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Abstract: Breast cancer is one of the most common cancers worldwide, which makes it a very impactful
malignancy in the society. Breast cancers can be classified through different systems based on the main
tumor features and gene, protein, and cell receptors expression, which will determine the most
advisable therapeutic course and expected outcomes. Multiple therapeutic options have already been
proposed and implemented for breast cancer treatment. Nonetheless, their use and efficacy still greatly
depend on the tumor classification, and treatments are commonly associated with invasiveness, pain,
discomfort, severe side effects, and poor specificity. This has demanded an investment in the research
of the mechanisms behind the disease progression, evolution, and associated risk factors, and on novel
diagnostic and therapeutic techniques. However, advances in the understanding and assessment of
breast cancer are dependent on the ability to mimic the properties and microenvironment of tumors
in vivo, which can be achieved through experimentation on animal models. This review covers
an overview of the main animal models used in breast cancer research, namely in vitro models, in vivo
models, in silico models, and other models. For each model, the main characteristics, advantages,
and challenges associated to their use are highlighted.

Keywords: oncology; breast cancer; experimental models; animal models; in vitro; in silico;
pharmacological testing; strategies of drug development

1. Introduction

Over the last few decades, breast cancer has been the target of several studies regarding its
molecular status, epidemiology, diagnosis, and treatment. Breast cancer is a major concern in women’
health due to its high incidence and mortality rate. However, it must be noted that it also affects men,
although with much less frequency. After analyzing breast cancer’s trends and predictions for 2020 [1],

Sci. Pharm. 2020, 88, 32; doi:10.3390/scipharm88030032 www.mdpi.com/journal/scipharm

http://www.mdpi.com/journal/scipharm
http://www.mdpi.com
https://orcid.org/0000-0003-0127-4575
https://orcid.org/0000-0002-1046-4031
http://dx.doi.org/10.3390/scipharm88030032
http://www.mdpi.com/journal/scipharm
https://www.mdpi.com/2218-0532/88/3/32?type=check_update&version=2


Sci. Pharm. 2020, 88, 32 2 of 29

the overall decline in breast cancer mortality rate over the last decades stands out, and it appears that it
will continue decreasing. In the European Union, breast cancer mortality rate declined 15.3% between
2002 and 2012, and it is predicted to fall around 10% until 2020. The same tendency applies for the USA.
It is also important to mention that although Western lifestyle appears to be a major risk factor for
breast cancer, the increased awareness of the population and the development of novel improved
diagnostic and treatment strategies are major contributors to this decline. In addition, it is impossible
to ignore the importance of the evolution in the research field when analyzing those numbers.

Breast cancers are differentiated in several types based on their features, allowing the best treatment
course selection and better prediction of the expected outcomes [2]. Breast cancers can be distinguished
based on histopathological types, tumor grade, tumor stage, and molecular subtypes, as schematically
represented on Figure 1.
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Figure 1. Schematic representation of the breast cancer classification depending on histopathological
characteristics, tumor grade, tumor stage, and molecular subtype.

Histopathology characterizes the tumors regarding its site and morphology based on a microscopic
evaluation of the cells. It gives information about tumor size, description (presence or absence of
masses or margins), texture, and histological and architectural type. Based on the location of the tumors,
they can be classified as lobular or ductal if they begin in the lobules or in the ducts, respectively.
Moreover, depending on the morphology of the cells, tumors can be divided into non-invasive or
benign, and invasive or malign. Non-invasive tumors, also known as carcinomas in situ, are limited to
the area where they are original set and have typically better prognosis, although they can also evolve
to invasive cancers.

The tumor grade classification, also known as the Elston and Ellis modified Scarff–Bloom–Richardson
(SBR) is based on a numeric score attributed to a tumor [3]. It assesses how closely cancer cells resemble
normal cells depending on three parameters: the tubule formation, nuclear pleomorphism, and mitotic rate.

The most used tumor stage classification system is based on the TNM staging system developed by
the American Joint Committee on Cancer [4,5]. TNM is a two-step procedure, and it stands for Tumor,
Nodes, and Metastasis [4,5]. Firstly, the cancer is classified based on its size and extension, on the spreading
or not to lymphatic nodes, and on the presence or absence of metastasis. Then, the combination of
the previous factors will be translated in an overall TMN score.
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The molecular subtyping of breast cancer is based on the expression of specific genes, proteins,
and cell receptors [6–10], such as Estrogen Receptor (ER), Progesterone Receptor (PR), Human Epidermal
Growth Factor Receptor 2 (HER2), Tyrosine Kinase Receptor, and Ki-67 protein. Additionally, over
the last few years, Androgen Receptors (AR) have drawn attention as possible new markers for breast
cancer classification, prognosis predictors, and therapeutic targets [11–13]; however, their use is still
controversial. Based on the ER, PR, and HER2 receptors status and on other proteins, breast cancers can
be classified as Luminal A (LA), Luminal B (LB), HER2-Enriched (H), Triple-Negative A or basal-like
(TNA), or as Triple-Negative B or normal-like (TNB), as represented on Table 1. This subtyping reflects
not only differences in the molecular expression of the cancers, but also on their incidence, prognosis,
and sensitivity to specific treatments [6,8,14].

