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Abstract: Groundwater in fissured rocks is one of the most important reserves of available fresh water,
and urbanization applies an extremely complex pressure which puts this natural resource at risk.
Two-thirds of Portugal is composed of fissured aquifers. In this context, the Porto urban region is the
second biggest metropolitan area in mainland Portugal. In this study, a multidisciplinary approach was
developed, using hydrogeological GIS-based mapping and modeling, combining hydrogeochemical,
isotopic, and hydrodynamical data. In addition, an urban infiltration potential index (IPI-Urban) was
outlined with the combination of several thematic layers. Hydrogeochemical signatures are mainly
Cl-Na to Cl-SO4-Na, being dependent on the geographic proximity of this region to the ocean, and on
anthropogenic and agricultural contamination processes, namely fertilizers, sewage, as well as animal
and human wastes. Isotopic signatures characterize a meteoric origin for groundwater, with shallow
flow paths and short residence times. Pumping tests revealed a semi- to confined system, with low
long-term well capacities (<1 L/s), low transmissivities (<4 m2/day), and low storage coefficients
(<10−2). The IPI-Urban index showed a low groundwater infiltration potential, which was enhanced
by urban hydraulic and sanitation features. This study assessed the major hydrogeological processes
and their dynamics, therefore, contributing to a better knowledge of sustainable urban groundwater
systems in fractured media.

Keywords: urban groundwater; hydrogeochemistry; hydrodynamics; IPI-Urban; NW Portugal

1. Introduction

Urbanization is the foremost global phenomenon of our time, and groundwater from springs and
wells has been a vital source of urban water supply since the first settlements [1]. Urban hydrogeology
is a key scientific field, and an understanding of groundwater in urban areas has increased greatly in
the last decades. Attention was given to the relationship between urban development and groundwater
resources beginning in the 1950s and 1960s of the 20th century, when accelerated growth after the
Second World War began to cause significant diversity of hydrological problems. Most of these
problems were related to urban runoff and floods, therefore, urban hydrology established itself in an
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affirmative way [2,3]. Thus, urban groundwater rapidly emerged as a necessary and urgent branch
of study. Particularly, after the 1990s of the 20th century, several scientific publications on issues
addressing the subject of hydrogeology in urban areas are found, namely [2–22].

The impact of urban development on geological processes, in general, and groundwater systems,
in particular, has been highlighted for a long time (e.g., [12,16,23–36]). It is remarkable that only
one century ago, 20% of the world population lived in urban areas, whereas, presently, 54% of the
world population lives in urban environments [37]. Anthropogenic activity is the major geomorphic
agent affecting the Earth’s land surface, while urbanization and agriculture are, perhaps, the major
processes currently affecting the land (e.g., [7,14,20,23,38–41] and references therein). The need for
provision of safe water, sanitation, and drainage systems are key elements which are vital to the
understanding and management of groundwater resources in urban environments. Groundwater
problems associated with urbanization and urban sprawl include both quantity and quality issues,
namely (e.g., [2,42]), subsidence, covering of shallow systems, increased recharge from leaky water
ascribed to sewage systems and irrigation return flow, changes in subsurface secondary porosity,
permeability from utility systems and other constructions, as well as the effects of imported water
resources, saline intrusion, and contamination from point and nonpoint sources. In this context of
global anthropogenic activity, groundwater is a key source of urban supply worldwide, and aquifer
storage represents a key resource for achieving water-supply security under climate change that
will contribute to aggravate these pressures, with decreasing rainfall, as well as longer and more
frequent and extended drought periods (e.g., [1,43,44]). Additionally, the impact of the complex
system of man-made infrastructures (e.g., sewer, storm sewers, pipes, trenches, tunnels, and other
buried structures) and impervious surfaces and or cover areas must be highlighted as anthropogenic
disturbances in groundwater media (e.g., [11,42,45–47]).

Integrated multidisciplinary approaches are often required to address the scientific issues involving
groundwater resources. In this way, environmental isotopes such as 2H, 18O, 13C, and 3H, can be used
as fingerprints to assess some of these groundwater problems and to provide information needed
for the rational management of these water bodies (e.g., [48–50]). Furthermore, the delineation of
groundwater potential zones (GWPZ’s) using remote sensing, geographic information systems (GIS),
and geovisualization techniques are effective tools for groundwater exploration and groundwater
recharge (e.g., [13,17,18,35,36,51,52]). This approach encompasses the integration of several factors,
organized from different geodatabases and a multiparametric approach, which influence the occurrence
of groundwater, namely lithology, tectonic lineaments, land use, slope, drainage, precipitation, and
urban hydraulics. Nearly half of the world depends on groundwater as the main source of drinking
water [53]. However, groundwater is an underexploited resource in many urban areas, due to its
invisibility, inadequate management, scientific uncertainty, and political strategies that favor the use of
surface waters (e.g., [54–57]).

