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Abstract: Surcharging urban drainage systems are a potential source of pathogenic contamination of
floodwater. While a number of previous studies have investigated net sewer to surface hydraulic flow
rates through manholes and gullies during flood events, an understanding of how pollutants move
from sewer networks to surface flood water is currently lacking. This paper presents a 3D CFD model
to quantify flow and solute mass exchange through hydraulic structures featuring complex interacting
pipe and surface flows commonly associated with urban flood events. The model is compared
against experimental datasets from a large-scale physical model designed to study pipe/surface
interactions during flood simulations. Results show that the CFD model accurately describes pipe
to surface flow partition and solute transport processes through the manhole in the experimental
setup. After validation, the model is used to elucidate key timescales which describe mass flow rates
entering surface flows from pipe networks. Numerical experiments show that following arrival of a
well-mixed solute at the exchange structure, solute mass exchange to the surface grows asymptotically
to a value equivalent to the ratio of flow partition, with associated timescales a function of the flow
conditions and diffusive transport inside the manhole.

Keywords: pollutant transport; hydraulic structures; urban flooding; urban drainage; CFD

1. Introduction

Urban flooding events can cause significant economic and societal disruption. Numerous
studies [1–3] have suggested that the occurrence of flooding in urban areas is likely to increase in the
future due to increased urbanisation and changes in precipitation patterns, making intense rainfall
events and the inundation of local drainage systems more common. The majority of urban flooding
hazard studies focus on the economic damage, or direct risks to the public derived from hydraulic
modelling of the depth and velocity of floodwaters resulting from historic or design rainfall events
(see, e.g., in [4,5]). However, an increasing number of studies have also considered the public health
risks of exposure to flood water, which may take the form of long term mental impacts [6], or illness
from direct exposure of the public to contaminated flood water. Urban floodwater may contain a
mix of rainwater, stormwater runoff and waste/foul water from surcharging urban drainage systems
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and therefore may contain harmful bacteria [7,8]. For example, ten Veldhuis et al. [9] sampled and
analysed flood water from three urban flooding incidents in the Hague, the Netherlands in areas
served by combined sewers. In the study, values of intestinal enterococci and E. coli were found to
be 1 to 3 orders of magnitude higher than values for good bathing water quality according to the EU
Directive 2006/7/EC.

Understanding the concentrations, transport and fate of harmful contaminants in urban
floodwaters for effective health risk assessment is challenging [10]. Current state of the art urban
flood risk models consider urban hydrological processes and utilise hydrodynamic principles
to route resulting flows in both piped drainage and surface overland systems, with interaction
(i.e., mass transfer) nodes such as manholes or gullies, which are commonly represented by weir or
orifice equations [11–13]. Although flood model calibration and validation is often difficult due to a
paucity of full scale data, such tools are generally considered to give tolerable predictions of flood depths
and are widely used for risk evaluation and asset management [14]. Recently, Mark et al. [15] developed
an approach to integrate an understanding of contaminant transport and health risk into flood models,
utilising the 2D Advection Dispersion Equation to simulate the mixing and transport of wastewater
surcharging from drainage systems within overland surface flow (assuming a constant pathogen
level within the surcharging flow). However, such approaches can significantly simplify a number
of processes concerning sources, transport, survival and transformations of harmful contaminants
(e.g., see in [10]). The number of additional terms and associated parameters required to account for
transport and fate processes exacerbate non-identifiability and equifinality issues which are a common
problem for complex integrated models [16]. To develop a more robust understanding of health
risks posed by urban flood waters, detailed information is required concerning individual processes
associated with sources, transport pathways and life cycles of pathogens from sewer/drainage networks
to surface flows and on urban surfaces. For example, recent studies have considered the behaviour
of waterborne pathogens on different urban surfaces [17] and evaluation of pathogen levels in urban
rainfall runoff flows [18].

However, as far as the authors are aware, no studies to date have considered the exchange
of contaminated material (in soluble or particulate form) from drainage/sewer networks to surface
flows during flood events via interaction structures such as gullies and/or manholes. Flows in and
around surcharging hydraulic structures are highly complex and three-dimensional, especially during
interactions with surface flood flows [19]. It is also likely that contamination concentrations within
urban drainage/sewer networks will vary significantly as the proportion of stormwater and quantity
and nature of contaminated material (i.e., dissolved vs. entrained solids) within the network varies
during flood events. Numerous studies have considered the mixing of soluble material in manhole
structures in the absence of interacting surface flood flows, demonstrating that mixing/transport
(and thus mass exchange) processes are sensitive to geometrical characteristics and poorly described
using commonly used simple models such as the 1D ADE which are commonly used to model
pollutant transport and mixing in piped networks (see, e.g., in [20,21]). More complex 3D CFD based
approaches have been shown to be able to quantify hydraulic and solute mixing processes in hydraulic
structures such as manholes [12,22–25]. However, to date such models have not been experimentally
validated in urban flood situations which include complex interactions between piped and surface
flows [19]. While such 3D models are too computationally expensive to be used in direct design or
network simulation, validated CFD models can be used to conduct experiments which may elucidate
relationships and timescales describing the transport of materials to surface flows, understand the
influence of geometric or hydraulic variables on mixing and mass transport characteristics or be used
to calibrate simpler models.

