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Abstract: This paper presents a case study and a model to predict maintenance interventions based
on condition monitoring of diesel engine oil in urban buses by accompanying the evolution of its
degradation. Many times, under normal functioning conditions, the properties of the lubricants,
based on the intervals that manufacturers recommend for its change, are within normal and
safety conditions. Then, if the lubricants’ oil condition is adequately accompanied, until reaching
the degradation limits, the intervals of oil replacement can be enlarged, meaning that the buses’
availability increases, as well as their corresponding production time. Based on this assumption,
a mathematical model to follow and to manage the oil condition is presented, in order to predict the
next intervention with the maximum time between them, which means the maximum availability.
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1. Introduction

Public transportation, in general, and city bus passenger transportation, in particular, represents
an important alternative to the use of individual transportation. For this reason, it is essential to focus
on the quality of service provided by the public transportation network in order to make it attractive
for their users.

Currently, public transportation users are increasingly demanding about the quality of service, so
the maintenance stands out as a competitiveness key factor.

Condition monitoring maintenance is the maintenance carried out by using an evaluation of the
equipment state, that appeared in the 70s and 80s to designate a new approach to planned maintenance
based on condition monitoring techniques [1,2].

According to Pinto [3], the implementation of a condition monitoring system requires investment
in equipment, specialized human resources, and specific knowledge. These systems are supported by
computer tools that enable, in an efficient way, the analysis, study, recording and control of the data
obtained, and also the establishment of some fault trend curves.

In condition monitoring, a common practice is based on recording the equipment condition,
reading data in regular intervals and, when the data reading is greater than a value previously defined,
the physical asset supervised is considered in fault and a Working Order is launched. In spite of that,
they have not been paying enough attention to the relation between that critical interval and their costs
reduction potential [4].

Maintenance, in general, and the condition monitoring, in particular, aims to combine increase
of reliability with the lowest costs possible, being direct or indirect. In this type of maintenance,
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the ecological variables may overlap with the remaining ones. However, conventional indicators are
not always fully compatible with environmental indicators [5].

According to Ferreira, increasing availability implies reducing the number of breakdowns,
repairs, and inspection times: he adds that it is not enough to have reliable equipment to obtain
high availability rates. It is also necessary to ensure maximum speed in repairs, maintenance, and
inspection operations [6].

Ahmad and Kamaruddin say that the most emphasized aspect of condition monitoring is the
deterioration behavior of the assets. Despite the importance of this aspect, the monitoring of the quality
of the maintenance decision process is strategic [7].

An integrating approach of the Life Cycle of a physical asset can be seen in Farinha [8], including
management standards like ISO 55000X, interconnected with some econometric models to evaluate
their Life Cycle Costs [8].

There are several approaches to forecast the evolution of oil degradation. Newell discusses
an approach based on trend analysis to maximize oil change intervals. This author considers the
following common oil analysis tests and procedures: viscosity; Total Acid Number (TAN); Total Base
Number (TBN); water content; specific gravity; particle count (visual method); spectrometric analysis;
ferrographic analysis, [9]. Macián et al. [10] present an analytical approach aiming at more accurate
wear determination from engine oil samples. The authors ask: “What level of wear rate is normal or
abnormal for the engine studied?” To answer the question, they propose a comparative parameter Z.
It considers the engines’ deviations between the values of the wear rate and the reference rate. They
have also made similar comparisons for a group of engines of the same model. Finally, the influence of
the oil consumption and the concentration of the contaminants is linked [10].

Vališ, Zák, and Pokora [11] concentrate on metal particles, such as iron (Fe) and lead (Pb),
as potential failure indicators. They apply a linear regression model to determine a linear course of
Fe and Pb particle generation. They assume a stochastic process with time dependence. The authors
finish with the importance of time series comparisons: Auto Regression Integrating Moving Average
(ARIMA); Auto Regression Moving Average (ARMA) methods [11]. Changsong et al. [12] present a
study based on 50 oil samples collected and analyzed in sequence covering 250 motor hours. The results
show that maintenance intervals can be longer and, at the same time, the cost-effectiveness maintenance
ratio can be increased [12].

According to Macián et al. [13], Low Viscosity Oils (LVO) are very important to reduce the fuel
consumption in Internal Combustion Engines (ICE). The use of LVO may imply a different tribology
behaviour of the engines. The authors tested 39 buses, two different technologies, and four dissimilar
lubricants [13].