Table 1. Molecular classification of breast cancer based on Estrogen Receptor (ER), Progesterone
Receptor (PR) and Human Epidermal Growth Factor Receptor 2 (HER2) status [10,15–19].

ER PR HER2 Ki-67 Notes

Luminal A +
+/−

+/−
+

− Low • Low-grade cancer and with the best prognosis

Luminal B
+

+/−
+/−
+

+
−

Any
High

• Higher expression of proliferation-associated genes
• Worse prognosis than Luminal A

HER2 Enriched − − + High
• Faster growth and worse prognosis than Luminal cancers
• Successfully treated with HER2 targeted therapies

Triple-Negative A
≡ Basal-like − − − High

• More common in women with BRCA1 mutations
• Enriched in cytokeratins and integrins
• Associated with metastasis and poor prognosis

Triple-Negative B
≡ Normal-like − − − Low

• Claudin-low cancers, overexpressing genes associated
with tumor invasiveness and aggressivity

Nowadays, there are several therapeutic options available for breast cancer, which are possibly
divided into two main categories: local treatments and systemic treatments. Local treatments
allow minimizing the effect over healthy tissues, and they include [20–23] tumor surgery (which
is considered the primary treatment for early stage breast cancer) and radiation therapy [24–26].
Systemic treatments are those in which the administered drugs will travel through the blood stream,
reaching cells all over the body [21]. Regarding breast cancer systemic therapeutic options, four major
groups can be considered: chemotherapy [20–22], hormone therapy [21,22], targeted therapy [27–30],
and immunotherapy [31–34].

Despite the multiple therapies available for breast cancer treatment, their use and efficacy greatly
depend on the patient, tumor classification and analysis of the clinician. Moreover, there are still
some concerns that need to be addressed, including extensive side effects, the need of using higher
doses of treatments to surpass the lack of specific targeting, and the few therapeutics available for
certain cancers, in particular triple-negative breast cancer. In addition, breast cancer resistance to
treatments and recurrence deserves special attention and further research. In this line, Breast Cancer
Stem Cells (BCSC) are considered to play an important role [35,36], and thus, several studies have
already hypothesized the importance of studying these cells to improve breast cancer prognosis
and treatment efficacy [35–37]. For these reasons, it is imperative to continue the search for novel
therapeutic options, which not only requires the search for new drugs, formulations, and therapies, but
also the search and development of reliable breast models, whether in vitro, in vivo, or in silico. Thus,
advances in breast cancer therapeutic approaches greatly depend on the availability of experimental
models accurately mimicking human breast cancer’ features and microenvironments, which by their
turn, depend on the ability of accurately detecting and classifying breast cancers.
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2. Animal Models in Breast Cancer

As aforementioned, breast cancer is still one of the most common cancers in humans,
which has boosted multifield efforts either to understand the mechanisms behind the disease
progression, evolution, and associated risk factors, both to discover and develop innovative
diagnostic and therapeutic tools. Nonetheless, advances in the breast cancer field depend on
the ability to mimic tumors’ properties and microenvironment, which can be achieved using animal
models experimentation.

Great advances in animal models experimentation have been done over the last years to meet
the demands of biomedical, medical, and pharmaceutical research [38,39]. Currently, animal models
can be gathered into different groups depending on their biological complexity and if there is a coupling
to non-biological entities or not, as represented in Figure 2 and explored further in this article.
The simpler models in terms of biological complexity are in vitro models [19,40,41], which consist in
the controlled growth, maintenance, and testing of single isolated cell lines or a synergy of different
cell lines. Then, with higher complexity, there are in vivo models [42,43], which correspond to animal
experimentation, representing a closer proximity to what is seen in humans, since they embody a better
mimicking of biological microenvironments, as well as immunological responses. Furthermore, there
are two other classes of models, the in silico models [44,45] and other models. In silico models are
computational models that use mathematical equations and high computational power to represent
and simulate biological properties and mechanisms. Other models include Phantoms and Microfluidic
three-dimensional models, which use non-biological entities alone or coupled with cells, respectively,
to physically mimic biological features and actions.
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phantoms and 3D microfluidic chips.

The choice of the animal model that is most suitable for each project will greatly depend on several
aspects, namely ethical concerns, the purpose and the severity of the procedures, the restrictions
imposed on the models to use (genetic variability, immunity . . . ), financial and logistic resources,
and the time available for the development of the project.

