controlled speed and scan pattern. The unmelted powder is
collected and therefore there is no waste of material. The geometry is defined in a CAD model which is
read by the SLM equipment. This procedure is very interesting to generate components with complex
geometry and eventually composed of different materials. Therefore, SLM is becoming prominent in
the automotive, aerospace, medical and injection molds industries. Various materials, such as titanium
alloys [1], nickel-based alloys, iron, aluminum, bronze, copper, stainless steels [2] and high-speed steels
of metal matrix, can be considered in this process.

Several studies, primarily focused on the influence of the selection of metal powder and sintering
parameters on the microstructure of the sintered components, state that SLM components can provide
static mechanical properties competitive with those of conventional bulk materials. Nevertheless,
in service the components are typically dynamically loaded; therefore, the design must include the
analyses of fatigue performance. Studies focused on the fatigue behavior of sintered materials are
relatively scarce. Most previous studies developed tested smooth specimens under stress control [1,3,4]
or strain control [2]. Notched specimens have also been tested under stress control in order to obtain
S-N curves [5]. The presence of porosity, high surface roughness and thermal residual stresses,

Appl. Sci. 2019, 9, 4412; doi:10.3390/app9204412 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-0295-1841
https://orcid.org/0000-0002-8274-3734
http://www.mdpi.com/2076-3417/9/20/4412?type=check_update&version=1
http://dx.doi.org/10.3390/app9204412
http://www.mdpi.com/journal/applsci


Appl. Sci. 2019, 9, 4412 2 of 13

typical of these materials, reduce the fatigue initiation life, increasing the importance of the crack
propagation regime. Pores result from powder contaminations, evaporation or local voids after
powder-layer deposition. However, few studies on fatigue crack growth can be seen in the literature.
Greitemeier et al. [6] obtained da/dN-∆K curves in compact tension (CT) specimens made of TiAl6V4
(width, W = 40 mm and thickness, t = 10 mm). Wang et al. [7] presented da/dN-∆K curves obtained in
four-point bending specimens and using replica technique to measure the crack length.

The main objective of this work is to study the fatigue crack propagation in AISI 18Ni300 maraging
steel obtained by SLM. The mechanisms behind the phenomenon were analyzed using two different
approaches. First, the fatigue crack growth rate, da/dN, was obtained using compact tension specimens,
in agreement with ASTM E647 standard, and da/dN-∆K curves are plotted. Second, the crack tip plastic
deformation was analyzed, and da/dN is presented versus plastic Crack Tip Opening Displacement
(CTOD), predicted numerically for the C(T) specimen. The material plastic behavior was studied using
results obtained from low-cycle fatigue tests on smooth specimens under constant amplitude strain
range. The stress-strain hysteresis loops were used for fitting the hardening models.

2. Fatigue Crack Growth Analysis Based on ∆K

2.1. Material

Table 1 presents the chemical composition of the AISI 18Ni300 maraging steel. This steel contains
nickel as the primary strengthening source rather than carbon, promoting superior strength and
toughness. In addition to its high strength, the18Ni300 steel can be easily machined or formed;
afterwards it can undergo an aging heat treatment step, which forms intermetallic precipitates
involving cobalt, molybdenum and titanium that aid in increasing the tensile strength. Samples were
manufactured using Lasercusing® technology, with layers growing in the same direction as the load
application in the mechanical tests. The equipment for selective laser melting is of the mark “Concept
Laser” and model “M3 Linear”. This apparatus comprises a laser type Nd:YAG with a maximum
power of 100 W in continuous wave mode and a wavelength of 1064 nm. The scan speed was 200 mm/s.
The material layers were found to have about 40 µm of thickness. The analysis by scanning electron
microscope (SEM) showed the presence of a significant amount of small porosities and the formation
of martensitic needles [8]. Additionally, the increase of laser speed was found to increase the level
of porosity.

Table 1. Chemical composition of the 18Ni300 steel (weight percentage).