Macián et al. [14] present a case study of urban buses aiming to evaluate the effect of Low Viscosity
Oils (LVO) on fuel consumption and CO2 emissions. They used 39 buses that ran 60,000 km during
which they changed the engine oil twice. For 9 of those buses on the second round of oil changing,
the effects on oil in fuel consumption and the engine performance were evaluated. The results showed
that the LVO reduces the fuel consumption and the CO2 emissions. However, the author says that the
engines must be accompanied carefully with high levels of working stress [14].

Macián et al. [15] show that LVO performs well and that oil deterioration depends on the engine
technology. In the case of Compressed Natural Gas engines, it was observed that the oil degradation
increases [15].

Tormos et al. [16] say that the environmental concerns imply the improvement of the engines’
technology. The authors present a tribology model tested in laboratory. Additionally, they also present
the potential of the predictive maintenance model [16].

Nowadays, in fleet vehicles, a certain percentage of biodiesel is used. Several authors are not in
agreement with the influence of this new type of fuel on oil degradation and, by consequence, on the
maintenance based on condition monitoring. Some examples of papers that analyze the effect of these
kinds of fuels on oil are reported in [17–21].
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Some relevant topics about related works on condition monitoring and predictive maintenance
based on oil analysis, in urban buses fleets, are mentioned and discussed in [22–26].

Multivariate statistics are also useful because oil analysis involves several variables. An approach
like this may help with the diagnosis of the health of diesel engines. Additional references are referred
in [27–29].

This paper presents an approach to the analysis of lubricating oils for Diesel engines, through
mathematical and statistical models, namely: exponential smoothing; t-Student distribution; and
hypotheses tests validated on some models of urban buses, as it is described throughout the paper.

The paper starts with a global analysis on the importance of oil analysis in predictive maintenance
based on condition monitoring. After that, examples of spreadsheets of oil analysis, with emphasis on
some important variables, are presented.

Based on the preceding approach, the paper follows the next steps:

• First, the mathematical model to help predicting the next intervention based on Exponential
Smoothing, the variable Fe is summarily presented as example;

• Due to the variation of the variable Fe, a t-Student distribution with bilateral test of hypotheses
is used;

• Then an example using several values for smoothing parameter and some levels of significance
is presented;

• Finally, the influence of the maintenance policy, namely the predictive in the reserve fleet
is discussed.

2. Condition Monitoring with Prediction through Oil Analysis

The main physical feature of lubricating oil is viscosity and its variation with temperature, given
by the viscosity index and the density.

In recent years, there has been a demand for high-performance engine lubricants, especially in the
aerospace and automotive industries. This has led to the development of synthetic lubricants which
can be maintained at high temperatures without decomposition and have a low risk of combustion.

The synthetic oils are produced using highly refined processes and sophisticated formulations.
They derive from synthetic compounds based on PAO (poly-alpha-olefin), non-synthetic PAO, esters,
alkylated naphthalene, and alkylated benzene. The use of synthetic oils has become more important in
areas where the use of mineral oils does not meet the required needs.

Lubricating oils can cause serious environmental problems if they are discharged indiscriminately,
polluting rivers and groundwater. The improper burning of oil adds oxides and toxic gases to the
atmosphere. Accordingly, the manufacturers of additives and lubricating oils have been developing
products with a longer lifespan, as this tends to reduce oil discharges along the equipment’s life cycle.

A key feature of lubricants is their behaviour with increasing temperature: the temperature
and pressure are often high. The oils undergo a change when the temperature increases, and
their degradation under operating conditions is a problem involving significant economic losses.
To report certain special properties of the oil, or to improve the existing ones, especially when the
lubricant is subjected to severe working conditions, chemicals are added (additives). The degradation
of a lubricant is not an instantaneous process—the loss of its physicochemical properties and
contamination are progressive over time and with the use of equipment along its lifetime. Lubricant
degradation is affected by the following: oxidation; viscosity variation; contamination; loss of additives
(anti-corrosion, anti-wear, dispersing agents, etc.) [30,31].

Today’s high-performance lubricants do more than simply reduce friction and wear: they control
the generation of deposits, control airborne contaminants, protect against corrosion, have a cleaning
function, and maintain the proper operating temperature [30,31].
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2.1. Oil Analysis

Under certain conditions, a lubricant can deteriorate and no longer fulfil its intended function.
It is generally a function concerning the length of the service, the temperature of the system, the
environmental conditions, or the stress that it is suffering from, which can often be traced to the
presence of dirt or water, acidity, insufficient flow, or inappropriate levels of viscosity. Any of these can
cause lubricated components to malfunction. Even when the lubrication system is well designed and
maintained, breakdowns can occur in the component, resulting in the deterioration of the lubricant.
The deterioration can be chemical or physical, generated internally by the lubricant or by external
phenomena. Physical deterioration, often called contamination, materializes as foreign matter in
the lubricant, such as water, foundry sand, weld slag particles, metal shavings, dust, and abrasive
wear particles.

