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Vegetation structure determines 
the spatial variability of soil 
biodiversity across biomes
Jorge Durán1* & Manuel Delgado‑Baquerizo2

The factors controlling the spatial variability of soil biodiversity remain largely undetermined. We 
conducted a global field survey to evaluate how and why the within‑site spatial variability of soil 
biodiversity (i.e. richness and community composition) changes across global biomes with contrasting 
soil ages, climates and vegetation types. We found that the spatial variability of bacteria, fungi, 
protists, and invertebrates is positively correlated across ecosystems. We also show that the spatial 
variability of soil biodiversity is mainly controlled by changes in vegetation structure driven by soil 
age and aridity. Areas with high plant cover, but low spatial heterogeneity, were associated with low 
levels of spatial variability in soil biodiversity. Further, our work advances the existence of significant, 
undescribed links between the spatial variability of soil biodiversity and key ecosystem functions. 
Taken together, our findings indicate that reductions in plant cover (e.g., via desertification, increases 
in aridity, or deforestation), are likely to increase the spatial variability of multiple soil organisms and 
that such changes are likely to negatively impact ecosystem functioning across global biomes.

The uneven distribution of soil features within a given location (hereafter spatial variability), is a ubiquitous 
characteristic of most terrestrial  ecosystems1,2. A wide body of the literature reveals that the within-ecosystem 
spatial variability of soil properties and functions is largely controlled by the interaction of multiple biologi-
cal, chemical, and physical  attributes3–5. However, much less is known about the factors that control the spatial 
variability of belowground organisms. We know that soil biodiversity is an integral driver of multiple ecosystem 
 functions6,7, and studies over the last decade have helped to identify the most important environmental factors 
controlling the diversity and community composition of soil organisms across space and  time8–11. However, one 
aspect of soil biodiversity that has been neglected in these studies is its spatial variability. Thus, strikingly, very 
little is known about the factors controlling the within-site spatial variability of soil biodiversity across contrast-
ing (in terms of climate and vegetation type) biomes and in soils with different soil ages.

The spatial variability of soil properties is known to play essential roles in controlling ecosystem 
 functioning8,9,11–13, including plant performance and competitive  ability14, ecosystem  productivity15, trophic 
 interactions16, and soil nutrient  cycling17,18. Advancing our knowledge on the major patterns controlling the 
spatial variability of the diversity and community composition of the myriad of soil organisms including bacte-
ria, fungi, protists and invertebrates is therefore fundamental to better understand the wide range of ecosystem 
processes that they control. However, we are far from understanding how the spatial variability in soil biodiversity 
is associated with key biotic and abiotic drivers, which limits our capacity to forecast how global environmental 
changes could alter not only the spatial distribution of soil organisms, but also terrestrial ecosystem functioning.

To address these knowledge gaps, we conducted soil and vegetation field surveys in six continents and 87 
sites ranging in soil age from hundreds to millions of years, and encompassing a wide range of climatic condi-
tions (tropical, temperate, continental, polar, and arid), vegetation types (grasslands, shrublands, forests, and 
croplands), and origins (volcanic, sedimentary, dunes, and glaciers) (Tables S1 and S2). The samples from this 
study were collected within 16 globally distributed soil chronosequences as described in Delgado-Baquerizo 
et al. (2019). This database has been previously used to investigate the changes in soil richness during ecosys-
tem development, but the major ecological predictors of the spatial variability in soil biodiversity remained to 
be described. Thus, we used amplicon sequencing information on the diversity of bacteria, fungi, protists and 
invertebrates, available for five soil samples within each location, to assess the within-site spatial variability (i.e. 
coefficient of variation in soil organisms richness and community composition dissimilarity), and to investigate 

OPEN

1Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, 
Portugal. 2Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, 41013 Sevilla, 
Spain. *email: jdh@uc.pt

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-78483-z&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2020) 10:21500  | https://doi.org/10.1038/s41598-020-78483-z

www.nature.com/scientificreports/

how and why (i.e. climate, soil properties and plant attributes) the spatial variability of the soil biodiversity 
changes in ecosystems across the planet with contrasting climate, vegetation and soil age.