Element Percentage

C 0.01
Ni 18.2
Co 9.0
Mo 5.0
Ti 0.6
Al 0.05
Cr 0.3
P 0.01
Si 0.1

Mn 0.04
Fe Balance

2.2. da/dN-∆K Curves

Fatigue crack growth tests were carried out according to the recommendations outlined in the
ASTM E647 standard. Figure 1 shows the geometry of the C(T) specimens, obtained with thicknesses of 3
or 6 mm. The surface finishing of the C(T) specimens was achieved by high-speed mechanical polishing.
All fatigue crack growth (FCG) experiments were carried out using a DARTEC servo-hydraulic testing
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machine, equipped with a 100 kN load cell. The tests were performed at room temperature in ambient
air, under load control mode, at a frequency of 25 Hz, using a PC-based data acquisition system. The
load cases studied are presented in Table 2. Three stress ratios were considered: R = 0.05, 0.3 and
0.6. The crack length was measured with a travelling microscope, with magnification of 45× and
an accuracy of 10 µm. The data was collected and recorded for crack lengths, a, greater than 7 mm,
as indicated in Table 2. The fatigue crack growth rates (FCGR) were obtained from the five-point
incremental polynomial method.
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Figure 1. Geometry of C(T) specimen.

Table 2. Load parameters.

R Thickness, t [mm] Fmin [N] Fmax [N] A [mm] ∆K [MPa.m0.5]

0.05 3 74.4 1488 7.1–27.3 8.1–58.1
0.05 6 114 2284.2 7.2–26.6 7.6–47.8
0.3 6 870 2900 7.1–24.0 7.1–27.6
0.6 6 2850 4750 47.5 79.17

Figure 2a shows da/dN-∆K plots for the 18Ni300 steel, in log-log scales. The increase of ∆K
increases the FCG rate significantly, as is well known. Paris law regime is evident, and for relatively
low values of da/dN, there is a significant reduction of da/dN, typical of regime I of FCGR. There is also
a trend for the increase of da/dN with stress ratio, as could be expected. Anyway, the influence of stress
ratio is relatively small, which indicates a reduced level of crack closure. The results for thicknesses of 3
and 6 mm are nearly coincident, which also indicates a small level of crack closure. Figure 2b compares
FCGR for the 18Ni300 steel with results for other materials. The 7050-T6 aluminum alloy (AA) has the
highest crack growth rate, followed by the AA2050-T8. The 304L stainless steel has the lowest values.
Finally, the 18Ni300 is between the SS304L and the AA2050-T8. The slopes of da/dN-∆K curves in the
Paris law regime are similar. Please note that only the 18Ni300 steel was obtained by SLM.

2.3. Discussion

In this Paris law regime, cyclic plastic deformation is the mechanism usually used to explain
FCG. The model of striation formation by crack tip plastic blunting of Laird [9,10] is widely accepted
to generally describe the propagation mechanism of fatigue cracks in regime II of da/dN-∆K curves.
According to this model, plastic deformation at the crack tip is highly concentrated along the 45◦

direction, producing blunting and creation of a new fracture surface. Compression stresses at the
crack tip reverse slipping, the fracture surfaces approach, but the new surface cannot be removed by
re-connection of the atomic bonds, which is in accordance with the entropy law of thermodynamics.
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The results for the SLM steel are very typical in terms of linearity and slope of the Paris law regime;
therefore, it can be expected that FCG is controlled by cyclic plastic deformation at the crack tip. The
analysis of fracture surface by Scanning Electronic Microscopy (SEM) showed that fatigue crack growth
occurs mainly at the interfaces between layers of the SLM material. In some cases where the adhesion
between the deposited layers is higher, the failure can occur through the grain itself, in transgranular
mode. On the contrary, in many other cases, the failure occurs at the layer boundaries producing steps
corresponding to the thickness of one or two grains. Please note that the layer plane is normal to
the loading direction, which is expected to have a negative effect. In fact, Edwards and Ramulu [11]
showed that a layer plane parallel to the loading direction gives higher fatigue life. The weakness
of the interfaces is responsible for a relatively tortuous crack path, and therefore for a relatively high
fracture surface roughness.
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Figure 2. (a) da/dN-∆K curves (18Ni300 steel; t = 6 mm). (b) Effect of material on da/dN-∆K plots
(R = 0.1; R = 0.05 for the 18Ni300).