Currently, ethical aspects play an increasingly important role at the time of the decision of which
animal model to use, because the well-being of the animals is becoming more and more valued [46–48].
In order to respect the animals’ welfare and ensure the use of the strictly necessary number of animals,
guidelines [49,50], included in the legislation, for the use of animals in scientific research were created.
In Europe, the Federation of European Laboratory Animal Science Associations (FELASA) guidelines
apply [50], which include the 3Rs Principles, which were firstly proposed by Russel and Burch in
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1959 [51,52]. The use of animals for research purposes in Europe is regulated by the European
Convention (ETS 123) for the Protection of Vertebrate Animals used for Experimental and Other
Scientific Purposes [53], which was adopted on 18th March 1986 and by the Directive 2013/63/EU
of the European Parliament and of the Council on the Protection of Animals Used for Scientific
Purposes [54], adopted on 22n September 2010, both including the 3Rs Principles. Furthermore, in
Europe, there is also the European Animal Research Association (EARA) [55], which is an organization
whose main goals are to inform the community about animal experimentation in biomedical research
and healthcare and to ensure transparency regarding the use of animals in research. Moreover, most
countries, as well as each animal research center, create their own Animal Welfare and Ethics Body
(ORBEA) to regulate and evaluate animal experimentation. The 3Rs stand for Replacement, Reduction,
and Refinement, which compile a group of measures to encourage, among others, the reduction of
the number of animals used by selecting other models. They also prompt the care of the animals
to minimize their pain and distress as much as possible. Currently, a fourth R is included for
responsibility, appealing to the sense of responsibility of the researchers to respect animals’ welfare
and to follow the animal experimentation guidelines. The application of the 4Rs implies not only
ethical considerations, but also economical and common-sense considerations, because it is important
to share the results of research projects, no matter good or bad, in order to avoid multiple experiments
on the same subject leading to the sacrifice of more animals.

2.1. In Vitro Models in Breast Cancer

In vitro experimentation is based on the growth of single or multiple isolated cell lines in culture
media. The cells can be grown on flat surfaces, on scaffold-based structures, or on an extracellular
matrix. Cell culture can here be interpreted as the maintenance of animal or human cells outside
of the donor in a viable state for long periods of time, leading to the creation of new generations of
cells [56]. The in vitro models can use the culture of cellular adherent monolayers or suspensions of
cells, resulting in two-dimensional models (2D models) or three-dimensional models (3D models).

In vitro models are a good alternative to implement the 3Rs Principles, since they may reduce
the extension of the animal experimentation used, although in vitro experimentation also uses
components from animal sources.

In vitro experiments allow studying several intracellular and intercellular mechanisms under
controllable environmental conditions, such as cellular signaling pathways, metabolism, the absorption
and excretion of substances, metastasis, and cellular proliferation. This type of experiments is frequently
used because it allows the study of various cellular mechanisms and also because there is a vast
list of cell lines available. Moreover, this method is considered to be easy and cheap to maintain
compared to others. Nonetheless, it also presents some disadvantages such as the difficult mimicking
of the conditions surrounding the cells, the lack of contextualization regarding the microenvironment
and immunological response, and the different genetic expression and cellular markers of the cells,
since those are the specific features of each individual.

2.1.1. 2D Models

Cell line cultures are one of the tools that researchers use the most in laboratory research in in vitro
models. Apart from their advantages of unlimited self-replication and their ease of being handled
and preserved, there are already multiple cell lines catalogued into different breast cancer subtypes,
as summarized on Table 2, which make them meaningful models. Nonetheless, cell lines are known
to accumulate genetic changes and mutations over time, which presents a big disadvantage of cell
culture models. This phenomenon led researchers to debate whether or not cell lines are capable of
maintaining their characteristics [40], because DNA alterations appear to be two times more common
in breast cancer cell lines than in original tumors [15], which can cause phenotypical changes in
the cells. Nonetheless, Comparative Genomic Hybridization (CGH) analysis hinted that cell lines
are still representative of tumors, and that the same mutations happen in both the tumor and cell
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lines [57]. Historically, the first breast cancer cell model that was discovered, established, and used
was BT-20, in 1958 [58]. This cell line was derived from a 74-year-old female with a triple-negative
invasive ductal carcinoma, and it was mainly used for pre-clinical studies. Later, in 1973, the Michigan
Cancer Foundation discovered the MCF-7 cells [59], which is the most commonly used cell line in
breast cancer research [41]. The popularity of MCF-7 is largely due to its exquisite hormone sensitivity
through the expression of ER. This fact makes it an ideal model to study hormone response in breast
cancer. Afterwards, other cell lines were discovered and categorized in tumor subtypes. The second
most used breast cancer cell line is MDA-MB-231, followed by the T47D cell line [41].

The cell line nomenclature [15,60] is based not on the phenotypical characteristics of the cells, but
on their origin: if they were isolated at the same laboratory, if they were from the same patient, or if
they were isolated by serial subculture from the same initial population. For instance, the MCF series
means that the cells were isolated at the Michigan Cancer Foundation [59]; the MDA series of cells
were established at the M. D. Anderson Hospital and Tumor Institute [61]; 21 series were established
from a patient diagnosed as having an infiltrating and intra-ductal mammary carcinoma (regardless
their phenotypes or genotypes) [62]; and the SUM series of cells were isolated from different tumor
species but established using the same selective media [63].

Molecular classification of the cell lines is very important, since it will indicate which cell line
to choose, preferably depending on the end goal and the characteristics of the study [15,19,41].
Based on gene expression profiling, the cells in Table 2 are characterized by the status of four
receptors normally used in breast cancer subtyping: ER, PR, AR and HER2. The nomenclature
adopted to characterize the tumors depends on the receptors they express—Luminal A, Luminal B,
HER2-Enriched and Triple-Negative—and the tumor type: adenocarcinoma (AC), benign tumor (B),
carcinoma (C), ductal carcinoma (DC), invasive ductal carcinoma (IDC), invasive lobular carcinoma
(ILC), inflammatory ductal carcinoma (InfDC), medullary carcinoma (MC), squamous carcinoma (SqC)
or non-available information (NA).