Understanding how contaminants move from sewer networks to surface flows is a key aspect
for understanding health risks posed by urban floods and possibly to foster the design of techniques
to mitigate negative effects. This study conducts a detailed 3D numerical simulation of flow and
soluble mass transport through a manhole during surface flooding conditions where net sewer to
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surface exchange flows are simulated. Whilst the focus of this study is limited to soluble pollutants
only (i.e., those fully dissolved in the flow), it is recognised that the transport of contaminated solid
material (e.g., fine sewer sediments) is also relevant in this context. The aims of the paper are to
(1) compare the model outputs to new hydraulic and solute transport experimental datasets collected
in a scale model facility designed to study interactions between pipe and surface flows. (2) Conduct
numerical experiments to provide a more complete understanding of mass exchange to surface flows
via hydraulic structures, including characteristic timescales associated with the occurrence of steady
mass flow rate conditions.

2. Materials and Methods

Section 2.1 presents details of the setup used to gather experimental data to evaluate the numerical
model. Section 2.2 provides a definition of key timescales and processes to be explored using CFD
modelling and Section 2.3 describes numerical model and tests undertaken.

2.1. Experimental Setup

To collect data required for evaluating the numerical model, an experimental testing campaign
was conducted using a physical 1:6 scaled model of a linked sewer/surface system, constructed at
the University of Sheffield (Figure 1) [11,19,26–31]. The model is composed of a surface “floodplain”
8.2 m long, 4 m wide, constructed from acrylic (slope of 0.001 m/m). This floodplain is connected to
a piped sewer system via a manhole with a diameter of 0.240 m (simulating a 1.440 m manhole at
full scale, a size typical of UK urban drainage systems for pipes diameters up to 900 mm [32]). The
sewer comprises a 0.075 m (internal) diameter clear acrylic pipe (simulating a 0.450 m pipe at full scale).
To simulate flooding conditions, a series of steady flows were passed into the inlets at the upstream
boundary of the sewer system and the floodplain. During each test, a portion of the flow within the
piped network passed into the surface system via the manhole structure, with the remaining flow
passing to the pipe outlet tank via the downstream boundary. The scheme of the facility is displayed in
Figure 1.
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Figure 1. Scheme of the exchange structure showing the floodplain, sewer pipe and the manhole.

The experimental facility was equipped with three electromagnetic flowmeters (two of them
at the sewer and surface flow inlet—QInS and QInF—and one in the outlet of the sewer—QOutS) of
0.075 m internal diameter. The accuracy of the flow meters was validated using volumetric discharge
readings at the laboratory measurement tank. A butterfly flow control valve was fitted to the pipe
that feeds the sewer and the floodplain, calibrated such that steady inflows from 1 to 11 L/s can be
set. Electromagnetic flowmeters and butterfly valves were monitored and controlled via Labview™
software. For all the tests conducted, flows were first established and allowed to stabilise before data
values were recorded. Once established, data were collected for a period of 3 min to define reliable
temporally averaged values for each flow mater. Mean steady state flow exchange rate through the
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manhole structure (Qe) was quantified based on mass conservation principles (i.e., Qe = QInS −QOutS).
During the experimental campaign, water column pressure at the sewer outlet point was measured
using pressure sensor (Figure 1). This sensor was calibrated to directly convert the output signal (mA)
to gauge pressure and this procedure was conducted using a pointer gauge. The measure values were
compared against defined calibration outcomes and errors were quantified to be ±0.69 mm within the
water depth range of 0 to 600 mm. Values recorded with the pressure sensor were then gathered in real
time by using the same Labview™ software described previously.

Experiments to understand solute transport and mass exchange were undertaken by injection of a
neutrally buoyant soluble fluorescing dye (Rhodamine WT) into the sewer pipe >8 m upstream of the
first measurement point (Cyclops 1 in Figure 1). The distance between the location of the injection
and the measurement areas was higher than 10D (D = sewer pipe diameter) to allow cross sectional
mixing [33]. Measurement of concentration vs. time profiles upstream and downstream of the manhole
was conducted using Cyclops-7F™ fluorimeters. For this experiment, dye of concentration 10−3 mg/L
was fed into a constant head tank, from where injection into the sewer pipe was controlled by a manual
open/close valve. For each test conducted, a 15 s duration pulse of dye of was introduced into the inflow
pipe, and the resulting in-pipe concentrations monitored using the fluorimeters. The electrical sensor
output was converted to concentration using experimentally predetermined calibration equations.