The main objectives of this study in the Porto urban region (NW Portugal) were:

1. To develop an integrated geoenvironmental assessment of groundwater resources in urban
environments using geotechnological capabilities, particularly GIS mapping and geovisualization
techniques, and also extensive field and laboratory work;

2. To evaluate groundwater quality and groundwater flow paths, by combining hydrogeochemical
and environmental isotopic data and to identify the leading processes responsible for
groundwater disrepair;

3. To assess groundwater quantity, by means of pumping test data;
4. To delineate groundwater infiltration potential zones at a regional scale, using the innovative

infiltration potential index for urban areas (IPI-Urban) that integrates several layers of information
properly weighted and overlaid in a GIS platform; a tool which should improve our understanding
of complex urban groundwater recharge processes in future investigations;

5. To refine the regional hydrogeological conceptual model, merging all the data, to improve the
understanding of urban groundwater systems in the Porto urban region.



Water 2020, 12, 2797 3 of 26

2. Study Area: Land Cover and Hydrogeological Background

The Porto urban region is a densely populated region which includes other cities such as Vila Nova
de Gaia, Matosinhos, Maia, and Vila do Conde, in the Porto Metropolitan Area, with about 1.7 million
inhabitants [58], (Figure 1). According to the land use map for mainland Portugal [59], most of the
investigated region (93.3%) is occupied by the following three classes: urban and industrial areas
(41.4%), agricultural areas (28.5%), and forest areas (23.4%). Urban areas are concentrated primarily
in the municipality of Porto and in the surrounding municipalities. Agricultural spaces are located
mainly in the northern part, especially in the municipality of Vila do Conde. Forest areas are mainly
found in the NE, especially to the east of Vila do Conde and in the municipality of Trofa.Water 2020, 12, x FOR PEER REVIEW 4 of 27 

 

 
Figure 1. Land use of the urban coastal region between the Municipalities of Vila do Conde and Vila 
Nova de Gaia (adapted from [59]). 

Figure 1. Land use of the urban coastal region between the Municipalities of Vila do Conde and Vila
Nova de Gaia (adapted from [59]).

Considering agriculture and farming, the most important food supplies produced in this region
are potatoes, vegetables, fruits, and maize, as well as cattle raising, namely bovines. According to [20],
the two principal types of fertilization are organic which uses mostly manure, as well as sewage
and inorganic. The inorganic fertilizers are mostly composed of nitrogen, phosphorous, potassium,
and nitrogen which is the most prevalent. A sprinkler system is the leading irrigation system.

This region is drained by the following four major streams: the Ave River, in the north; rivers Onda
and Leça in the centre; and Douro River, in the south. Located close to the Atlantic Ocean, this region has
a temperate climate with dry and mild summers (Köppen climate classification Csb), with a mean annual
precipitation around 1200 mm and a mean annual air temperature of 14 ◦C. There is a water deficit
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from June to September, mainly in July and August [60–62]. The availability of groundwater resources
is reflected by these climatic conditions, along with geologic and morphotectonic features. The regional
geological framework comprises a crystalline fissured basement of highly deformed and overthrust Late
Proterozoic/Palaeozoic metasedimentary and granitic rocks. The post-Miocene sedimentary deposits
frequently cover the bedrock [63–65] and references therein. The morphotectonic background includes
a littoral platform characterized by a regular planation surface dipping gently to the west, ending
around 100 m a.s.l [66]. The Ave, Leça, and Douro rivers have incised valleys that cross the flatness of
this morphological surface, suggesting a regional tectonic control. The main regional hydrogeologic
units [12] in this area are (Figure 2) the following: (i) sedimentary cover, particularly beach and dune
sands, alluvia, sandy silts, and clays; (ii) metasedimentary rocks, namely micaschists, metagraywackes,
and paragneisses; and (iii) granitic rocks, mainly two-mica granite, medium to coarse grained and
biotitic granite, medium to fine grained.
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Geological background updated from [63,65,69,70]. Hydrogeological framework adapted from [61,71,72].
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3. Materials and Methods

The study area was assessed using various tools, as proposed by [67,68], namely geological
and hydrogeological mapping, hydrogeochemical and isotopic techniques, and hydrodynamic
characterization. Fieldwork campaigns were first carried out to identify major geologic features
accountable for groundwater circulation pathways and to assess litho-structural heterogeneities.
The field and laboratory data were evaluated in a GIS environment (ArcGis|ESRI, Redlands, CA, USA,
and OCAD for Cartography Inc., Baar, Switzerland).