The culture medium, or basic medium, is also an important factor to take into consideration
regarding cells’ needs, once each cell line has specific conditions to maintain its physiological
and molecular features. In order to make the culture medium as similar to tumor microenvironments
as possible, some refinement methods can be adopted, which can include the addition of elements
such as glucose, amino acids, vitamins, inorganic salts, and even serums to provide attachment factors,
hormones, and growth factors [64,65]. The main basic media utilized are [65] Ham’s F12 liquid medium,
Dulbecco’s Modified Eagle’s Medium (DMEM), and the Roswell Park Memorial Institute (RPMI)
medium. The most commonly used culture media for each cell line are also presented in Table 2.

To conclude, despite all the advantages that cell lines present, they are still viewed as basic models
that are unable to capture all the features and heterogeneity of cancer, so more additional advanced
models must be addressed.

2.1.2. 3D Models

Biological systems are characterized by constant dynamic interactions between multiple elements,
which complicate the understanding, mimicking, and knowledge of biological mechanisms, either
in normal physiological conditions or altered states. By altered states, it is meant in the presence
of pathology or in response to different environmental conditions, such as contact with chemicals,
exposure to radiation, lack of nutrients, etc. Tumors present highly differentiated and heterogeneous
structures [78], whose growth and proliferation are based on complex interactions between multiple cell
types and the surrounding environment. This fact hinders the understanding of biological mechanisms
and the discovery of more efficient treatments, since it requires the creation and use of more complex
models that are able to successfully mimic complex tumor microenvironments.
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Table 2. Characterization of breast cancer cell lines based on the receptors they express: Estrogen
Receptor (ER), Progesterone Receptor (PR), Androgen Receptor (AR), and Human Epidermal Growth
Factor Receptor 2 (HER2); and classification of the tumor they origin, into breast cancer subtypes
depending on the receptors they express: Luminal A (LA), Luminal B (LB), HER2 Enriched
(H), Triple-Negative A or basal-like (TNA), and Triple-Negative B or normal-like (TNB); and on
their histopathological features: benign tumor (B), adenocarcinoma (AC), ductal carcinoma (DC),
invasive ductal carcinoma (IDC), invasive lobular carcinoma (ILC), inflammatory carcinoma (InfC),
inflammatory ductal carcinoma (InfDC), medullary carcinomas (MC), or squamous carcinoma (SqC).
Additional information on the culture medias more commonly used for each cell line: Ham’s F12 liquid
medium (HAM’s F12), Dulbecco’s Modified Eagle’s Medium (DMEM), Roswell Park Memorial Institute
(RPMI) medium and Minimal Essential Medium Eagle-alpha modified with nucleosides and DFC1
medium (α-MEM/DFC1) [11,15,16,18,66–73].

Cell Line ER PR AR HER2 Tumor Classification Notes Ref.

BT-483 + +/− + −

LA

IDC Medium: RPMI [15,16,68–73]

HCC-712 + +/− NA − DC Medium: RPMI [15,71]

KPL-1 + − NA − IDC Medium: RPMI [15,72,74]

MCF-7 + + + − IDC Medium: RPMI, DMEM
Ki67 low [11,15,16,19,68–71,73]

MDA-MB-415 + +/− + − AC Medium: DMEM [15,68–70,73]

T-47D + + + − IDC Medium: RPMI
Ki67 low [11,15,19,68–73]

BT-474 +/− + + +

LB

IDC Medium: RPMI
Ki67 high [15,16,19,68–73]

EFM-192A + + NA + AC Medium: RPMI [15,71]

IBEP-1 - + NA + IDC Medium: DMEM [15,72]

MDA-MB-330 +/- − NA + ILC Medium: RPMI [15,68,70,72]

UACC-812 +/- − + + IDC Medium: RPMI, DMEM [15,68–73]

ZR-75-30 + − NA + IDC Medium: RPMI [15,68–72]

21-PT − +/− NA +

H

IDC Medium: α-MEM/DFC1 [15,62]

HCC-1569 − − − + MC Medium: RPMI [15,68,69,71,73]

MDA-MB-453 − − + + AC Medium: RPMI, DMEM
Ki67 high [11,15,16,19,66–73]

SK-BR-3 − − + + AC Medium: RPMI, McCoys
Ki67 high [15,19,68–73]

SUM-190PT − − NA + InfC Medium: Ham’s F12 [15,68–71]

SUM-225CWN − − NA + IDC Medium: Ham’s F12 [15,68–70]

DU-4475 − − NA −

TNA

IDC Medium: RPMI [15,68,70,72]

HCC-1806 − − +/- − SqC Medium: RPMI [15,67,68,71,73]

HCC-70 − − +/- − DC Medium: RPMI [15,68,69,71,73]

HMT-3522 − − NA − B Medium: DMEM, Ham’s F12 [15,75]

MA-11 − − NA − ILC Medium: DMEM [15,72,76,77]

MDA-MB-157 − − - −

TNB

MC Medium: RPMI, DMEM [15,68–73]

MDA-MB-231 − − + − AC
Medium: RPMI, DMEM

Ki67, E-cadherin, claudin-3,
claudinin-4 and claudinin-7 low

[11,15,16,19,66–73]

SUM-149PT − − NA − InfDC Medium: Ham’s F12 [15,68–71]

SUM-159PT − − + − AC Medium: Ham’s F12 [15,67–70]

The receptors are considered present in the cells (+), absent (−), information still controversial (+/−), or there is still
non-available information (NA). Information about the main used media for each cell line is also presented, although
it must be noticed that only the basic medias are mentioned, being those, in practice, frequently supplemented
according to the cells’ maintenance needs, which are usually advised by the cell line suppliers. Popular supplements
include fetal bovine serum (FBS), penicillin/streptomycin, insulin, L-glutamine, and non-essential amino acids.