Lubricant analysis is regularly performed in some industries [31]. It involves four basic steps:

1. Obtaining a sample

Collection of a representative sample of a lubricant, observing certain precautions such as using
clean and dry containers; taking extreme care during collection to prevent external contamination;
taking samples at operating temperatures [30,31].

2. Identifying a relevant sample.
3. Performing physical-chemical analysis:

Degree of physical and chemical deterioration, i.e., the degree of contamination and degradation,
can be evaluated using a set of standard and specialized tests, such as measuring certain properties
and comparing these with a baseline value.

Analysis can measure several properties of the lubricant and evaluate their degradation. These
include antifreeze; appearance; fuel; content water; soot; nitration; oxidation; sulfation; viscosity;
viscosity index; Total Base Number; wear metals (Al content, Cr, Fe, Mo, Na, Ni, Pb, Si, Sn, V); particles.

Particle Quantification (PQ Index) is the measurement of total ferrous (Iron) particles present in
the sample. PQ does not take into account the size of particles. The ferrous is detected via magnetic
fields and is dependent on the type of laboratory equipment used. They will determine how the
measurement is taken. Regardless of this, the generated reading will report the total concentration of
the magnetic particles in that sample.

PQ Index can be used to measure ferrous wear metal particles in oil, grease, and coolants. PQ
analyzers have no units and can be thought of as mass ferrous particles per mass of oil (Mass/Volume).
PQ does not take into account particle size; we need to use the iron (Fe) readings of the elemental
analysis to figure out when the concentration level is above 10 µm. This is where the PQ information
can be very useful, especially in components that are starting to show fatigue signals or have large
internal wear indicators starting to appear rapidly.

4. Interpreting results—diagnosis.
5. Validating diagnosis:

Frequency in which each lubricant ought to be checked depends on various operational factors
such as: importance of the equipment; total time of service; scale of production; security; time until
failure after detection.

In this section the analysis of service lubricants is addressed, by monitoring the evolution of the
degradation of the Diesel oils in the bus fleet, that will have three well-defined phases:

1. In the first phase, the vehicles targeted for analysis and monitoring in the evolution of the
degradation of the oils will be selected—this monitoring will be done through the periodic
collection of oil samples of the selected vehicles and they will be sent to a proper place for
their analysis;
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2. In the second phase, an in-depth study of the results obtained in the analyses, as well as of the
prediction algorithms to be used, will be carried out;

3. In the third and final phase, an analysis of planned maintenance aiming its improvement will
be made. This shall take into account the results obtained in monitoring the evolution of oil
degradation—this phase will also serve to present proposals for the improvement of planned
maintenance schedules and the reduction of costs that come from it.

This monitoring was done through periodic collection of oil samples from the various vehicles
selected and, since there was a small number of samples collected during the period in which
this monitoring was developed, the need to use data from older samples belonging to the same
homogeneous group was felt. In this research, 10 standard (12 m) urban passenger transport vehicles
of three different brands were studied, having been analyzed and studied, 60 oil samples.

These samples helped supporting the studies carried out and proved the relevance of the oil
analysis to predictive maintenance based on oil condition monitoring as well as to support new
maintenance planning to be used by the company in the future.

These samples were sent to a laboratory located in a European country, with all the characteristics
of the vehicle and the oil, such as:

• Number of the vehicle;
• Brand;
• Model;
• Type of car;
• Organ—Motor;
• Equipment km;
• km of the oil;
• Sample date;
• Date of submission of the sample.

Subsequently, reports of the results obtained from the various analyses carried out by the samples
collected were received (Figure 1)—this is the original document with the results sent by the laboratory.

These analysis reports allow them to control various properties of the lubricants and to evaluate
their degradation throughout the life cycle of the equipment. From them, they can also follow the
history of the analysis carried out over time. These include: antifreeze; appearance; fuel; content water;
soot; nitration; oxidation; sulfation; viscosity; viscosity index; Total Base Number (TBN); wear metals
(Al content, Cr, Fe, Mo, Na, Ni, Pb, Si, Sn, V); particles. Figure 1 illustrates the history of the diverse
variables studied.
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Figure 1. Oil analysis results report-Bus.