An urban hydrogeological field inventory was developed, which included more than 300 water
points (springs, water mines, fountains, boreholes, and dug wells). Three fieldwork campaigns
were carried out in May 2008, November 2008–January 2009, and May–June 2009. A total of
40 water points were selected for groundwater sampling and for chemical analyses consisting of
34 boreholes (mean depth of 117 m), 3 dug wells (mean depth of 11 m), 2 springs, and 1 fountain
(connected to a water mine) (see Figure 2), most of them used for industrial and agricultural water
supply. The inclusion of 2 dug wells and 2 springs in the fieldwork campaigns basically developed in the
period 2005–2007 and were justified as follows: (i) to have dug wells represented in the hydrogeological
unit “micaschists, metagraywackes and paragneisses”; (ii) to have springs represented (the 2 springs
selected were two important springs of the historic Paranhos and Salgueiros water galleries in Porto
City, which date back to the 16th Century).

Among the 40 samples, isotopic determinations of δ18O, δ2H, and 3H were performed in
14 boreholes, 2 dugwells, and 2 springs in one fieldwork campaign. All the inventory and sampling
sites were georeferenced with a high-accuracy GPS (Trimble®GeoExplorer, Sunnyvale, CA, USA). In situ
measurements included water temperature (◦C), pH, electrical conductivity (µ Scm−1), dissolved oxygen
(mg L−1), and redox potential (mV) using a multiparametric portable equipment (Hanna Instruments,
HI9828). The hydrogeochemical analyses included major and minor element concentrations and were
acquired at the “Instituto Nacional de Saúde Doutor Ricardo Jorge” (Porto, Portugal). Environmental
isotopes (18O, 2H, and 3H) were measured at the “Instituto Tecnológico e Nuclear”, meanwhile
renamed “Campus Tecnológico e Nuclear/Instituto Superior Técnico (CTN/IST)” (Bobadela, Portugal).
The δ18O and δ2H results were reported to the Vienna-Standard Mean Ocean Water (V-SMOW),
and determinations were carried out using a mass spectrometer SIRA 10 VG-ISOGAS, applying
the analytical methods described in [73,74], respectively. The tritium content was determined
using the electrolytic enrichment and liquid scintillation counting method described by [75,76],
using a PACKARD TRI-CARB 2000 CA/LL (see [77,78]). AquaChem 5.1 software was used for the
hydrochemical interpretation.

The hydrodynamic interpretation of the groundwater systems was carried out based on pumping
tests which were gathered from hydrogeological and geotechnical scientific and technical reports.
Pumping data were analyzed using the Theis method, the Cooper–Jacob method, and the Theis recovery
method [79–82], and the transmissivity and storage coefficient were evaluated. Moreover, the Logan
approximation [83] was used to estimate transmissivity. The values of transmissivity, storage coefficient,
and long-term well capacity were compiled from the hydrogeological reports and also contributed to
the discussion.

The delineation of groundwater infiltration potential zones was assessed by the IPI-Urban index
(details in [13,17–19]). The IPI-Urban is a weighted sum of the following eight factors, calculated using
the analytical hierarchy process (AHP) [84]: land use, hydrogeological units, tectonic lineament
density, drainage density, slope, and three other factors related to urban hydraulic and sanitation,
sewer network density, stormwater network density and water supply network density.
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4. Results and Discussion

4.1. Hydrogeochemical Approach

The physical and chemical parameters of groundwater samples collected during the fieldwork
campaigns are summarized in the supplementary materials (Table S1). These groundwaters are slightly
acidic with a median pH value of 6.2, and electrical conductivity (EC) values ranging from 95 to
1035 µS/cm, with a median value of 382 µS/cm, therefore, characterized as medium mineralized waters.
These values are in good agreement with other data reported for this area [20,61,62]. The dissolved
oxygen (DO) values in these groundwaters are in the range of 0.30–4.14 mg/L, with a median value of
1.75 mg/L. According to [85], these values are in accordance with those expected for most groundwaters
(DO concentrations <5 mg/L, frequently <2 mg/L). The redox potential (Eh) measurements revealed
that most of the studied groundwaters were in the range +0.1–+0.3 V, with a median of +0.15 V,
which were values characteristic of most groundwaters [86] and within the water stability domain.

The major anions analyzed included bicarbonate (HCO3
−), sulphate (SO4

2−), chloride (Cl−),
and nitrate (NO3

−). The groundwaters showed the following global rating in terms of median
concentrations (mg/L): HCO3

− (45.0) > Cl− (41.2) > NO3
− (40.0) > SO4

2− (35.9). HCO3
− has the highest

standard deviation, while SO4
2− has the lowest, and 31% of the water samples have concentrations

of NO3
− > 50 mg/L. Considering the European guidelines for the use of groundwater for human

consumption and the Portuguese legislation for irrigation activities [87], nearly one-third of these
water samples exceed the parametric value for nitrate (50 mg/L). This trend corroborates the results
presented by [20,61,62]. Moreover, [20] classified a peri-urban area of Vila do Conde, between Ave and
Onda rivers, with a potential high to moderate risk of nitrate contamination, based on the SINTACS
and IPNOA indexes.