Experimental tests were conducted under steady state hydraulic conditions over a range of sewer
inflows (QInS) and surface inflows (QInF), producing different flow exchange rates (Qe). Reynolds
number (Re) for these tests ranged from 1.37 × 106 to 1.72 × 106 in the sewer inlet, which indicates a
fully turbulent flow condition. Surface flow depths measured 350 mm upstream of the centreline of
the manhole ranged between 5 to 17 mm over the tests conducted. Full details of these test conditions
along with their numerical replication in CFD are presented in Table 1 in Section 3.

2.2. Timescales and Mass Exchange Processes

For a given pulse of soluble contaminant passing within a pipe network entering an exchange
structure (e.g., a manhole) during sewer-to-surface flow exchange conditions (i.e., Qe > 0), a proportion
will pass through the structure remaining within the pipe network and a proportion will exit to the
surface flow. The change in total solute mass within the exchange structure at a given point in time can
be expressed as

dMm

dt
=

.
MPI −

.
Me −

.
MPO (1)

where dMm
dt is the rate of change in mass of solute within the exchange structure (mg/s),

.
MPI is the

solute mass flow rate entering the exchange structure via the pipe network (mg/s),
.

Me is solute mass
flow rate (mg/s) leaving the exchange structure to the surface flow and

.
MPO is the solute mass flow

rate leaving the exchange structure via the pipe network (mg/s).
Considering the arrival of a well-mixed solute of concentration (CPI) at the inlet to the exchange

structure under steady inflow conditions and Equation (1) above, a number of characteristic timescales
can be defined.

• From time to to t1, solute mass is entirely stored within the exchange structure (prior to solute

reaching an exit), thus
.

Me =
.

MPO = 0.
• Assuming typical dimensions and flow conditions encountered within urban drainage exchange

structures such as manholes, between t1 and t2, solute mass initially leaves the exchange structure
via the outlet pipe only, hence

.
Me = 0.

• Between t2 and t3 solute mass leaves the exchange structure via the pipe outlet and to the surface,
solute mass flow rate to the surface will be dependent on the hydraulic characteristics and
evolution of solute inside the exchange structure and all terms in (1) should be considered.

• After t3 concentration gradients within the structure will have significantly reduced and hence

steady mass flow conditions in the structure are achieved, dMm
dt = 0. Considering that the solute
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mass flow through an inlet/outlet is a product of the rate of hydraulic flow rate and mean solute
concentration, the proportion of solute mass exchanging though each outlet will become equivalent
to the flow partition through the structure (Equations (2) and (3)).

.
Me
.

MPI
=

Qe

QPI
(2)

.
MPO

.
MPI

=
QPO

QPI
(3)

Further experiments on specific hydraulic structures are required to understand the characteristic
timescales (t1,2,3) and how these are affected by local flow characteristics. Flow structures and mixing
processes in tanks and urban drainage structures have been studied previously but in the absence
of surface flow interaction. For example, a general description of flow structures inmanholes under
surcharged pipe conditions is given in [12]. When the sewer pipe inflow enters the manhole, three
distinguished flow zone can be commonly observed [12,23,34]. A part of the pressurised flow, known
as the diffusion zone, expands inside the manhole at a ratio of 1:5 towards the manhole diameter
length. The remaining strong velocity zone forms a conical shape which has the same central axis
as the inlet pipe. The slope of this cone is generally 1:6.2 towards the manhole length and travels
through the manhole diameter towards the outlet. This conical form may create different distinctive
scenarios based on the manhole to sewer pipe diameter ratio (φm/φm) and available surcharge depth (s).
For 3.0 < φm/φp < 4.5 and with s > 0.2φm, the core velocity region travels out of the manhole without
contributing to the mixing process [23,35]. This is the most conventional size and surcharge depth
characteristics for an overflowing manhole commonly seen the drainage systems and corresponds to
the present study. In these cases, the diffusion zone is mainly responsible for solute mixing inside a
manhole [20,23]. Part of the diffusion zone interacts with the manhole wall and travels upward. Later,
this upward moving flow further divides in two components of which the first part exits through the
surface and the last part recirculates within the manhole. However, how these structures interact with
a surface flow, how effective they are in transporting solute mass to the surface and key timescales for
well-mixed conditions (i.e., Equations (2) and (3)) are currently unclear and will be analysed in the
current work using CFD techniques.

2.3. CFD Modelling

The hydraulics of the experimental model was reproduced using three-dimensional CFD modelling
tools OpenFOAM® v.18.12 within interFoam solver [36–38], which considers the two-fluid system
as isothermal, incompressible and immiscible utilising a Volume of Fluid (VOF) model [39]. Despite
Larger Eddy Simulation (LES) models being known to model the turbulence structures of the flow
more effectively, LES models are significantly more computationally expensive than those of RANS
models. Moreover, RANS models are also reported in the literature for their accuracy in replicating
manhole hydraulics properly and efficiently [29,34,40]. The model uses a single set of Navier–Stokes
equations (Equations (4) and (5)) for both fluids with additional equations to describe the free-surface
(Equation (6)). The interFoam within RNG k-ε Reynolds-averaged Navier–Stokes equations also
requires Equations (7) and (8).