Methods
This study used the database available in Delgado-Baquerizo et al.11. In brief, soil and vegetation data were col-
lected between 2016 and 2017 from 87 sites and 16 soil age chronosequences located in nine countries from six 
continents (Tables S1 and S2). A total of 435 soil samples were included in this study. These study sites cover a 
wide variety of vegetation (i.e. forests, shrublands, grasslands, and croplands) climate (i.e. polar, continental, 
temperate, tropical, and arid), soil ages (from centuries to millions of years) and soil origins (i.e. volcanic, sedi-
mentary, dunes, and glacier). In each chronosequence stage, we surveyed a 50 m × 50 m site. In each site, plant 
cover was measured using the line-intercept method from data collected in three 50 m length transects spaced 
25 m apart (see Maestre et al.19 for details on the standardized sampling protocol). Average of mean annual 
temperature and precipitation were obtained from the Worldclim  database20.

Five composite soil samples (i.e. each composite sample was formed by five, 10 cm depth soil cores collected 
in the same sampling point) were randomly collected in each site. A total of 435 soil samples were included in 
this study. This sampling design has been successfully used in the past to estimate the spatial variability of soil 
attributes in global  drylands2. The sampling was conducted during the same days within each soil chronose-
quence. After the collection, soils were sieved (2 mm) and separated into two portions. One portion was air-dried 
and used for biochemical analyses and the other one immediately frozen at − 20 °C for molecular  analyses8,21. 
Soil properties were determined using standardized  protocols19. Soil pH was measured in a 1:2.5 (dry soil mass 
to deionized water) suspensions with a pH meter, and soil total organic C (soil C hereafter) was determined by 
colorimetry after oxidation with a mixture of potassium dichromate and sulfuric acid. We selected soil pH and 
C because they are important environmental drivers of belowground biodiversity, change predictably during 
pedogenesis, and are considered good proxies of key ecosystem processes linked to soil fertility, nutrient cycling, 
biological productivity, and the build-up of nutrient  pools2,8,22–24.

Soil bacteria, fungi, protists and invertebrates richness was measured via amplicon sequencing using the Illu-
mina MiSeq platform. Ten grams of frozen soil were ground using a mortar and liquid N to homogenize soils and 
obtain a representative sample. Soil DNA was extracted using the Powersoil DNA Isolation Kit (MoBio Laborato-
ries, Carlsbad, CA, USA) according to the manufacturer’s instructions. A portion of the bacterial 16S and eukary-
otic 18S rRNA genes were sequenced using the 515F/806R and Euk1391f./EukBr primer sets,  respectively11,25,26. 
Bioinformatic processing was performed using a combination of QIIME, USEARCH and UNOISE3. Phylotypes 
were identified at the 100% identity level (zero-radius OTU [zOTU] level). The zOTU abundance tables were 
rarefied at 501900 (bacteria via 16S rRNA gene), 2000 (fungi via 18S rRNA gene), 800 (protists via 18S rRNA 
gene) and 300 (invertebrates via 18S rRNA gene) sequences/sample, respectively, to ensure even sampling depth 
within each belowground group of organisms. The richness of soil bacteria, fungi, protists and invertebrates was 
determined from rarefied OTU abundance tables. Before conducting statistical modelling, we also ensured that 
our choice of rarefaction level, taken to maximize the number of samples in our study, was not obscuring our 
results. Thus, using the samples with the highest sequence/sample yield, we tested for the impact of different 
levels of rarefaction on belowground diversity. Importantly, we found strong, statistically significant correlations 
between the diversities and community compositions of soil bacteria (rarefied at 5000 vs. 18,000 sequences/sam-
ple), fungi (rarefied at 2000 vs. 10,000 sequences/sample), protists (rarefied at 800 vs. 4000 sequences/sample), 
and invertebrates (rarefied at 300 vs. 1800 sequences/sample), providing evidence that our choice of rarefaction 
level did not affect our results or conclusions. See Delgado-Baquerizo et al.11 for further details.