The major cations studied were sodium (Na+), calcium (Ca2+), potassium (K+), and magnesium
(Mg2+), and the global rating was the following in terms of median concentrations (mg/L):
Na+ (37.0) > Ca2+ (13.0) > Mg2+ (7.9) > K+ (4.0). The highest and the lowest standard deviation belong
to Na+ and Mg2+, respectively. Among the other cations, most of the samples have concentrations
of aluminium (Al3+) and iron (Fe2+) below 50 µg/L and concentrations of ammonia (NH4) below
0.1 mg/L. Concerning the environmental isotopic approach, the median values for δ18O, δ2H, and 3H
are, respectively, −4.42%�, −26.5%� and 1.0 TU.

Considering the major anions and cations, we conclude that the hydrogeochemical signatures
of these groundwaters are predominantly Cl-Na to Cl-SO4-Na, however, the following facies
may occur, Cl-SO4-Na-Mg, Cl-SO4-Na-Ca, and Cl-SO4-Mg-Na (Figure 3a). Nevertheless, in the
three fieldwork campaigns, five groundwater samples from boreholes drilled in diverse geological
environments revealed a distinct hydrogeochemical facies in the bicarbonate domain: 110_17, HCO3-Ca
(biotitic granite, medium to fine grained); 110_64, HCO3-Na to HCO3-Na-Mg (mica schists,
metagraywackes, and paragneisses); 110_65, HCO3-Na (biotitic granite, medium to fine grained);
122_32, HCO3-Na-Ca (two-mica granite, medium to coarse grained); 122_34, HCO3-Ca-Mg (two-mica
granite, medium to coarse grained). Moreover, two other borehole groundwater samples had
HCO3-Cl-Na facies, i.e., 110_02 (geological contact between two-mica granite, medium to coarse
grained and gneisses) and 110_05 (geological contact between two-mica granite, medium to coarse
grained and migmatites). [11,60–62,71,88] achieved similar hydrogeochemical signatures for the same
hydrogeological units.

In order to better understand the hydrochemical signatures of these waters and the main
processes controlling water mineralization, several correlations were established. Figure 3b–d indicates
the following:

1. The strongest linear correlations were obtained in the water samples belonging to the shallow
groundwater systems, represented by dug wells, fountains and springs.

2. Cl and Mg seem to have the same source for the shallow and deep groundwater systems,
while the relation Cl and Na seems to point to a unique source only for the shallow systems;
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however, the common source of Cl and Mg is not marine, and the sea spray seems to be partially
responsible for the Cl and Na; moreover, the proximity of several data to the Mg/Na seawater line
outlines a partially common marine origin for these parameters.

3. The isotopic signatures of the groundwaters characterize a meteoric origin, since most of the water
samples are positioned very close to the Global Meteoric Water Line (GMWL), defined by [89]
and later improved by [90–92], and similar to the isotopic composition of the precipitation water
samples, from the Portuguese Isotopes in Precipitation Network [93]. From the isotopic point
of view, the following two main groundwater clusters have been identified: Group I stands for
groundwaters collected from dug wells and boreholes, which presents a more enriched isotopic
composition, similar to the Porto precipitation [93], corresponding to normal deviations related
with seasonal variations of δ18O and δ2H on precipitation; Group II is composed of the spring
samples and presents more depleted δ18O and δ2H values, which may be attributed to the fact
that they could be ascribed to random precipitation events, resulting into a direct infiltration of
meteoric waters along the fractured granitic rocks;

4. The meteoric origin of the shallow groundwaters seems to be reinforced by the SO4-Ca facies,
concerning the relationship with the precipitation data; therefore, the partial origin of SO4 should
be atmospheric pollution, enriched in SO2 gases.

5. The common source of Cl and Mg must be anthropogenic, related to organic fertilizers, including
sewage and livestock residues (liquid and semiliquid manure), and animal waste (e.g., bovines),
in areas with a higher agricultural and/or livestock production activity, especially in the
Vila do Conde, Trofa, and Northern Maia municipalities. Moreover, the good relationship
between NO3 and Cl for the shallow groundwater systems shows their partially common source;
in fact, NO3 is also an important constituent of fertilizers, either organic or synthetic, sewage,
and animal and human wastes (e.g., [94]). The studied groundwaters do not present such a
trend, indicating different sources for Cl and NO3. Several studies developed in this region have
reached similar conclusions (e.g., [20,62,95–97]).

6. The relations among Cl and Mg, and Cl and NO3, may be ascribed to the urban and industrial
sectors, particularly in the Porto, Matosinhos, and Vila Nova de Gaia municipalities, due to
numerous groundwater potential contamination activities and their high density in some areas
(cf. [17] for Porto and Vila Nova de Gaia urban areas), i.e., wastewater leakages, cesspools,
and solid waste tanks contamination, hydrocarbons present from vehicle fuels and industrial
processes, such as solvents and degreasing agents, namely trichloroethylene, which is one of the
most common.