∇.u = 0 (4)

∂ρu
∂t

+∇.(ρuu) = −∇p∗ +∇.τ − g.x∇ρ+ fσ (5)

∂α
∂t

+∇·(αu) +∇.[ucα(1− α)] = 0 (6)

∂ρk
∂t

+∇·(ρku) =∇·(Γk∇k) + Pk −Yk (7)
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∂ρε

∂t
+∇·(ρεu) =∇·(Γε∇ε) + Pε −Yε + Dε (8)

Where u is the mean velocity vector in the Cartesian coordinate; ρ is the density of the fluid mix; g
is the acceleration due to gravity; t is the time; τ is the shear stress tensor; p∗ is the modified pressure
adapted by removing the hydrostatic pressure from the total pressure; fσ is the volumetric surface
tension force (where CSF and interface curvature are included); α is the VOF function; k is the turbulent
kinetic energy; ε is the energy dissipation; Γk and Γε are the diffusion for k and ε, respectively; and P, Y
and D are the Production, Dissipation and Additional term for RNG, respectively.

In this work, an additional solute transport model was added to the interFoam VOF model. The
main advection–dispersion equation used in the model is

∂c
∂t

+∇.

u− vs
g∣∣∣g∣∣∣

c = ∇.(ανt∇c) (9)

where c is the solute concentration of the flow, vs is the terminal velocity due to gravity (which is zero
for a neutrally buoyant solute) and νt is the turbulent kinematic viscosity of water, which is a function
of the turbulence of the flow [41] and taken to be equivalent to diffusivity [42,43]. The multiplication
of νt by α prevents solute particles from entering the air phase [42].

Earlier model validation works by the authors presenting measured velocities using PIV within
the same experimental facility [29] showed that RNG k-ε model is a suitable RANS modelling choice
for predicting water elevation and velocity profiles and hence is chosen for this work. This turbulence
model can also capture complex flow and is known for better performance for separating flow [22,23,29].
Apart from wall boundary condition, five open boundaries were prescribed in the model: two inlet
and two outlet boundaries at the sewer pipe and floodplain, respectively, and an atmosphere boundary
at the floodplain (Figure 1). The inlet boundaries were prescribed as fixed velocities, while the outlets
were applied as fixed pressure. This measured temporal mean pressure data was used for the sewer
outlet pressure boundary condition (measured at POutS). The atmosphere boundary was set as equal
to atmospheric pressure and zero gradient for velocity to have free airflow if required. All the wall
boundaries were prescribed as noSlip condition. The sewer pipe walls were considered as rough wall
applying equivalent sand roughness height (ks). Further details of measured head losses within the
experimental facility can be found in [26].

Cfmesh v1.1 [44] was used to generate the hexahedral computational meshes, keeping the
maximum mesh size as 10 mm towards all three Cartesian directions. The boundary meshes were
kept small in such a way that 30 < y+ < 300, keeping three boundary layers at the all wall boundaries.
A standard wall function was applied to all the walls, which has been shown to be appropriate for
the application of boundary turbulence effects for such mesh sizes [36], eliminating the necessity of
fine layered boundary meshes. Figure 2 shows part of the computational mesh created for this work.
The rest of the CFD model such as the choice of different meshes, different solvers parameters and
solution schemes were obtained from another CFD model validated in an earlier work depicting the
same experimental set-up [23,29]. The maximum Courant–Friedrichs–Lewy (CFL) number was kept as
0.9. The cluster computing system at the University of Coimbra was used to run the simulations using
MPI mode. Each simulation was run for 300 s to reach steady state conditions. For comparisons with
experimental datasets, the measured solute concentration for each test condition was applied through
the sewer inlet pipe at Cyclopes 1 when the hydraulic model reached a steady state. Unsteady model
results were saved at every 0.01 s interval. Model solute concentrations were extracted at different
sections and compared with the experimental measurements.
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Figure 2. Computational mesh for the study showing the manhole and its connections to sewer pipes
and surface.

Experimental tests 1–6 (including repeats) listed in Table 1 were replicated to perform calibration
and testing of the CFD model. In these tests, solute concentration in the inflow pipe was taken as the
measured value recorded at Cyclopes 1. Measured and predicted concentration curves are compared
at the downstream measurement point (Cyclopes 2) along with measured and modelled flow rates in
the pipe and exchanging to the surface (i.e., flow partition).