To estimate the within-site spatial variability of plant cover we calculated the coefficient of variation (CV) 
using the cover data obtained in each of three transects per site (see above). To do so for soil C, pH, and spe-
cies richness of the different taxa, we calculated their CV using the five composite soil samples obtained at each 
site. The CV is a relative measure of heterogeneity that can accommodate variance-mean scaling, avoiding the 
tendency for variance to increase with the  mean27. Therefore, it has been shown to be more useful than absolute 
measures of variability such as the standard deviation for comparing variability within biological  properties1,28. 
We then estimated a site-level belowground spatial variability index by calculating the arithmetic mean of indi-
vidual site-level CVs of the spatial variability of bacteria, fungi, protist, and invertebrate richness. To estimate 
the belowground community composition dissimilarity, we first calculated site-level (87 sites) Bray–Curtis dis-
similarity matrices for the community composition of soil bacteria, fungi, protists and invertebrates based on the 
zOTU relative abundance  matrices29. We then averaged these organism-level Bray–Curtis dissimilarity matrices 
at the site-level to generate a belowground community dissimilarity index.

We constructed histograms to unveil the underlaying frequency distribution of the spatial variability of 
belowground richness and community composition dissimilarity of soil bacteria, fungi, protists and inverte-
brates, as well as that of our site-level belowground richness spatial variability and community dissimilarity 
indices. We explored the differences among the spatial variability of the different taxa using the permutational 
ANOVA (PERMANOVA) approach and a posteriori permutational pairwise  comparisons30. A maximum of 
999 permutations were used to obtain pseudo-F and p-values. Then, we used Spearman Rank Correlations to 
explore the relationships among the spatial variability of belowground richness and community composition 
dissimilarity of the different taxa. Finally, to achieve a system-level understanding of the major drivers of spa-
tial variability of belowground richness and community composition dissimilarity of soil organisms, we used 
structural equation modelling (SEM). In particular, we used SEM to evaluate the multiple direct and indirect 
effects of biotic and abiotic drivers on our indices of site-level belowground richness spatial variability and com-
munity composition dissimilarity indices. Our a priori model based on our current knowledge is available in 
Fig. S1. Structural equation modelling is particularly useful in large-scale correlative studies because it allows 
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us to partition causal influences among multiple variables, and to separate the direct and indirect effects of the 
predictors included in the  model31. Variables were log- or square root-transformed, when necessary, to improve 
linearity in the relationships. After verifying the adequate fit of our  model32, we were free to interpret the path 
coefficients of the model and their associated P-values. A path coefficient is analogous to the partial correlation 
coefficient, and describes the strength and sign of the relationships between two  variables31. The probability that 
a path coefficient differs from zero was tested using bootstrap  tests32. The net influence that one variable had 
upon another was calculated by summing all direct and indirect pathways (effects) between two variables. Then 
we parameterized the model using our dataset and tested its overall goodness of fit. All SEM were conducted 
using AMOS 20 (IBM SPSS Inc., Chicago, IL, USA). Histograms, and correlation analyses were carried out with 
R 3.6.1 (R Core Team, Vienna, Austria). Permutational ANOVA and pairwise comparisons were carried using 
Primer 6 and PERMANOVA + (Prirmer-E Ltd, Plymouth, UK).

Results
We found that the within-site spatial variability of soil biodiversity is highly variable across biomes (Fig. 1). 
Thus, the variability of soil organism richness (via coefficient of variation) and community composition dis-
similarity ranged from 1.27% to 82.12%, and from 0.44 to 0.96, respectively (Fig. 1a,b; Fig. S2). Also, whereas 
the spatial variability of belowground richness was relatively homogeneous across sites (except for a particularly 
high frequency of sites with levels of CV around 10–20%: Fig. 1a), the community composition dissimilarity 
followed a normal distribution (Fig. 1b; Fig. S2), suggesting that most sites have intermediate levels in the spatial 
variability of the community composition of soil organisms. On average, soil invertebrates showed the highest 
levels of within-site spatial variability (for both belowground richness and dissimilarity; Fig. 1c,d), with bacteria 
showing the lowest levels of variability for belowground richness (Fig. 1c), and with protists, fungi, and bacteria 
showing similar levels of belowground dissimilarity (Fig. 1d). Even so, the spatial variabilities of soil biodiversity 
for multiple soil organisms (bacteria, fungi, protists and invertebrates) were highly correlated with each other 
(Fig. 2) suggesting the existence of similar environmental regulators. Because of this, and for clarity, we conducted 