7. HCO3 and Ca have a reasonable correlation among the borehole water samples, and the correlation
between HCO3 + NO3 and Na + Ca is good for the same water samples. This trend seems to
indicate that these parameters have partially the same origin that probably should be ascribed to
water–rock interaction, namely the hydrolysis of plagioclases presented in granitic rocks.

Therefore, the mineralization of these groundwaters seems to be controlled by the following
three main sources/processes: (i) meteoric, including sea spray, contributing with the Cl− and Na+

ions, and atmospheric pollution, particularly responsible by the presence of SO4
2−; (ii) anthropogenic

contamination, particularly introducing Cl−, Mg2+, and NO3
−; and (iii) water–rock interaction,

adding HCO3
−, Na+, and Ca2+.

Since the altitude differential of the springs sampling sites is rather small, in the study region,
(spring waters are the most representative of local precipitation), it was difficult to estimate the
altitude of recharge areas ascribed to the groundwaters from boreholes (usually recharged far from the
discharge). In fact, the correlation between the altitude of the spring sites and δ18O values was very
low (r = −0.14).

Tritium concentrations, in the range 0.0–4.6 TU, are consistent with the precipitation 3H record
measured at the Porto meteorological station, with a weight annual mean of 4.5 TU (see [100]).
Therefore, for coastal areas, according to [49], the 3H values related to the studied groundwaters could
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correspond to a mixture of recent waters, with short and fast underground flow paths (<5–10 years)
and relatively close to the surface, and submodern waters where recharge took place before the
thermonuclear events in 1952.Water 2020, 12, x FOR PEER REVIEW 8 of 27 
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Figure 3. Hydrochemical and isotopic relationships for groundwater samples collected during the three
fieldwork campaigns. (a) Piper diagram; (b) Scatter diagrams for several hydrochemical parameters,
R-squared value (R2) is indicated for each studied linear relationship, and seawater relations are
those reported by [85]; (c) The average chemical composition of Porto precipitation, reported by [98]
and [99]; (d) δ18O vs. δ2H signatures of the studied groundwater samples. The global meteoric
water line (GMWL) (δ2H = 8δ18O + 10, [89]), the local (Porto meteorological station) meteoric water
line (LMWL) (δ2H = (6.20± 0.33) and δ18O + (1.12± 1.16), r = 0.93, [93]), and the long-term mean isotopic
composition of Porto precipitation (Prec. Porto) (δ2H = −26.9%� and δ18O = 4.54 [93]) were plotted
as reference.
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4.2. Hydrodynamical Assessment

For this evaluation, the study area was divided into the following two key sectors (Figure 4a),
each sector dominated by a hydrogeological unit: (i) Sector 1, in the geological contact of two-mica
granite, medium to coarse grained and metasedimentary rocks, and also in the biotitic granite,
medium to fine grained, with 16 boreholes; (ii) Sector 2, in the two-mica granite, medium to coarse
grained, with 18 boreholes and five piezometers.Water 2020, 12, x FOR PEER REVIEW 12 of 27 
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Figure 4. Inventory of boreholes and piezometers used for the hydrodynamical assessment. (a) Study
sites (Sectors 1 and 2) are shown on the right side of the figure; (b) Depth of boreholes and long-term
well capacity for Sectors 1 and 2.

The median depth of the boreholes is 121 m in Sector 1, and higher in Sector 2, around 154 m
(Figure 4b). For piezometers, the depth range is 15–34 m. The median value for the thickness of the
weathering profile is null for both sectors, and it varies in the following ranges: 0.0–17.0 m in Sector 1,
and 0.0–26 m in Sector 2. Concerning long-term well capacity, the minima, maxima, and median values
are very similar in both sectors, i.e., 0.4 L/s, 3.5 L/s, and 1.1 L/s, respectively (Figure 4b). There was
no correlation found between depth of boreholes and long-term well capacity, or between depth of
screens and long-term well capacity.

For the assessment of transmissivity and storage coefficient values, we selected two boreholes
and one piezometer, i.e., boreholes 110_02 and 122_09 in Sectors 1 and 2, respectively, and piezometer
122_23 in Sector 2 (Figure 5). Concerning borehole 110_02, the transmissivity values obtained during
the pumping period were 21.8 m2/day and 34.4 m2/day, for the borehole and the observation well
110_03, respectively, while, for the recovery period, it was 24.3 m2/day. Additionally, the storage
coefficient value was 3.1 × 10−4. Regarding borehole 122_09, the transmissivity values obtained during
the pumping period were 2.8 m2/day and 6.7 m2/day for the borehole and the observation well 122_07,
respectively, while, for the recovery period, it was 2.1 m2/day. Moreover, the storage coefficient value
was 2.5 × 10−5. For piezometer 122_23, the transmissivity values obtained during the pumping period
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Figure 5. Interpretation of pumping tests. (I) 110_02, Cooper–Jacob method: (a) Pumping period data
for 110_02; (b) Pumping period data for the observation well 110_03, located 370 m from 110_02; (c) Theis
recovery method; (II) 122_09, Cooper–Jacob method: (a) Pumping period data for 122_09; (b) Pumping
period data for the observation well 122_07, located 128 m from 122_09; (c) Theis recovery method.
(III) 122_23, Cooper–Jacob method for two observation wells: (a) Located 16 m (b) Located 63 m.