It was in response to the need of developing more complex models that 3D in vitro models appeared.
3D in vitro models can be developed from previously well-known, isolated, and commercialized
cell lines or from patient-derived samples collected through biopsies. They allow studying cell–cell
interactions and cell–extracellular matrix (ECM) interactions. Moreover, 3D in vitro models make it
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possible to analyze tumor formation, progression, and metastasis. This class of models includes tissue
slice models, organoids, spheroids, and scaffold-based models.

Tissue Slice Models

Tissue slice models consist of thin slices of tissues collected from patients through biopsies,
retaining their native state and preserving cell–cell and cell–ECM connections [79]. These models are
very delicate to maintain and are subjected to higher ethical concerns once they use patient samples.

The preservation of the interactions between cells and cells and ECM makes the diffusion of
the medium through the tissues possible [79], allowing the application of these models to study
drug response [80] and the use of adenoviral vector strategies to develop novel gene therapies
and virotherapies [81–83].

Organoids

Organoids are 3D assemblies of cells of one or more types with histologic arrangements at
the micron scale similar to in vivo tumors [79,84]. More commonly, organoids are composed of
malignant cells and supporting cells from the tumor microenvironment, such as fibroblasts, leucocytes,
and endothelial cells, among others. Frequently, the cells used to create organoids are derived from
patient samples obtained through biopsies, which leads to the formation of 3D structures that are able
to mimic the tissue from where they were derived, representing a more realistic model. When patient
samples are used, one of the techniques proposed to produce organoids is based on the disaggregation
of the sample tissue followed by the reaggregation of the cells, allowing analysis of the ability of
the cells to self-organize.

The use of organoids in breast cancer research has been proposed to study the interaction between
fibroblasts and epithelial breast tumor cells [85], to study tumor progression [86], and to predict
a drug response [87]. Nevertheless, these structures also present some drawbacks, namely the lack of
blood flow. Some organoids are able to develop a vascular system, although it requires very complex
production techniques, and the results are very variable [84].

Spheroids

Three-dimensional 3D spheroid models include sophisticated structures composed by one or more
types of cells which, when grown enough, present a necrotic core surrounded by actively proliferating
layers of cells [79,88]. The complex formed also includes an extracellular matrix (ECM) formed of
proteins produced by the cells. These models are very similar to in vivo tumors, since they present
similar genetic expression, growth kinetics, and cellular heterogeneity [88]. Moreover, the presence of
a natural ECM allows mimicking a natural barrier to study the drug penetration, while the internal
structure of the spheroids represents a great mimicking of in vivo tumors, where the internal region
appears necrotic due to the deprivation of nutrients and oxygen.

Several methodologies were already proposed to produce 3D spheroids [79,88], such as the spinner
flask technique, in which a suspension of cells is continuously stirred, encouraging the formation of cell
aggregates; the liquid overlay technique [89,90], where the cells are cultured in non-adherent surfaces,
supporting the formation of aggregates rather than adherence to the flask surface; the hanging drop
technique [91], in which cells are cultured as droplets of medium on the lid of a petri dish, and the lid is
turned over and placed on the bottom petri dish, followed by the culture of the cells until the spheroids
reach the desired size; and magnetic levitation [92,93], where the cells aggregate in response to
the application of magnetic fields. The methodology used will determine the production cost, since
some techniques imply the use of specific materials and/or equipment. Moreover, the chosen production
technique will influence the homogeneity of the spheroids obtained, which despite the efforts made so
far is still a major concern.
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Due to their potential as similar models to in vivo tumors, 3D spheroids have been increasingly
explored [88,94]. They have already been used to study breast cancer cells invasiveness [91] and in
drug delivery systems efficacy and distribution studies [89,90].

Scaffold-Based Models

Three-dimensional scaffold-based models rely on the growth of cells in 3D structures that will, in
a certain way, mimic the extracellular matrix. The structures used in the models can be made of natural
(e.g., collagen), semi-synthetic (e.g., chitosan), or synthetic (e.g., polycaprolactone) biomaterials [88].
Moreover, the cells can be cultured on previously fabricated/synthesized structures [95], or they can
be 3D bio-printed [96]. The use of structural entities allows modeling small complex shapes [79],
while simultaneously, when simulating the ECM, it creates some resistance to drug penetration, which
is similar to what happens in in vivo tumors. Moreover, these models are usually characterized
by spontaneous cell organization, possible heterogeneity, gene expression, and cellular phenotype,
similar to in vivo tumors [88]. Despite the undeniable advantages of these models, they present some
hindrances as well, such as the use of artificial ECM structures. Furthermore, it is required to use
structural materials with high biocompatibility that are able to support the cells, which in the case of
bio-printed structures must also be efficiently printable.