The data collected was entered into an Excel spreadsheet, in order to create a database where they
could be easily analysed.

Figure 2 shows an Excel database example, per vehicle. In this figure, the historical data of the
collected analysis referring to the equipment can be verified, as well as the identification and the
characteristics of the vehicle studied.
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Wear and Contamination Metals
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(ASTM D-5185-05 mod.) 1 2 2 1 3
(ASTM D-5185-05 mod.) 24 35 28 31 56
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(ASTM D-5185-05 mod.) 0 9 14 3 9
(ASTM D-5185-05 mod.) 0 0 1 0 1
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(ASTM D-5185-05 mod.) 14 12 10 6 10
(ASTM D-5185-05 mod.) 0 0 0 0 1
(ASTM D-5185-05 mod.) 0 0 0 0 0

(PE-5024-Al) 25 9 16 6 16

Diagnosis
∆ ∆ X ∆ ∆

Lubricants Analysis

Equipment Data

Lubricant Data

State

XXX

Result of Samples
Date

Soot (%)

Reference sample
km do Equipment
km do Lubricant

Antifreeze (%)
Appearance (adim)
Fuel (%)
Water content (%)
Water content (FinachecK) (%)

Content in Fe (ppm)

Nitration (ABS / cm)
Oxidation (ABS / cm)
Sulfation (ABS / cm)
TBN (mgr KOH / g)
Viscosity at 100 ° C (cst)

Content in Al (ppm)
Content in Cr (ppm)
Content in Cu (ppm)

Sample Diagnosis

Content in Mo (ppm)
Content in Na (ppm)
Content in Ni (ppm)
Content in Pb (ppm)
Content in Si  (ppm)
Content in Sn (ppm)
Content in V (ppm)

Particles
PQ Index (Adim)

Figure 2. Database in Excel.
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The data entry is no more than the various results obtained when analyzing the variables that
characterize the lubricants. In this phase, the variables were analyzed using the method presented in
Section 4, which allows monitoring the evolution of oils degradation.

All variables were studied. However, this paper will only focus on those which were considered
the most important for the monitoring of the degradation of oils, which are:

• Soot (Carbon Matter);
• Viscosity;
• TBN;
• Wear and Contamination Metals;
• Particles.

Therefore, for the study of the variables used as reference, the limits made available by the
laboratory were used, as can be seen in Table 1.

Table 1. Limits for the various parameters.

Characteristics of the Oil Limits (X > Danger)

Antifreeze (%) (PE-TA.071) 0.08
Appearance (dimensionless) (PE-TA.096)
Fuel (%) (PE-TA.071) 4.0
Water content (%) (PE-TA.071) 0.2
Water content (FinachecK) (%) (PE-5022-Al) 0.2
Soot (%) (DIN 51452) 1.5
Nitration (ABS/cm) (PE-TA.071) 15
Oxidation (ABS/cm) (PE-TA.071) 15
Sulfation (ABS/cm) (PE-TA.071) 20
TBN (mgr KOH/g) (ASTM D-2896-07a) 30
Viscosity at 100 ◦C (cst) (ASTM D-445-11) 15

Wear and Contamination Metals Limits

Content in Al (ppm) (ASTM D-5185-05 mod.) 20
Content in Cr (ppm) (ASTM D-5185-05 mod.) 10
Content in Cu (ppm) (ASTM D-5185-05 mod.) 35
Content in Fe (ppm) (ASTM D-5185-05 mod.) 90
Content in Mo (ppm) (ASTM D-5185-05 mod.) 20
Content in Na (ppm) (ASTM D-5185-05 mod.) 40
Content in Ni (ppm) (ASTM D-5185-05 mod.) 20
Content in Pb (ppm) (ASTM D-5185-05 mod.) 40
Content in Si (ppm) (ASTM D-5185-05 mod.) 20
Content in Sn (ppm) (ASTM D-5185-05 mod.) 15
Content in V (ppm) (ASTM D-5185-05 mod.) 00

Particles Limits

PQ Index (Dimensionless) (PE-5024-Al) 110

The Iron content (ppm) was considered one of the most important variables and, because of that,
one that was thoroughly studied. This allowed us to draw several conclusions on the state of oil
degradation and the equipment, which will be described later.