To isolate and understand the effects of the manhole separately from the pipe network,
the calibrated model was further applied to Test 1-A, 2-A, 3-A and 4-A under identical hydraulic
conditions to tests 1, 2, 3 and 4, respectively. However, in these tests, solute concentration was applied
uniformly at the sewer pipe/manhole inlet boundary at a steady concentration of 1.2 × 10−6 mg/L.
Resulting concentration time series were extracted at the manhole–pipe junctions (section A and B
in Figure 1) and at the exit to the surface flow (section C in Figure 1). Solute mass flow rates to the
surface flow and the downstream pipe as well as characteristic time scales of the manhole as described
in Section 2.1 were calculated from these tests (described further in Section 3.3). Test 1 was further
extended numerically by changing the downstream boundary pressure; by decreasing 9.5% (Test 1-B)
and by increasing 15% (Test 1-C) to enable lower and higher pipe to surface exchange flows (1.21 L/s
and 2.43 L/s), respectively.

3. Results

3.1. Model Calibration and Validation—Hydrodynamics

Calibration of wall roughness (ks) was performed based on experimental test results of flow
exchange through the manhole to the surface. Applying a higher ks in the sewer pipe leads to lower
flow through the outlet pipe with higher flow exchange from the manhole to the surface, and vice versa.
The experimental values from Test 4 were used for calibration purposes as it had a sewer inlet flow
which was median to all the sewer flows tested herein. Modelled ks values ranging from 1 × 10−6 to
1 × 10−3 mm were simulated in the CFD model. Results showed that ks = 0.0005 mm gives a comparable
modelled value of the flow partition to the experimentally observed values (Qe within 1.7%). This
value of ks is valid for smooth surfaces such as acrylic which is appropriate to the experimental setup
used here. The same ks value was applied to the rest of the hydraulic simulations (Tests 1–3 and 5–6)
for model validation. Table 1 compares experimentally measured and modelled steady state flow rates
in the pipe and exchanged to the surface (QOutS and Qe) for each test, along with measured boundary
conditions and calculated Reynolds numbers. Modelled and measured flow rates are found to be
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within 1.7% in all cases. Figure 3 presents resulting calculated velocity streamlines and vectors within
the manhole during Test 4.

Table 1. Experimentally observed and numerical flow rates for each test case. Solute injections for tests
4–6 were repeated 3 times.

Test
ID

Boundary Condition Experimental Numerical Experimental
Reynold’s No. % of Diff. in Qe

U/S QInF(L/s) U/S QInF(L/s) D/S PoutS(mm) QOutS (L/s) Qe(L/s) QOutS (L/s) Qe(L/s) Inlet
Sewer

Outlet
Sewer

Test 1 4.28 8.09 415.9 6.42 1.67 6.44 1.65 137020 108680 1.20
Test 2 4.28 9.00 428.3 6.84 2.17 6.84 2.16 152480 115790 0.46
Test 3 4.28 9.67 436.7 7.18 2.49 7.14 2.53 163830 121620 1.61

Test 4 * 6.29 10.20 448.7 6.72 3.48 6.66 3.54 172710 113830 1.72
Test 5 7.46 10.20 450.2 6.70 3.50 6.65 3.55 172710 113490 1.43
Test 6 8.64 10.19 447.5 6.67 3.52 6.66 3.53 172710 112980 0.28

* Test 4 data was used for hydraulic calibration.
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Figure 3. Hydraulic conditions inside the manhole during Test 4. (a) Streamline of the flow indicating
a general circulation pattern, (b) mean velocity vectors at the top horizontal plane of the manhole and
(c) mean velocity vectors at the horizontal plane passing through the sewer pipe axis of the manhole.
At all cases, main flow direction is from right to the left.

3.2. Model Replication of Mixing Processes within the Manhole

Following validation of the hydrodynamic processes, the ability of the CFD model to simulate
solute mixing within the manhole was tested by comparing measured and simulated concentration
profiles within the pipe network (at the location of Cyclopes 2) for all hydraulic conditions. Solute
injections for hydraulic conditions in Tests 1–3 were performed once using either a single or double
pulse of solute concentration. Injections during hydraulic conditions in Tests 4–6 were repeated three
times each, of which the first two had single pulse and the third had two consecutive concentration
pulses. Measured and predicted solute concentration time series at manhole D/S (at the location of
Cyclopes 2) were extracted compared to those of experimental data. Figure 4 shows comparison
of experimentally measured and modelled concentration time series at the manhole downstream
measurement point for each test.
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Figure 4. Comparison of experimental and numerical unsteady concentration profiles in the sewer
pipe downstream of the manhole (Cyclopes 2) and the measured concentration at the upstream of the
manhole (Cyclopes 1). Tests 4–6 are repeated three times (i, ii, iii).

Different statistical parameters were used to check the quality of model performance in predicting
the solute concentration at the downstream of the manhole. The parameters used are listed below.