These models have been reported in projects involving the study of breast cancer’ initiation, its
hypoxia-driven cancer progression [97], and its response to treatments [95,98]. Additionally, they have
been studied to replicate the tumor microenvironment and to be used in drug screening assays [99].

2.2. In Vivo Models in Breast Cancer

As mentioned above, the understanding of the mechanisms underlying breast cancer pathology
and the development of new diagnostic and therapeutic options depend on the ability of animal
models to mimic the tumors’ properties and environment. When considering in vivo models, there are
different animal species already reported, such as cats, dogs, rats, and mice [100,101].

2.2.1. Canine and Feline Models

Cats and dogs are natural models to study mammary tumors because they develop spontaneous
malignant tumors with similar characteristics to human tumors, namely histopathological features [102,
103]. They have genetic variability comparable to humans and might be exposed to several carcinogens,
similar to the ones to which humans [104] are prone.

To study the basis of age onset, incidence, and pattern of metastasis, cats are good models [103,105],
presenting histological characteristics more similar to human breast cancer than murine and canine
models [103,106]. Some feline mammary carcinomas present particular characteristics, such as
overexpression of the HER2 receptor [107], tyrosine kinase receptor [105], and cyclin A [103],
and the nuclear accumulation of the p53 [103] gene, making them suitable natural models of
hormone-independent, HER2 overexpressing, and aggressive human breast cancer [38].

Canine models of mammary tumors have also similar characteristics to human breast cancer,
namely the biological behavior and histological type of tumors [108]. Moreover, canine mammary
tumors have comparable epidemiological factors, such as age-related incidence rate and the protective
effect of early pregnancy [108,109]. HER2 overexpression and the deregulation of BRCA1 and BRCA2
genes, which are related to development and progression of breast tumors in humans, are also
found in dogs’ mammary tumors [109–111]. Furthermore, genetic alterations in the p53 gene in
dogs can be associated with the development of canine mammary carcinomas and their increased
malignancy [107,112].

2.2.2. Murine Models

In the European Union, the species more frequently used in experimental research are rats, Mus
musculus, and mice, Rattus norvergicus [101,113]. Rats and mice present multiple advantages when
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compared with other animal species, such as they are small and relatively cheap animals; they are
easy to accommodate and manipulate; and they have many similarities with humans, namely a 98%
genetic homology [114], which is one of the most important characteristics [100,101,113,115–118]. Two
of the main differences between these two rodents species are size and weight, with mice possibly
weighting 10 times less than rats [119,120].

In breast cancer-induced models, rat models, similar to what is seen in human breast cancer,
present a high frequency of hormone dependence and show a tumor progression from ductal
hyperplasia and ductal carcinoma in situ [121–123]. Those characteristics make them good models
to study the development of breast cancer. Contrary to rats, mice models when compared with
humans have a low frequency of hormone dependence and show a tumor progression from alveolar
hyperplasia [121–123]. Regardless, they are good models to study the effect of genetic manipulations.

Within each species, the choice of the strain is a very important factor, since some features, such as
the genetic variability, might affect the experimental design and the reproducibility of the models [124].
Depending on the genetic uniformity of laboratory rodents’ colonies, they can be divided into inbred
and outbred. Inbred animals are characterized by genetic uniformity, as a result of more than 20
generations of brother–sister mating or the equivalent. This class of animals is very useful to reduce
the number of animals used in studies, to increase statistical power, and to improve experimental
reproducibility, which represents major advantages when compared to the use of outbred colonies.
There are different inbred colonies of rats—namely Fischer, F-344, and Lewis—and of mice, such
as BALB/c and C57BL/6 [124–127]. In contrast, outbred colonies have no genetic uniformity, which
is important to maintain the individual diversity, a characteristic that seems to be more similar to
what happens in the human population. Moreover, outbred colonies allow increasing the fecundity
and reducing costs [126,128]. There are different outbred colonies of rats, such as Sprague–Dawley,
Wistar, and Long-Evans; and of mice, such as Black Swiss and CD-1 [124–127].

Researchers look for animal models that focus on particular features that better replicate the human
breast cancer. However, this is a multifactorial and polygenic disease with significant morphological,
histopathological, and molecular variation, as mentioned above. For this reason, it’s difficult to find
a single model representative of all human breast cancers. Nonetheless, a set of models can be used, with
each one of them representing a particular subtype of tumor or characteristics of the disease [129,130].

There are numerous animal models reported to simulate different human cancers [131], specially
breast cancer-induced models, which can include environmental models with chemical induction,
transplanted tumors, and genetically engineered models [131].