Due to the lack of well-documented aquifer conditions and complete pumping tests, a Logan
approximation was achieved using specific capacity values for 69% of the boreholes in two sectors
(Figure 6). According to [101], the Logan method can give a reasonable first estimate of transmissivity,
provided that near equilibrium conditions are achieved when the maximum drawdown is measured.
Therefore, Figure 6a shows good correlations among the Logan method and the other methods,
particularly the Theis and the Cooper–Jacob methods. Additionally, transmissivity values are quite
variable in both sectors, in the range of 0.1–26 m2/day. Nevertheless, the median values of transmissivity
are very similar for the different methods and even for the two sectors, 1.8–4.0 m2/day (Sector 1) and
2.5–4.2 m2/day (Sector 2), (Figure 6b).
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Considering the storage coefficient, values are also variable, in the range of 2.5 × 10−5–4 × 10−2,
which characterizes confined to semi-confined groundwater conditions.

Very good correlations (R2 > 0.85) were found between long-term well capacities and
transmissivities in both sectors. The highest values of long-term well capacity and transmissivity could
be explained by the local presence of a very productive fracture, or to a direct connection with a nearby
surface water body or a porous overlying aquifer.

All these conclusions confirm other investigations, performed by several authors, in fractured-rock
aquifers in the Porto region and Portugal (e.g., [60,61,72,102,103] and references therein).

The hydrodynamic behavior of these aquifer systems meets the criteria mentioned in the literature
for fractured-rock aquifers over the last four decades (e.g., [104–113]).

4.3. Urban Infiltration Potential Index (IPI-Urban)

The spatial distribution and explanation of six thematic layers (Figure 7) involved in the
computation of the IPI-Urban (Figure 8), i.e., tectonic lineaments density, slope, drainage density,
sewage network density, stormwater network density, and water supply system density are presented
in this section.
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Land use and hydrogeological units’ thematic layers were previously introduced in Section 2.
Nevertheless, briefly, land use plays a crucial role in this region, and the following two classes dominate:
urban and industrial areas (ca. 41%), and agricultural and forest areas (ca. 52%). This suggests that
surfaces of low to very low permeability cover more than one-third of the region and must be responsible
for the reduction in infiltration and, consequently, direct groundwater recharge. Hydrogeological units
also play a key role in groundwater occurrence. Granitic rocks are the most representative lithology,
namely the two-mica and biotitic granites (ca. 56%).
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Concerning tectonic lineaments, most of the region (ca. 65%) has moderate to low densities
(0.5–1.5 km/km2). The highest densities (>1.5 km/km2, ca. 20%) occur disseminated in the region,
and the lowest densities (<0.5 km/km2, ca. 15%) are mostly concentrated in the west-northwestern
(W-NW) area, where the sedimentary cover has its most representative domain.

As for slope, much of the region (ca. 81%) has very gentle to gentle gradients (<5◦). Moderate and
strong gradients (>5◦) arise in almost 19% of the region and are mostly connected with the Ave, Leça
and Douro river valleys.

The region has mostly (ca. 92%) a very low to low drainage density (<4 km/km2). The highest
densities (4–8 km/km2) are closely related with the four major rivers and streams (Ave, Onda, Leça,
and Douro rivers).

Regarding sewer and stormwater networks, the largest part of the region (ca. 58%) has low to
moderate densities (5–15 km/km2). The highest densities (>15 km/km2) are concentrated (ca. 21%) in
the most representative municipalities, namely Porto and Matosinhos.

Ultimately, the dominant water supply system classes (ca. 66%) are low to very Low (<12 km/km2).
Most of the remaining parts of the region (ca. 25%) has moderate densities (12–18 km/km2) which are
concentrated in Porto, Matosinhos, and Maia municipalities.

Regarding the IPI-Urban index, the overall scenario shows that in 96% of the urban region,
the dominant classes are low (ca. 54%) and moderate (ca. 42%). The low class seems to be mostly
connected with the two-mica and biotitic granites in areas where these hydrogeological units coexist
with an agricultural and forest cover. However, the moderate class appears to be associated firstly with
the sedimentary cover. Moreover, this class occurs in areas covered by an urban and industrial fabric.
Although this may seem incoherent, the higher densities of the urban hydraulic and sanitation features
(sewer, stormwater, and water supply networks) are found in these areas. Therefore, on a regional
scale, the major role of these features is to enhance the natural low infiltration potential. The very low
class occurs in approximately 4% of the region and is linked to the “Micaschist, metagreywacke and
paragneiss” and “Micaschist, gneiss and migmatite” hydrogeological units, especially where these
units are covered by urban and industrial areas, as well as the airport and harbor areas. The high class
represents less than 1% of the region and corresponds to very confined areas, mainly between the Leça
and Douro rivers and to the south of the Douro river.