It is, therefore, questionable whether da/dN is linked to a brittle mechanism or to crack tip plastic
deformation. Llanes et al. [12] studied FCG in WC-Co cemented carbides, which are brittle materials.
They observed that da/dN strongly depends on the variation of Kmax. A law was proposed for FCGR
which was a function of Kmax and ∆K (da/dN = C(∆K)m(Kmax)n). The values of n were in the range
5–18, while the values of m were in the range 3–5. Intergranular crack growth is also observed in nickel
base superalloys [13]. However, in this case the brittle crack growth is associated with oxidation of
grain boundaries, which work as highways for the diffusion of oxygen. Tong et al. [14] resorted to
the progressive accumulation of tensile strains occurring near the crack tip to predict fatigue crack
growth rate in RR1000 nickel base superalloy. They used vacuum in order to remove oxidation, so
that viscoplastic deformation controls fatigue crack growth. Figure 3 presents da/dN versus Kmax for
the SLM steel. The comparison with Figure 2a indicates that ∆K is the driving force for FCG, instead
of Kmax. Therefore, cyclic plastic deformation is expected to be the controlling mechanism instead
of a brittle mechanism as observed in cemented carbides and nickel base superalloys. For a better
understanding of FCG mechanisms, an analysis based on crack tip plastic deformation was developed,
as is described in the next section.
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3. FCG Analysis Based on Plastic CTOD Range

A complementary approach was followed to study FCG, making use of the plastic CTOD range,
δp, instead of ∆K. This approach follows two assumptions: (i) fatigue crack growth is closely connected
with plastic deformation at the crack tip; and (ii) the plastic deformation at the crack tip can be
quantified by the plastic CTOD. δp was numerically determined using the finite element method.
The quality of numerical predictions is dictated by the adequate modeling of the material behavior.
Therefore, cyclic loading was applied to smooth specimens in order to obtain stress-strain response,
which was subsequently used to fit the material constants. The capability of analyzing crack closure
and fatigue crack growth using CTOD was fully demonstrated in an earlier work by the authors [15].

3.1. Low Cycle Fatigue Test

Experimental tests were performed at room temperature and in laboratory air environment, on a
DARTEC servo-hydraulic testing machine equipped with a 100 kN load cell. The tests were conducted
under axial total strain-controlled mode, with sinusoidal waves, using a constant strain rate (da/dt)
equal to 0.008 s-1, and total strain ratios (Rε) of zero and total strain amplitude (∆ε/2) equal to 0.8%.
Specimens were produced according to the specifications outlined in ASTM E606 [16], with a gage
section measuring 15 mm in length and 8 mm in diameter (Figure 4a).

The final surface finishing was obtained by high-speed mechanical polishing using a sequence
of silicon carbide paper grades, P600-grit, P1200-grit, and P2500-grit, followed by 3 µm diamond
paste. A 12.5-mm strain-gage extensometer was attached directly to the specimen gage section, using
rubber bands, to assess the stress-strain relationship during the test. A total of 41 loading cycles were
obtained to failure. 200 samples were collected for each loading cycle, using a PC-based acquisition
system. Figure 4b shows the stress-strain curve obtained. The material exhibits a mild cyclic softening
behaviour from the beginning of loading until about 80% of total life.

3.2. Identification of Material Parameters

The high precision in the FE simulation results of the plastic CTOD depends on the accurate
modeling of the material behavior. In this work, an elastic-plastic model was used: the isotropic elastic
behavior is modeled by the generalized Hooke’s law; the plastic behavior is described by the von
Mises yield criterion coupled with a mixed isotropic-kinematic hardening law under an associated
flow rule. The von Mises yield surface is described as follows:

(Σ22 − Σ33)
2 + (Σ33 − Σ11)

2 + (Σ11 − Σ22)
2 + 3Σ2

23 + 3Σ2
13 + 3Σ2

12 = 2Y2 (1)

where Σ represents the effective stress tensor (Σ = σ’- X’, where σ’ and X’ are the deviatoric components
of the Cauchy stress tensor and back-stress tensor, respectively); Y is the yield stress, and its evolution
during plastic deformation is modeled by the Voce isotropic hardening law [17]:

Y = Y0 + (YSat −Y0)[1− exp(−CYε
p)] (2)
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where Y0, YSat and CY are material parameters and εp is the equivalent plastic strain. The non-linear
kinematic hardening is modeled by the Armstrong-Frederick law [18], as follows:

.
X = CX

[
XSat

Σ

σ
−X

′

] .
ε

p
(3)

where CX and XSat are material parameters and
.
ε

p
is the equivalent plastic strain rate. An optimization

procedure was carried out to obtain the set of material parameters that best model the cyclic plastic
behavior of 18Ni300, by minimization of the following least-squares function:

F(A) =
N∑

i = 1

(
σFit(A) − σExp

σExp

)2

i

(4)

where σFit(A) and σExp are, respectively, the analytically fitted and experimentally measured values of
true stress at data point i (that corresponds to an equivalent plastic strain value); N is the number of
experimental data points and A is the set of Voce and Armstrong-Frederick parameters to be identified.
The fitting procedure was carried out for 33 loading cycles (N = 6600), representing about 80% of total
life, using a non-linear gradient-based optimization algorithm available in the Microsoft Excel SOLVER
tool [19]. Table 3 shows the fitted material parameters that describe the elastic-plastic behavior of
18Ni300. In this table, the Voce isotropic hardening parameters follow Y0 = YSat, and therefore the
hardening is purely kinematic, which leads to a cyclically stable stress-strain fitting. This is acceptable
in case of 18Ni300, where mild cyclic softening occurs during the first 33 loading cycles. Accordingly,
the fitted material parameters describe adequately the experimental results, as can be seen in Figure 4c.
Table 3 also shows material parameters for other five metal alloys, which were characterized by the
authors in previous works.
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Table 3. Elastic-plastic parameters (AA—Aluminum Alloy; SS—Stainless Steel).

Material
Hooke’s Law
Parameters Isotropic Hardening (Voce) Kinematic Hardening

(Armstrong-Frederick)

E [GPa] N [-] Y0 [MPa] YSat [MPa] CY [-] CX [-] XSat [MPa]

18Ni300 160 0.30 683.62 683.62 0 728.34 402.06
AA7050-T6 [15] 71.7 0.33 420.50 420.50 0 228.91 198.35
AA2050-T8 [20] 77.4 0.30 383.85 383.85 0 97.38 265.41
AA6082-T6 [21] 70 0.29 238.15 487.52 0.01 244.44 83.18
AA6016-T4 [22] 70 0.29 124.00 415.00 9.5 146.50 34.90

304L SS [23] 196 0.3 117 87 9 300 176

3.3. Numerical Determination of δp

The C(T) specimen (Figure 1) presents geometric, material and loading symmetries; therefore, 1/4
of the specimen was modeled numerically considering adequate boundary conditions, as indicated in
Figure 5a,b. A pure plane stress state was simulated by assuming a small thickness equal to 0.1 mm.
Several initial crack lengths a0 were considered, equal to 7 mm, 10 mm, 13 mm, 16 mm, 19 mm, 22 mm
and 24 mm, to replicate a wide range of experimental crack lengths. The simulations were done under
load control, similar to the experimental tests. The maximum and minimum values of the remote load
were defined considering the experimental loads listed in Table 2.
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Figure 5. Model of the C(T) specimen. (a) Load and boundary conditions. (b) Boundary conditions for
plane stress state. (c) Detail of finite element mesh.

The finite element mesh (Figure 5a,c) comprised 7142 linear isoparametric elements and 14,606
nodes, with two main regions: (i) An ultra-refined mesh near the crack tip, composed of elements
with 8×8 µm side; and (ii) a coarser mesh in the remaining specimen, to reduce the computational
overhead. Only one layer of elements’ through-thickness was used. The crack propagation occurs at
the minimum load, by successive debonding of both crack front nodes over the thickness. A total of
159 crack propagations were modeled, each propagation corresponding to the size of one finite element
(= 8 µm), with a total crack advance (∆a) of 1272 µm (i.e., ∆a = (160 − 1) × 8 µm). Five load cycles were
applied between each crack increment.