Chemically-Induced Models

Environmental models consist in the induction of tumors through contact with chemical
compounds, namely, compounds to which people can be exposed daily, through different pathways.
Currently, there are only two chemical carcinogenic agents (7,12-dimethylbenzantracene (DMBA)
and N-methyl-N-nitrosourea (NMU)) that are able to induce mammary tumors in rats that exhibit
histopathological characteristics and genetic alterations similar to those described in humans [101,132].
Both compounds are complete carcinogens that are able to induce cancer without the additional
functions of tumor-promoting agents, and, in rats, they are capable of inducing hormone-dependent
tumors [131,133–135]. In contrast, in mice, the tumors induced by the mentioned carcinogens tend to be
hormone-independent [136]. DMBA is a compound that is present in cigarette smoke, coal, petrol, diesel
engines, meat grilling, and roasting, that can be absorbed by the skin, respiratory, and gastrointestinal
tracts. The inhalation of cigarette smoke can be one of the main examples of the human exposure to
DMBA [131,137–142]. DMBA is a classical polycyclic aromatic hydrocarbon (PAH), an indirect-action
carcinogen, that needs to be previously bioactivated by cytochrome P-450 located in the liver, and that
can form adducts with DNA [143–146]. On the other hand, MNU is a direct alkylating agent by
the methylation of guanine nucleosides that does not need previous bioactivation [101,147,148]. A
single dose of both compounds can induce mammary tumors in Sprague–Dawley rats [149–152].
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DMBA, administered at 50–56 days of age by gavage, in a single dose from 50 to 100 mg/kg can induce
a high number of mammary tumors with 100% incidence in Sprague–Dawley rats [144,153]. Wistar rats
can also be used, but recent studies showed that the number of mammary tumors induced in Wistar
rats is lower when comparing with Sprague–Dawley rats [101,154]. A single intraperitoneal injection
of MNU, at 50 days of age, with a dose of 50 mg/kg, is also capable of inducing mammary tumors
with 100% incidence in Sprague–Dawley rats [101,117,148,155,156]. MNU can also be administered
by other routes such as subcutaneously, intravenously, and by gavage, but the number of tumors
induced is higher by intraperitoneal administration [101,157]. Comparing the mammary tumors
induced with MNU and DMBA, MNU-induced mammary tumors tend to be locally more aggressive
and spontaneously metastasized [158], and they can be used to induce other types of cancer models
such as gastric, colorectal, and esophageal cancers [159–161]. Meanwhile, DMBA-induced tumors tend
to be less aggressive, lacking local invasion and metastasis to distant organs [158,162].

Tumor latency is inversely related to carcinogen dose, whereas tumor incidence and the number of
tumors per animal is related to the age of animals at the time of the carcinogen administration [163,164].
The age of the animals at the carcinogen administration time is considered to be the crucial point for
carcinogenesis initiation [132,163,165]. The optimal age for carcinogen administration occurs between
45 and 60 days age, corresponding to the age of rat puberty, which is the stage where a faster expansion
of the mammary gland epithelium occurs. At this age, the terminal end buds (TEBs) of mammary
glands are numerous and differentiating into alveolar buds and terminal ducts, which maximizes
the number of foci of tumoral initiation [132,163]. After this time, there is a decrease in the number of
undifferentiated structures and the susceptibility of mammary glands to carcinogenesis decreases [166].
Similarly to what happens in rats, in human breast cancer during early adulthood, the cell replication
rate is maximal, which is a phenomenon that tends to decrease considerably with age. This indicates
that at the puberty age, the cellular turnover is faster, and consequently, there are increased chances
for neoplastic processes to be initiated [166]. All this highlights the importance of the carcinogenesis
initiation at the early adulthood stage.

In summary, chemically induced models have been widely studied and allow the investigation of
certain compounds’ effects on the initiation, promotion, and progression of breast cancer. Thus, they
represent very useful tools to understand the impact of environmental factors. However, these models
are time-consuming, and the tumors generated are still variable regarding their size and location.

Transplanted Tumors Models

Transplanted tumors models consist in the transplantation of living cancer cells in suspension
or solid tumors obtained from a donor. They can be classified in cell-derived xenografts (CDX),
patient-derived xenografts (PDX), or syngeneic models (allograft models) [167]. When the tumor
donor and host are from the same species, the models are classified as allograft. Contrarily, when
the tumor donor and host are from different species, they are classified as xenograft models. In
the case of xenografts, the host animals must be immunocompromised to achieve greater tolerance
to tumor transplantation [131,168]. In both models, if the tumor cells are implanted in the tumor
site of origin, they are classified as orthotopic models, the transplantation of mammary tumor cells
to the mammary fat pad as an example. On the other hand, when the tumor cells are implanted in
a different place from their origin, they are classified as heterotopic models, the transplantation of
tumor cells intraperitoneally or intramuscular being examples [101,133,169]. There are different tumor
transplantation models, as described in Table 3.
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Table 3. Summary of breast cancer cell-derived xenograft (CDX), patient-derived xenograft (PDX),
and syngeneic mouse models [167].

Model Implantation Site Mice Strain Cell Line Tumor Classification

CDX

Subcutaneous
(Heterotopic model) BALB/c, Nude

MDA-MB-231 TN
MDA-MB-435 TN

BT474 LB

Mammary fat pad
(Orthotopic model) NOD/SCID

MDA-MB-231 TN
MDA-MB4-35 TN

SUM1315 TN
MCF7 LA
T47D LA

Tail vein
(Metastatic model)

NOD/SCID MDA-MB-231 TN
SUM149 TN

PDX
Subcutaneous BALB/c, Nude / /

Mammary fat pad
(Orthotopic model)

NOD/SCID
NSG / /

Humanized Mammary fat pad (Orthotopic model) NOD/SCID / /

Syngeneic Mammary fat pad BALB/c 4T1 /

LA, Luminal A; LB, Luminal B and TN, Triple-negative.