2.2. Oil Analysis Changes through Prediction

In the first step, the exponential smoothing method of the iron content (Fe) was applied in order
to determine the evolution of its degradation, as can be seen in Table 2 and Figure 3. The table and
graph show a clear degradation in the iron content of the analysed oils. Obviously, the prediction of
the next values will involve increased degradation. When this variable has values like those shown in
the table, the oil must be replaced, because the equipment is at a high risk level.
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The main formula for exponential smoothing is given by:

St+1 = βXt + (1− β)St ⇔ St+1 = β
t

∑
i=0

(1− β)iXt−i (1)

A smoothing parameter, β corresponding to the history of the variable of concern is required to
forecast its value in the next period [32].

0 ≤ β ≤ 1

where: St+1 is the forecast for the next time; Xt is the real value recorded in the present time; St is the
forecasted value for the present time; β is the smoothing parameter.

Table 2. Application of exponential smoothing-Fe (ppm) content.

Fe Content (ppm)

Period km Observed
Value

Prediction
with β = 0.1

Prediction
with β = 0.5

Prediction
with β = 0.9

2451 19
5214 53 19.00 19.00 19.00

10,115 22 22.40 36.00 49.60
12,403 14 22.36 29.00 24.76
17,212 54 21.52 21.50 15.08
22,183 141 24.77 37.75 50.11
27,682 28 36.39 89.38 131.91
30,965 77 35.55 58.69 38.39
35,965 39.70 67.84 73.14
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In the second part of the development of algorithms for the model, the data was analyzed using
the t-student distribution, n ≤ 30, [10].

µ = X + tα ∗
S√
n

(2)

where,

µ Is a fixed value used for comparison with the sample mean;
X Is the average sample;
tα Corresponds to the critical T;
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S Is the sample standard deviation;
n Is the sample size.

where tα corresponds to the critical t of a tail, considering the desired confidence interval, and the
degrees of freedom n − 1.

Next, we followed up on the evolution of the degradation of this variable using the t-student
distribution. The goal was to estimate the average value of iron (Fe). As Table 3 shows, the average of
Fe content was 51 (ppm). This is above the upper normal limits, suggesting a high level of degradation.
Note that through additional methods, like the t-student test, it is possible to calculate other important
data, such as the sample mean, sample standard deviation, and upper parameter limit for several
confidence intervals.

Table 3. Application of t-student test to iron content—Fe (ppm).

Content Fe (ppm) t-Student

α = 0.001 α = 0.01 α = 0.05 α = 0.1 α=0.2

Average (sample) X 51.00 51.00 51.00 51.00 51.00
Standard deviation (sample) S 42.35 42.35 42.35 42.35 42.35
Critical t 4.79 3.00 1.89 1.41 0.90
Standard deviation (population) σ 46.27 34.83 24.63 19.19 12.60
Population Average (µ0) 51 + 46.2 51 + 34.8 51 + 24.6 51 + 19.1 51 + 12.6
Upper limit 97.27 85.83 75.63 70.19 63.60

Lastly, bilateral tests of hypotheses for the value of µ were used:

H0: µ = µ0; H1: µ 6= µ0

µ is considered a random variable whose distribution for small samples (n < 30) is given by:

t =
X− µ0

S√
n

(3)

In general, σ (standard deviation of the population) is unknown. The process is the following:

• A one-tailed test uses one threshold value (associated with the chosen significance level) and
rejects the hypothesis H0—where T > T critical—when the value of the modulus calculated for the
t statistic exceeds the critical value.

Finally, the average population of the iron was estimated by the following significance levels:
0.001; 0.01; 0.05; 0.1; 0.2. As Table 4 shows, with a value of 80 (ppm) and a confidence interval of 99%,
the hypothesis H0 is not rejected. But with a 90% confidence interval, H0 will be rejected because
the value of t (1.59) is higher than the value of the confidence interval (1.41). Furthermore, with a
confidence interval of 80% (0.90) and a sample average of 51.00, the average value is 37.59.

Table 4. Application of t-student test to iron content (Fe).

Hypothesis Test

µ0 (Population Average) Calculated t Table t α = 0.001 Table t α = 0.05 Table t α = 0.1 Table t α = 0.2

25.00 1.23 4.79 1.89 1.41 0.90
35.00 0.76 4.79 1.89 1.41 0.90
45.00 0.28 4.79 1.89 1.41 0.90
50.00 0.05 4.79 1.89 1.41 0.90
65.00 −0.66 4.79 1.89 1.41 0.90
75.00 −1.13 4.79 1.89 1.41 0.90
80.00 −1.59 4.79 1.89 1.41 0.90

µ0 20.64 22.64 29.82 37.59
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3. Discussion

With this condition monitoring model several variables can be evaluated, which can help
understanding the evolution of the degradation state of the oils. The models exemplified here were
applied in three ways:

1. Individually, to all vehicles (all parameters);
2. Homogeneous groups of different vehicles (all parameters);
3. To the groups of vehicles that use biodiesel as fuel (all parameters).