The numerical simulations were performed using the DD3IMP (Deep-Drawing 3D IMPlicit)
in-house code, originally developed to model deep-drawing processes [24]. The evolution of the
deformation is modeled by an updated Lagrangian scheme, assuming a hypoelastic-plastic material
model. The material plastic behavior was modeled considering the set of elastic-plastic parameters
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shown in Table 3. The contact between crack flanks is modeled considering a rigid plane surface
aligned with the crack symmetry plane. A master–slave algorithm is used; an augmented Lagrangian
approach is used for the contact problem treatment.

3.4. Numerical Results

Figure 6 presents a typical numerical result of CTOD as a function of the remote stress, obtained
for an initial crack length a0 = 24 mm, followed by 20 crack propagations (∆a = 160 µm); the CTOD
was assessed at the first node located behind the crack tip, at a distance of 8 µm from the tip, as is
schematically indicated, which presents the most sensitivity to crack tip phenomena. The crack is
closed between A and B, for relatively low loads, i.e., the CTOD equals zero. The load increase opens
the crack at point B. After point B, the crack opening evolves linearly with load increase up to point C,
which is the boundary of the linear elastic regime. The range of loads between the opening load and
the onset of plastic deformation was used to predict the fatigue threshold, as will be described later. A
progressive increase of plastic deformation is found between points C and D, achieving its maximum
value for the maximum load. The load decrease generates reversed elastic deformation with the same
rate observed during loading. The subsequent load decrease produces reversed plastic deformation.
Figure 6 also plots the variation of plastic CTOD. Plastic deformation initiates at point C, achieving its
maximum value at maximum load. The plastic CTOD range, δp, which is correlated with fatigue crack
propagation rate, is shown in Figure 6. It should be noted that crack closure is implicit in the value of
δp. Increasing the crack closure phenomenon reduces the effective range of stress, also reducing the
total CTOD and the plastic CTOD. In the absence of crack closure, the entire load cycle is felt by the
crack tip. The plastic CTOD range also excludes the elastic deformation, which is not supposed to
affect FCG.
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Figure 6. Evolution of Crack Tip Opening Displacement (CTOD) with load (a0 = 24 mm; plane stress).

Figure 7 presents the evolution of plastic CTOD range, δp, with load range quantified by ∆Keff

(= Kmax − Kopen), i.e., the effective range of stress intensity factor. The remote loads applied were
those used in the experimental FCG tests of the SLM material. The numerical tests were repeated
for different materials keeping constant the specimen geometry, the crack lengths and loading. The
increase in the load level increases δp, as might be expected. However, for the SLM material, the
plastic deformation level is relatively low, being about one order of magnitude lower than the values
obtained for the other materials. In fact, the values of plastic CTOD range, δp, are lower than 0.1 µm.
As can be seen in Table 3, this material has a relatively high yield stress, which explains the low level of
plastic deformation. This smallness makes the results very sensitive to errors of material modeling or
geometry. Anyway, there is a well-defined variation of δp with load range.
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The experimental results showed a relatively low influence of specimen thickness and stress
on FCGR, which indicates that the crack closure phenomenon may have a low relevance. Figure 8
presents the evolution of crack closure with the crack length. The crack closure level was quantified by
two parameters:

Uclos =
Fopen − Fmin

Fmax − Fmin
× 100 (5)

where Fopen is the crack opening load, and

Reff =
Fopen

Fmax
(6)
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Figure 8. Crack closure level versus ∆K (18Ni300; R = 0.05).

The first parameter quantifies the percentage of load range during which the crack is closed, while
the second one is the fraction of crack opening load divided by the maximum load. The crack closure
level increases with crack length up to 21% (or 25% for Fopen/Fmax). In literature the crack closure level
is usually quantified by Reff, and values of 0.25, the maximum value obtained here for the highest crack
length studied, are relatively low. This is explained by the relatively low plastic deformation obtained
for this material. Values in the range of 0.2 to 0.3 are typical of plane strain state [25–29]. However, no
crack closure was found for the SLM steel in the case of plane strain state.