Figure 1.  Absolute frequency histogram of the spatial variability of soil richness (coefficient of variation) (a) 
and community composition dissimilarity (b), as well as average values and standard errors values of the spatial 
variability of soil richness (c) and community composition dissimilarity (d) for the different taxa and for our 
indices of site-level belowground spatial variability of soil richness and community composition dissimilarity. 
Different letters show significant differences among taxa (permutational pairwise comparisons; P < 0.05).
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downstream analyses based on the standardized average of the spatial variability for the richness or community 
composition dissimilarity of all belowground taxa (i.e. our site-level belowground richness spatial variability 
and community dissimilarity indices; see above).

The structural equation modelling (SEM) allowed us to identify the most important ecological predictors as 
well as the associations between climate, soil age, vegetation, and soil properties as drivers of the spatial variability 
of soil biodiversity (richness and community composition). Thus, our SEM explained 64% of the spatial variability 
of belowground richness (Fig. 3a) and 46% of its community composition dissimilarity (Fig. 3b). Our analyses 
indicate that changes in vegetation structure (i.e. increases in plant cover and decreases in its spatial variability), 
associated to decreases in aridity and increases in soil age, determine the spatial variability in the diversity of 
multiple soil organisms across global biomes (Fig. 3 and Fig. S3). Moreover, the standardized total effects (sum 
of direct and indirect effects from SEM) indicated that aridity (positive effect) and plant cover (negative effect) 
were the most important factors regulating the spatial variability of belowground richness (Fig. 3c) and com-
munity composition (Fig. 3d). Soil age, C and pH, all of them with negative total effects, were also important 
predictors of the belowground spatial variability, particularly for soil richness, whereas the spatial variability of 
soil C was an important, positive driver of the belowground richness and community composition dissimilarity.

Discussion
This study represents the first attempt to assess how and why the within-site spatial variability of soil biodiversity 
(i.e. richness and community composition of multiple soil organisms) changes in terrestrial ecosystems across 
global biomes with contrasting climate, vegetation and soil ages. Our results provide evidence that vegetation 
structure, driven by changes in aridity and soil age, determines the spatial variability of soil biodiversity. It is 
noteworthy the unexpectedly relatively high capacity of our models to explain the variability of the spatial pat-
tern of belowground diversity, which adds support to the relevance of the selected biotic and abiotic drivers at a 
global scale. Low levels of explanatory capacity is a common outcome in global surveys, in which the variability 
among sites is inevitably  high33, particularly when the challenge is to characterize the variability of soil resources 
and belowground diversity, which can be affected simultaneously by various sources of heterogeneity that might 
operate at different temporal and spatial  scales28.

Our results indicate that the spatial variability of multiple soil organisms is positively associated across 
biomes. In other words, we found that sites with high spatial variability for a given belowground taxa are also 
likely to have higher levels of spatial variability for multiple types of soil organisms including bacteria, fungi, 
protists and invertebrates. This result suggests that the spatial variability of different soil organisms share similar 
environmental drivers across contrasting  biomes11. Also, they support the idea that soil organisms are highly 
related through complex networks of interactions and mutual dependencies, suggesting that disturbance-driven 
changes in the aboveground component of ecosystems might have cascading effects on the diversity of a broad 
spectrum of belowground  organisms34–36.