The exponential smoothing was applied to the iron content (Fe) variable for a bus number XX3 to
determine the evolution of its degradation. When this variable has high values, the equipment is at a
high risk level, and the oil must be changed. The second model applied to monitor the degradation
of the iron content was based on the t-student distribution: it estimates the average of iron content
(Fe)—the average content is 99.80 (ppm).

It is also possible to calculate more information, such as the sample mean, the sample standard
deviation, and the upper limit of the parameter to determine the confidence intervals. If the value of
150 (ppm) is found in the iron content variable with a 99% confidence interval, the hypothesis H0 is
not rejected. But, if the confidence level is 90%, H0 is rejected. The value of t (2.35) cannot be greater
than the value of the confidence interval (1.53).

If the value of t is used from the t-student table with 80% confidence interval (0.90) and a sample
mean of 99.80, a mean value for a population of 70.48 is obtained.

Because of the oil itself and the great influence that it has on the diesel engine’s condition, the
accompaniment of its degradation permits us to maximize the bus availability itself and the bus fleet
in general.

The paper demonstrates that by using condition monitoring maintenance, the intervals of the
interventions of which can be increased which can, consequently, increase the bus fleet availability,
reducing the maintenance costs. Through this study, it was possible to increase the intervals of some
models of buses of this company, having as reference intervals of 20,000 km between oil changes.
The new intervals are of 25,000 km between each substitution. With this change, a lot of the maintenance
costs were reduced.

Table 5 shows the data concerning the company studied, such as the number of buses that
constitutes the fleet, their availability, the need of buses for production, the number of buses under
maintenance, and the number of buses that correspond to the reserve fleet, based on a systematic
preventive maintenance policy.

Figure 4 (radar map) shows the Availability versus Production Requirement (buses necessary to
carry out the careers) of the company during a year.

Table 5. Availability versus Need for buses—Systematic preventive maintenance.

Months Bus Fleet Availability Need Maintenance Reserve Fleet

January 115 107 90 18 7
February 115 104 90 21 4
March 115 105 90 19 6
April 115 106 90 18 7
May 115 107 90 18 7
June 115 106 90 19 6
July 115 102 90 22 3
August 115 103 90 22 3
September 115 106 90 19 6
October 115 107 90 18 7
November 115 109 90 16 9
December 115 106 90 18 7
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4. Conclusions

This paper shows how the implementation of a condition monitoring based maintenance policy
may maximize the physical asset availability, reduce the costs of maintenance, as well as overcharges,
and provide an additional guarantee of reliability.

It also shows how some variables, such as soot and iron content, enhance the condition of diesel
engines. The analysis can be extended to include other variables.

The paper demonstrates that monitoring oil condition can increase the availability of equipment
and improve fault prevention by allowing early intervention in its degradation. It also demonstrates
that the implementation of a condition monitoring based maintenance policy, using oil analysis, has
huge advantages for public transport companies, including lower downtime, higher availability and,
consequently, better service for users.

Additionally, this kind of maintenance policy contributes to the rationalization of the size of a
reserve fleet.

Finally, the methodology can be used for many other types of physical assets.
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Symbols and Acronyms

β Is the smoothing parameter
Xt Is the real value recorded in the present time
µ Is a fixed value used for comparison with the sample mean
X Is the average sample
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tα Corresponds to the critical T
n Is the sample size
µo Population Average
Al Aluminium
ARIMA Auto Regressive Integrated Moving Average
ARMA Auto Regressive Moving Average
Cr Chromium
Cu Cobalt
Fe Iron
H0 Hypothesis 0
H1 Hypothesis 1
ICE Internal Combustion Engines
LVO Low Viscosity Oils
Mo Molybdenum
Na Sodium
Ni Nickel
PAO Polyolefin, Polyester, polyglycol
Pb Lead
S Is the sample standard deviation
Si Silicon
Sn Tin
St Is the forecasted value for the present time
St+1 Is the forecast for the next time
TAN Total Acid Number
TBN Total Base Number
V Vanadium
σ standard deviation of the population
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