Figure 9 shows the plastic CTOD range, δp, versus da/dN for different crack lengths and stress
ratios. According to this figure, there is a progressive increase of FCGR with δp, as could be expected.
The increase of stress ratio, R, moves the curve up. This variation, which should not exist, is relatively
small and can be explained by errors of δp and da/dN. In fact, in a previous work of the authors [21] it
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was shown that the da/dN-δp curves are invariant to the stress ratio. In other words, the approach
based on plastic CTOD range is able to remove the effect of R observed when ∆K is being used. This
indicates that δp dictates fatigue crack growth. Vasco et al. [30] also observed independence relatively
to stress ratio. In that study, δp was measured experimentally using Digital Image Correlation. A
2nd-order polynomial was fitted to the results obtained for R = 0.05:

da
dN

= 95.987× δ2
p + 1.052× δp (7)

where the units of da/dN and δp are µm/cycle and µm, respectively. The correlation coefficient is
R2 = 0.9842 and its validity is limited to δp in the range 0–0.8 µm. Figure 9 also presents results for
other materials. The material models for the 304L stainless steel and the 18Ni300 steel were obtained
using C(T) specimens, while the aluminum alloys were studied with M(T) specimens. For the same δp,
the fatigue crack growth rate is significantly higher for the laser sintered material (18Ni300) than for
the remaining materials.
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ASTM E647 standard defines the experimental procedure to obtain fatigue threshold, ∆Kth. The
load range is gradually reduced until there is no crack propagation. In each loading step, some crack
propagation is required to eliminate the influence of crack closure from previous load. The load
range reduction can be done setting the stress ratio, R, or the maximum load. In the constant R load
reduction method, the maximum and minimum loads are successively reduced such that the stress
ratio (R = Kmin/Kmax) remains constant. However, the measured values of ∆Kth are affected by stress
ratio, being this effect linked to crack closure phenomenon. To overcome the effect of stress ratio, the
constant Kmax test procedure is proposed in the ASTM E647 standard. In this case, Kmin is progressively
increased in order to eliminate the effect of crack closure. The resulting effective threshold stress
intensity, ∆Kth,eff is often referred to as an intrinsic measurement of fatigue crack growth resistance.
The experimental approach is however laborious and time consuming. Two alternatives to predict
∆Kth were proposed here, based on the numerical analysis of plastic CTOD. In the first numerical
approach, Kmax was kept constant (= 23.4 MPa.m0.5), while Kmin increased. Figure 10a presents the
plastic CTOD range versus ∆K. The decrease of ∆K decreased δp, as expected, and the extrapolation to
the horizontal axis gave a threshold value ∆Kth = 11.2 MPa.m0.5. It is assumed that fatigue threshold
corresponds to the onset of zero plastic deformation. The second numerical approach uses the range
of elastic regime to define the fatigue threshold. In Figure 6, the load range between points B and C
defines the elastic regime of CTOD. The corresponding ∆Kth is obtained from this load range using
the K solution for the C(T) specimen. Please note that this is also an effective load range, free of crack
closure. Figure 10b presents the results obtained for two different load cases. The reduction of δp to
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zero defines the fatigue threshold. There is a convergence to a nearly constant value, which is a good
indication of the robustness of the approach. The value obtained with the constant Kmax approach is
also presented, being slightly higher that the values obtained using the COTD-load curve. However,
the experimental value is 5.2 MPa.m0.5 [31] being significantly lower than the numerical predictions.
This great difference can be explained by the effect of environment. In fact, the near-threshold FCGR is
quite small, giving time for the action of environment.
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4. Conclusions

The fatigue crack growth of the AISI 18Ni300 maraging steel made by Selective Laser Melting was
studied numerically and experimentally. The experimental study considered ∆K as the crack driving
force while the numerical work used the plastic CTOD. The main conclusions are:

The FCG rate, da/dN, plotted versus ∆K showed a classical Paris law regime with a typical value
of the slope. This indicates that cyclic plastic deformation is probably the mechanism controlling
fatigue crack growth. The influence of stress ratio and specimen thickness was found to be relatively
small, indicating a reduced level of crack closure. The analysis of fracture surfaces by SEM showed
propagation between deposition layers.

A complementary analysis was developed, based on plastic CTOD range, to better understand
crack growth mechanisms. The level of plastic deformation at the crack tip was found to be relatively
low, which also explains the relatively low level of crack closure. Consequently, the curve da/dN
versus plastic CTOD range is clearly above the curves for other materials.
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