• Average of error, BIAS = 1
n

n∑
i=1

(Oi − Pi)

• Root mean square error, RMSE = 1
n

√
n∑

i=1
(Oi − Pi)

2

• Pearson product-moment correlation coefficient, r =
∑n

i=1(Oi−O)(Pi−P)√∑n
i=1(Oi−O)

2
(Pi−P)

2

• Nash Sutcliffe coefficient, NSC = 1−
∑n

i=1(Oi−Pi)
2∑n

i=1(Oi−O)
2

Where Oi is the observation values, Pi is the model predicted values, and O is the average of all
observed values, P is the average of model predicted values and n is the number of observations. The
calculated values of the mentioned statistical parameters are shown in Table 2. It shows that BIAS of all
the comparisons is negligible. The NSC values are greater than 0.995 in all cases. Therefore, the results
show that the model accurately replicates the solute mixing processes within the manhole.
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Table 2. Statistical comparisons between the concentration time series between experimental and
numerical models.

Test ID BIAS (mg/L) RMSE (mg/L) r NSC

Test 1 −3.89 × 10−8 4.46 × 10−8 1.000 0.995
Test 2 −2.48 × 10−8 2.78 × 10−8 1.000 0.997
Test 3 −1.39 × 10−8 1.87 × 10−8 1.000 0.999

Test 4 (i) 3.41 × 10−9 1.45 × 10−8 1.000 0.999
Test 4 (ii) 2.53 × 10−9 1.27 × 10−8 1.000 1.000
Test 4 (iii) 4.70 × 10−9 1.90 × 10−8 0.999 0.999
Test 5 (i) 3.68 × 10−9 2.28 × 10−8 1.000 0.999
Test 5 (ii) 3.62 × 10−9 2.69 × 10−8 1.000 0.998
Test 5 (iii) 4.55 × 10−9 1.25 × 10−8 1.000 1.000
Test 6 (i) 5.01 × 10−9 2.59 × 10−8 1.000 0.999
Test 6 (ii) 3.03 × 10−9 2.62 × 10−8 1.000 0.998
Test 6 (iii) 6.57 × 10−9 2.97 × 10−8 0.999 0.997

3.3. Modelling of Soluble Mass Exchange to Surface Flows

The solute transport model was then applied to Test 1-A-B-C, 2-A, 3-A and 4-A, as described in
Section 2.3 (i.e., with a uniform solute applied directly to the manhole inlet boundary at Section A).
Figure 5 shows example plots of concentration evolution inside the manhole for each of these tests at
different time intervals. Time t0 = 0 is taken when average solute concentration at Section A exceeds
1% of the peak value. Instantaneous velocity vectors are also displayed to indicate the travel paths of
the solute concentration within the manhole volume.Water 2020, 12, x FOR PEER REVIEW 11 of 17 
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Figure 5 shows that as soon as the solute mass enters the manhole, it diffuses from the high velocity
flow region into the manhole volume. A part of the concentrated solute mass hits the opposite manhole
wall and travels towards the manhole surface. Later, it interacts with the surface flow and recirculates to
the manhole. This recirculating flow brings low concentration flow from the surface into the manhole,
maintaining a consistent concentration gradient through the manhole height until the upper part
becomes completely mixed. The observed flow structures explored in the tests are relativity insensitive
to the pipe inflow rate over the partition ratios used in these tests. The results show that until well
mixed conditions are achieved, that the concentration field at the manhole/surface interaction point
(section C) is highly heterogeneous. Therefore unlike in the pipe network, (where cross-sectionally
averaged values can be reasonably assumed at Sections A and B), quantification of mass flow rate to
the surface (i.e., over Section C) requires robust understanding of the spatial variation of solute and
velocity over the manhole cross section and how this evolves with time.

The evolution of solute mass exchange through each cross section A, B and C is quantified based
on the CFD model. For this purpose, CFD model results of test 1-A-B-C, 2-A, 3-A and 4-A were
considered. Due to highly heterogeneous conditions at section C, mass flow rate at each time step for
each inlet/outlet junctions (section A, B, C) was calculated using the following Equation,

.
Mx =

∫ i=A

i=0
ciuidA (10)

where
.

Mx is the solute mass flow rate though section A, B or C (i.e.,
.

MPI,
.

Me or
.

MPO); ui is the mean
velocity vector normal to area i; dA is an incremental cross section area vector (based on a 10mm slice);
and ci is the solute concentration within area i. Hence the integral value of the dot multiplication of
these components is used to provide the net mass flow rate through sections A, B and C. The model
set-up (uniform concentration applied at Section A) results in a constant

.
MPI over each test after the

first 0.2 s of simulation (as given in Table 3). Following the calculation of
.

MPI,
.

Me and
.