5. Hydrogeological Conceptual Ground Models

The building of a conceptual hydrogeological model is presented as the first step in the entire
process of modeling Earth systems. A multicriteria methodology supported in an accurate GIS
mapping allows a perspective from geosciences for the paradigm of smart cities, namely through
multidisciplinary, interdisciplinary, and transdisciplinary approaches (e.g., [35,36]).

In the study of crystalline aquifers, hydrogeomorphology has a fundamental role in the refinement
of conceptual hydrogeological models, which aim at the sustainability of groundwater resources [17,18].
In this kind of system, there are many factors, some of them very complex, that control the infiltration
and circulation of groundwater at the local/regional scale.

Figure 9 shows the hydrogeological conceptual models for the Porto urban region (Figure 9I),
and the Porto urban area (Figure 9II). This conceptualization included the identification of different
kinds of aquifer systems in an urban and pre-urban scenario. The main criteria considered were the
hydrogeological units features, the morphostructure, the land use, the hydrogeochemical, isotopic and
hydrodynamical characteristics, the infiltration potential, and the recharge processes (Table 1).



Water 2020, 12, 2797 17 of 26
Water 2020, 12, x FOR PEER REVIEW 18 of 27 

 

 

Figure 9. Urban hydrogeological conceptual models (revised and updated from [61,114]. (I) Porto 
urban region: (A) Pre-urban scenario; (B) Urban scenario). (II) Porto urban area: (C) Land use context; 
(D) IPI-Urban framework. 

Figure 9. Urban hydrogeological conceptual models (revised and updated from [61,114]. (I) Porto
urban region: (A) Pre-urban scenario; (B) Urban scenario). (II) Porto urban area: (C) Land use context;
(D) IPI-Urban framework.



Water 2020, 12, 2797 18 of 26

Table 1. Regional hydrogeological units (cf. Figure 2) and related features in the Porto urban region (summarized and updated from [17,18,20,61,62,71,72,103,115]).

Hydrogeological Groups Sedimentary Cover Metasedimentary
Rocks Granitic Rocks

Regional Hydrogeological Units (RHU) Beach and Dune
Sands; Alluvia

Sandy Silts and
Clays

Micaschists,
Metagraywackes

and
Paragneisses

Two-mica
Granite,

Medium to
Coarse Grained

Biotitic Granite,
Medium to

Fine Grained

Micaschists,
Gneisses and
Migmatites

Aplite-pegmatite
and Quartz Veins

HYDROGEOLOGICAL
FEATURES

Thickness (m) <12 10–20 not applicable

Weathering
profile

low (m)

not applicable

10–20 5–10 <5

high (m) 20–40 20–40

silty and/or clayey X X X X

sandy X X X X

Connectivity to the
drainage system

with X X

possible X X X X X

Type of media
flow

porous X X

fissured X X X X X

Hydrochemical facies Cl-Na to NO3-Na Cl-Na to Cl-SO4-Na

Environmental isotopes

δ18O (%�)

not determined

−6.5 to −3.5
not determined

δ2H (%�) −40 to −20
3H (TU) < 5 not determined

Hydrodynamic
parameters

long-term
well

capacity,
Q (L/s)

very low
(Q ≤ 1) X X X X X

Low
(1 < Q <2) X X

Transmissivity (T, m2/day) 15–20 < 1 1–3 0.5–2 1–3

Storage coefficient (S) 10−1–10−2 10−2–10−3 10−3–10−5

Aquifer confinement unconfined aquitard semi-confined to confined

More suitable
exploitation

structures

dug-wells, galleries, and springs X X X

boreholes X X X X X

Direct groundwater recharge (%) 25–30 20–25 10–15 5–10 15–20

Urban infiltration
potential index

(IPI-Urban)

high X

moderate X X X X

low X X X X X X

very low X X
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Regarding the Porto urban region, the following two perspectives are presented: a pre-urban
context (Figure 9IA) and an urban context, with the main levels of land use (Figure 9IB), which is
relevant to evaluate the impact on infiltration and direct recharge of these aquifer systems. For the
Porto urban area, two viewpoints are shown, i.e., the main land use classes (Figure 9IIC) and the main
IPI-Urban classes (Figure 9IID). For both views, several hydroclimatic and hydrodynamical parameters
were added.