Vegetation structure was identified as the main factor controlling the within-site spatial variability of mul-
tiple soil organisms. Thus, plant cover and, to a lesser extent, its spatial heterogeneity, revealed as key drivers of 
the spatial variability of both belowground richness and community composition. Previous studies conducted 
both at the  local1,37 and global  scales2 have shown that decreases in vegetation cover and increases in woody 
plant encroachment increase the spatial variability of soil resources through the development of high fertility 
areas under and around plant canopies (characterized by higher production of above- and below- ground litter, 
leachates, and exudates and lower erosion rates), and low fertility areas in the zones devoid of perennial vascular 
 vegetation1,18,38. Here, we provide new insights from a cross-biome survey, that decreases in vegetation cover 
(and increases in its own spatial variability) are strongly and consistently linked to increases in the spatial vari-
ability of the richness and community composition of all belowground taxa analyzed. More importantly, our 
results show that the strong control of the vegetation cover on the spatial variability of belowground organisms 

Figure 2.  Spearman Rank significant correlations (P < 0.05) among the spatial variability of the soil richness 
and community composition dissimilarity of the different taxa.
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can be direct, but also indirect, via changes in the levels and spatial variability of contrasting soil characteristics 
(e.g. pH and total C).

Our study has implications for the understanding of global change impacts on soil biodiversity and ecosys-
tem functioning. Plant cover is known to increase in many ecosystems following ecological succession, and also 
to be negatively associated with aridity at the global  scale39,40. Local and global field surveys have shown that 
important soil attributes associated with nutrient cycling or organic matter decomposition become more spatially 
heterogeneous as plant cover decreases with increasing  aridity1,2,41,42. A previous study from the survey used 
here, suggested that plant cover and soil pH were the main drivers of the changes in the richness of multiple soil 
organisms during ecosystem  development11. Here, we further advance that increases in aridity (as expected with 
climate change in coming decades) and in soil age are also important drivers of the within-site spatial variability 
of soil biodiversity. However, most of their effects seem to operate via changes in plant cover and structure, and 
concomitant changes in soil features and spatial variability. These results emphasize the need to consider not 
only direct, but also indirect links, when seeking to identify the major drivers of soil features and to assess how 
they will be influenced by environmental disturbances.

Different aspects of soil spatial variability have been shown to drive many ecosystem  processes3,4,14,15, but 
predicting these effects is not trivial, particularly at a global scale. The consistent associations among climate, 

Figure 3.  Structural equation models describing the effects of aridity, age, and plant and soil attributes on the 
belowground spatial variability of soil richness (a) and community composition dissimilarity (b). Numbers 
adjacent to arrows are standardized path coefficients, analogous to relative regression weights, and indicative 
of the effect size of the relationship. *P < 0.05, **P < 0.01, ***P < 0.001. Only significant relationships (P < 0.05) 
are shown. Red and blue arrows indicate positive and negative relationships, respectively. Arrow widths are 
proportional to the strength of the relationship. The proportion of variance explained  (R2) appears alongside the 
response variable in the model. Goodness-of-fit statistics for each model are shown in the bottom (df degrees of 
freedom, RMSEA root mean squared error of approximation). Panels (c,d) show the standardized total effects 
(direct plus indirect effects derived from the structural equation models) of the different explanatory variables 
on the spatial variability of belowground richness and community composition dissimilarity, respectively.
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soil properties, plant attributes and the spatial variability of soil biodiversity suggest that some of the changes 
in ecosystem functioning traditionally associated with variations in climate, vegetation, or in the availability 
or spatial variability of soil resources may operate at least partially via changes in the spatial variability of soil 
biodiversity. Our results therefore highlight the need for new experiments to unveil the specific functional role 
of the spatial distribution of the different belowground organisms, particularly at global scales.

Taken together, our results provide evidence that the spatial variability of soil biodiversity (i.e. richness and 
community composition) is predictable across contrasting biomes, and that the variability of multiple soil organ-
isms follow similar spatial patterns. We show that changes in vegetation structure, associated to soil age and 
aridity, determine the spatial variability of soil biodiversity. Also, our findings further advance that reductions 
in plant cover (e.g., via desertification, increases in aridity or deforestation) are likely to increase the spatial vari-
ability of multiple groups of soil organisms, with likely important implications for multiple soil and ecosystem 
functions. These findings are integral to improve our ability to fully understand and forecast the complex effects 
of different climate change drivers on soil biodiversity, as well as to design more effective early detection and 
mitigation measures.

Received: 8 August 2020; Accepted: 17 November 2020
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