MPO, the rate of
change in solute mass within the manhole was calculated using Equation (1). Figure 6 shows resulting
outlet solute mass flow rates as a ratio of manhole inlet mass flow rate over each test. The time axis
in the figures represents time (in seconds) since the first solute enters the manhole from the sewer
inlet. As in Figure 5, this time (t0 = 0) is taken when average solute concentration at Section A exceeds

1% of the peak value. Significant fluctuation can be observed in the
.

Me.
MPI

values due to the complex

heterogeneous nature of the flow at the surface/manhole interaction point (section C).

Table 3. Characteristic time scales of solute mixing from different model results. Results are arranged
in an ascending order of the mean surface flow partition ratios.

Test ID
Inlet Mass
Flowrate,

.
MPI (×10−6 mg/s)

Nominal
Residence Time,

Tx (s)

Mean Surface Flow
Partition Ratio

(Qe/QinS)

Non-Dimensional
Characteristic Time (-)

Fitted Curve
Coefficients

t1/Tx t2/Tx t3/Tx C r2

1-B 9.7 4.09 0.150 0.03 0.20 5.80 0.35 0.9071
1-A 9.7 2.96 0.206 0.04 0.27 8.11 0.40 0.9677
2-A 10.8 2.28 0.241 0.05 0.34 8.27 0.40 0.9455
3-A 11.6 1.99 0.257 0.05 0.25 9.20 0.45 0.9545
1-C 9.7 2.24 0.302 0.05 0.26 9.79 0.52 0.9797
4-A 12.3 1.42 0.342 0.06 0.28 9.55 0.60 0.9356

Characteristic time scales, as described in Section 2.2, are defined for each test and are presented
in Table 3. Similar to the definition of t0, t1 and t2 are taken when averaged solute concentration at
Sections B and C exceeds 1% of the peak value, respectively. t3 is defined as the time when dMm

dt falls
below 2.5% of its peak value for the first time. Timescales in Table 3 are presented non-dimensionally
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in terms of the nominal manhole residence time for flow passing to the surface Tx, as calculated using
Equation (11),

Tx =
Lx

π
4 (Φm)

2

Qe
(11)

where Lx is the vertical distance between the sewer pipe axis and the manhole top and Φm is the
manhole cross sectional area.
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Figure 6. (a) Mass exchange ratio at the manhole to sewer pipe outlet from different test results.
Horizontal lines indicate QPO/QinS values for each test. (b) Mass exchange ratio at the manhole to
surface connection with fitted asymptotic trend lines. Horizontal lines indicate Qe/QinS values for each
test. (c) Change in solute mass within the manhole.

As can be seen in Figure 6a,b, for each test the proportion of mass flow rate entering the pipe
outlet (MPO/MPI) and surface flow (Me/MPI) grows asymptotically toward the relevant flow partition
ratio (as defined in Equations (2) and (3)). Therefore, solute mass flow exchange to the surface can be
described using the following function,

Me

MPin
=

(
−1

C(t− t2) + 1
+ 1

)
Qe

QinS
(12)

where C is an empirical coefficient. The best fit value of C and resulting goodness of fit (r2) value
between fitted equation and CFD model results for each test conducted in this work is given in Table 3.
The first arrival of mass at the pipe exit (t1) and the surface flow (t2) occurs relatively quickly in all
conditions (0.09 s < t1 < 0.13 s and 0.40 s < t2 < 0.82 s), while the timescale for complete mixing (t3) to be
achieved (and thus mass flow rate to the surface flow to become approximately steady and equivalent to
the surface flow partition ratio) varies significantly over the tests conducted (13.6 s < t3 < 24.0 s). From
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Table 3 the value of C and the non-dimensional timescale (t1,2,3/Tx) to achieve well mixed conditions
tend to increase with the flow partition ratio over the range of conditions tested.

4. Discussion

A comparison of experimentally measured and modelled discharges within a scaled manhole
structure shows that, given knowledge of the boundary conditions, the RANS CFD approach
accurately simulates flow exchange from piped to surface flows (within 1.7% in all test cases).
Therefore, steady-state flow exchange through similar hydraulic structures during flood events is
likely to be well described using RANS CFD. These results concur with previous validation studies
utilising similar 3D modelling approaches to simulate hydrodynamics in urban drainage structures
(see, e.g., in [29,45]), although in this case the complex interaction with surface flows as well as a solute
transport is also recreated. Such models are too computationally expensive to be used in direct flood
modelling applications; however, there is further potential to utilise such complex models to evaluate
simpler semiempirical weir/orifice relationships currently used to describe surface/sewer interaction.
Such semiempirical relationships have been found to be sensitive to interaction structure type, inlet
characteristics and geometry as well as unsteady hydraulic conditions [12,30,46,47], and thus benefit
from case-specific calibration. Similarly, the calibrated model has been shown to accurately reproduce
solute concentration profiles (and thus mass flow rates) measured downstream of the manhole structure
under a range of flow rates during cases where sewer flow interacts with surface flood water. Taken
together with the agreement of modelled and measured flow partition within the manhole, as well
as past results comparing CFD velocity vectors against those obtained using PIV measurement in
the same facility [29], this result gives confidence that the CFD model can reproduce flow details
and resulting solute mass exchange to the surface during flood conditions. A full validation would
benefit from having access to measured values of concentration/mass exchange at the interaction
point between sewer and surface flows (section C); however, the current results have demonstrated
the hydraulic complexity and spatial heterogeneity of concentration at this position. Therefore, such
validation measurements would require complex instrumentation such as Laser-Induced Fluorescence
(LIF) to provide detailed spatial data over the manhole area. In addition, further validation of CFD
approaches would be valuable in more complex hydraulic conditions (e.g., unsteady flow), in systems
with different geometrical features or at different scales or in cases involving sediments which are also
commonly present in urban drainage networks and may be susceptible to transportation in flood water.