The analysis of both models allowed us to characterize the following three aquifer systems,
i.e., superficial, intermediate, and deep, which are interconnected, sometimes in a discontinuous
manner:

a. A superficial unit corresponds essentially to the sedimentary cover and the weathered/fractured
zones of metasedimentary and granitic rocks that constitute a porous medium with hydraulic
connection to the drainage system. The water table is close to the surface (<5 m). The more suitable
exploitation structures are dug wells and springs associated, or not, to galleries, and the long-term
well capacities are low (1 < Q < 2 L/s). Sedimentary cover can reach thicknesses of almost
30 m. In crystalline rocks, the weathering thickness is variable, and can reach values of 20–40 m
locally (e.g., [116]), affecting transmissivity, which is generally low (<5 m2/day), and storage
coefficient. The sedimentary cover constitutes an unconfined aquifer, while, in crystalline rocks,
it corresponds to a semi-confined one. The hydrochemical facies is mostly Cl-Na. The infiltration
potential is moderate to high and the groundwater recharge is direct, through infiltration
of precipitation.

b. Intermediate aquifers constitute a fractured media, which may have a hydraulic connection to
the drainage system. The more suitable exploitation structures are boreholes and the long-term
well capacities are mostly very low (Q < 1 L/s). Transmissivity values are low (<5 m2/day) and
these aquifers are semi-confined to confined. Groundwater has a short and shallow circuit with
a Cl-Na to Cl-SO4-Na hydrochemical facies. The infiltration potential is moderate to low and
the groundwater recharge occurs by leakage of the overlain levels or directly from the surface,
namely by geological structures (e.g., geological contacts, faults, and veins), with favorable
geo-hydraulic characteristics for the groundwater flow (e.g., major deep, open and not filled
fractures, and intersections between tectonic lineaments).

c. Deep aquifers correspond to unweathered and massive crystalline bedrock, with closed fractures.
They constitute a fissured media, where groundwater flow tends to have a weak regime with
very low transmissivities and the hydraulic characteristics are confined.

6. Conclusions

Expanding our understanding of the behavior of fractured bedrock systems in urban environments
will continue to be a research challenge requiring multidisciplinary approaches such as the one presented
in this work.

The Porto urban region is the second largest metropolitan area in Portugal mainland, with a high
population density, living in a land covered by urban and industrial areas (ca. 41%), mostly in the
south part of the region, and agricultural and forest areas (ca. 52%), in the north.

The climatic conditions, the morphotectonic and geological background, mainly comprised of
crystalline formations, namely granites and metasedimentary rocks, are responsible for the groundwater
resources availability.

These groundwaters have median values for pH, electrical conductivity, dissolved oxygen,
and redox potential of 6.2, 382 µS/cm, 1.75 mg/L, and +0.15 V, respectively. Considering major anions,
the median concentrations for bicarbonate, sulphate, chloride, and nitrate are 45.0 mg/L, 35.9 mg/L,
41.2 mg/L, and 40.0 mg/L, respectively. In addition, for the major cations the median concentrations
for sodium, calcium, potassium, and magnesium are 37.0 mg/L, 13.0 mg/L, 4.0 mg/L, and 7.9 mg/L,
respectively. The hydrogeochemical facies are mainly Cl-Na to Cl-SO4-Na. Moreover, the median
values for δ18O, δ2H, and 3H are−4.42%�, −26.5%�, and 1.0 TU, respectively. All these characteristics are
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mostly dependent on the proximity of the Porto urban region to the Atlantic Ocean, the anthropogenic
and agricultural contamination processes, and, with a lesser impact, the water–rock interaction,
since groundwater has fast, shallow flow paths, and short residence times.

This fractured environment is the key to several hydrodynamic characteristics, which characterize
confined to semi-confined groundwater conditions, namely low to very low long-term well capacities,
with a median value of 1 L/s; low transmissivities, with median values in the range 2–4 m2/day;
and, generally, low storage coefficients, in the range 10−5–10−2.

The infiltration potential and the groundwater recharge are typically low in this fissured
background. This low potential largely arises in zones where granitic rocks and agricultural/forest
areas coexist. However, a moderate infiltration potential also occurs, naturally associated with
the sedimentary cover, and artificially to the urban hydraulic and sanitation features.

The main conclusions summarized above contribute to outline recommendations for policymakers
for the environmental protection, reasoning on the planning with nature and to the sustainable water
resources management for the urban areas. In fact, integrated groundwater resources management
is vital to evaluate water use, water availability, and to design balanced solutions in a changing society,
environment, and climate.

Last but not least, in the current context of climate change, water shortage and groundwater
depletion, along with a pandemic scenario, the authors support this impressive message by [117],
“There is a need for the incorporation of groundwater in national IWRM plans and promotion
of groundwater resource management in the programs of river basin agencies. Planned conjunctive
management of groundwater and surface-water resources in many cases represents the best prospect
for improving water-supply security for urban and irrigation use, and for sustainable resources.”

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/12/10/2797/s1,
Table S1: Physical, chemical, and isotopic parameters for groundwater samples collected during the
fieldwork campaigns.
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