The modelled flow structures illustrate the complexity of the interaction between surcharging
manhole flow and surface flood water; however, flow structures within the manhole appear to be
relativity insensitive to the pipe inflow rate over the flow partition ratios explored in these tests.
The solute transport and resulting mass flow rates within the system are a process of both advection
and diffusion. The solute transport from the manhole inlet to the manhole pipe outlet is dominated
by the advection process due to the strong local velocities in this zone. Thus, first arrival time to the
sewer outlet (t1) is dominated by the sewer inlet velocity with little subsequent variation within these
tests. In addition, as the flow partition ratio increases (i.e., more flow is transported to the surface) the
corresponding timescales for first arrival of mass at the surface (t2) and complete mixing within the
manhole (t3) decrease slightly due to the increasing advection through the manhole structure to the
surface. However, a stronger positive relationship is observed between non-dimensional timescales
based on the characteristic manhole residence time (t2/Tx, t3/Tx) and surface partition ratio (Qe/QinS),
indicating the relative significance of conical flow structures produced by the inlet pipe and subsequent
diffusive mixing processes in the tests conducted.

The work has shown that the sharp arrival of a well-mixed solute at an open manhole results in
an asymptotic growth of mass exchange to the surface, converging to a value that is defined by the
hydraulic flow partition. Parameterisation of an asymptotic growth function (C) may be related to
the flow partition ratio and/or the characteristic residence time, with more rapid mixing occurring at
lower residence times. Approximately well-mixed conditions (and associated equivalence of sewer
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to surface solute mass exchange s and flow partition ratios) occur at between 5.8 and 9.2 times the
manhole residence time over the conditions tested here. Further work is required to explore these
relationships over a range of manhole geometries, using different (time varying) solute injection profiles
and unsteady hydraulic conditions as well as in other exchange structures such as gullies featuring
grills/covers, including at full scale, such that realistic timescales in real situations can be established.
A more complete understanding of this problem should also consider the transport of solids, such as
fine sediments and entrained material, which are also present in urban drainage networks. In addition,
other flood scenarios (e.g., further exploring the influence of surface flow depth and velocity) and cases
where the majority of flow transfers to the surface (Qe/QinS > 0.5) could be explored. In such cases
where the surface flow partition ratio is significantly larger, the bulk advection of solute by the flow is
likely to increasingly dominate diffusivity arising from local flow structures.

5. Conclusions

A 3D CFD model was applied to simulate flows in an exchange structure involving interacting
pipe and surface flows to quantify flow and soluble pollutant mass exchange. The model was validated
with a laboratory-scale model, achieving differences of less than 1.7% in flow rates and excellent
statistical comparisons between observed and modelled concentration time series. This suggests that a
RANS CFD approach is an appropriate methodology to evaluate flow partition and to evaluate how
soluble pollutants move from sewer networks to surface flood flows.

The model was extended to different conditions to understand the effects of the manhole separately
from the pipe network, and used to calculate the evolution of solute mass transport rate through each
manhole open boundary cross section under a range of flow conditions including interactions between
sewer flows and surface flood water. A sharp arrival of solute into the structure is shown to result in
an asymptotic growth of solute mass exchange ratio to the surface converging to a value equal to the
surface flow partition ratio. An analysis of the results demonstrates that the timescales to achieve this
convergence are dependent on the diffusive transport inside the structure.

The work in this paper describes initial steps to understand the risks of soluble material from sewer
networks entering urban flood waters via exchange structures. The transport of pollutants through
these structures will also depend on additional factors including, but not limited to, the presence
of manhole coverings and change of structure geometry/shape. In order to build a more complete
understanding, such that risks to public health can be understood and quantified, requires significantly
more work. This includes further consideration of transport and transformations of both contaminated
sediments and soluble materials in urban drainage networks as well as datasets from urban drainage
networks, floodwaters and urban surfaces such that transport, survival and fate can be modelled
within quantifiable uncertainty bounds.
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