Transplanted tumors models are well-established models that were mainly used to study new
drugs’ toxicity and therapeutic value [167]. CDX models are mostly useful to analyze tumor initiation
and growth. They can also be used to study the metastatic process, although their clinical predictability
is still limited. PDX models are based on the implementation of tumor fragments in murine animals,
which leads to the development of tumors with the same features as the original tumor. Those features
make these models especially advantageous to explore personalized treatments. Both CDX and PDX
models might require the use of immunocompromised animals, which does not mimic what really
happens in humans and increases the cost of the models. Syngeneic models present metastatic responses
more alike to what is seen in human tumors, making them profitable resources to study the metastatic
process and to test new anti-cancer and anti-metastatic drugs. Moreover, they do not require the use of
immunocompromised animals, representing a better mimicking of real situations, although expressing
genetic and histological properties possibly different from the humans. Additionally, they potentiate
the study of novel immunotherapies.

Genetically Engineered Models

Genetically engineered models (GEM) correspond to animal strains with manipulated
genetic alterations that can be classified as transgenic, knock-in, or knock-out, depending on if
the addition, modification, or removal of DNA sequences occurred, respectively [101,170]. The main
alterations involve the overexpression of oncogenes or loss of tumor-suppressor genes [171].
Comparing the number of genetically modified rats and mice, there are more genetically modified
mice [172]. However, genetically modified rats can be good models to evaluate the role of Ras, BRCA1,
and BRCA2 genes in the progression of malignant mammary tumors [151,152,173,174]. Genetically
modified mice models of breast tumors can include the application of growth factors and receptors
(TGF-alpha, Erbb2, and IGF-II), nuclear oncogenes (c-myc), viral oncogenes (polyoma middle T
and SV40 large T), Ras genes (Ha-Ras and N-Ras), INT genes (Wnt family, INT family, FGF family),
growth suppressor genes (p53, TGF-beta, BRCA1, and BRCA2), and genes affecting the cell cycle
(cyclin-D1) [43].

Radiation Models

Ionizing radiation can induce tumors in the case of radiation overdose and overtime exposure,
and mammary tissue is one of the most sensitive tissues to this kind of radiation [175]. The risk of
developing breast cancer in cases of radiation exposure is related to the age at which exposure occurs,
the risk being augmented in women under 20 years of age and more than 50 years old [176]. There are
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different types of radiations with a potential carcinogenic effect, such as atomic radiation (alpha, beta,
gamma, and neutrons), X-rays, and ultraviolet radiation [177]. The first report of X-ray irradiation
and the induction of mammary cancer was in Sprague–Dawley rats [178]. More recent studies also
used other rat strains such as F-344 [179,180], Wistar Furth, WAG, WM, and Lewis [181–184], but
the Sprague–Dawley strain is considered the most likely to develop mammary cancer through radiation
exposure [180,185,186]. Mice models can also be used to study radiation carcinogenesis, such as
BALB/c [187]. Moreover, different mutant strains such as BALB/c with mutation in tumor suppressor
gene p53 [188,189] and mice with double mutation in BRCA1 and p53 (strain unspecified) [190] can
also be used. This type of models shows potential for studying the effect of the radiation exposure
over the mammary tissue regarding tumor induction. Nonetheless, the data published so far on
these models is still controversial, and consequently, more studies are required to prove their value
and usefulness.

Despite the variety of in vivo models described in the literature, the choice of the most suitable
model for each project is not obvious, so to make this task easier, Table 4 presents a summarized
comparison of the main advantages and disadvantages identified by the authors (based on personal
opinion) for each type of in vivo model here enumerated.

Table 4. Summary table exposing the main advantages and disadvantages identified by the authors for
each breast cancer in vivo model mentioned in this review article.

Models Pros Cons

Xenograft CDX
Subcutaneous
administration

• Show primary tumor growth
• Easier control/monitoring of

tumor growth
• Generally, the tumors do not metastasize

Orthotopic
administration

• Allow analyzing the metastasis • Costly and time-consuming
(all xenografts)

PDX
• Tumors with similar features (histology,

genomic signature, and heterogeneity) as
the cells from the donor

• Require the use of immune-deficient
animals, which can result in the lack of
the immune system response

Syngeneic models (allograft)
• More efficient metastasis with similar

characteristics to the donated
tumor sample

• The genetics and histology of tumors may
not reflect the humane situation

GEM

• Specific for studying molecular
and pathophysiological pathways of
breast cancer

• Specific reproduction of tumor formation
and progression

• Specific mutations can be induced

• The mutation is “induced” in all cells
• Different inflammatory

and desmoplastic response
• Different metastatic pattern compared to

the one from humans
• Harder to mimic the period of

tumor incubation

Tumor-inducted by Chemicals and Hormones

• Useful to analyze the initiation,
promotion, and progression of mammary
carcinogenesis, and also to study
the relation of environmental factors
and breast cancer development

• Well described and tested

• Longer time to obtain the “sick” animal
• Harder to control the tumor size

and location (which organs/tissues
are affected)

• Do not show a clear evidence
of invasiveness

Radiation
• Useful to study the effect of radiation

and of fractionated dose
• Require more studies to clarify

the different models

2.3. In Silico Models in Breast Cancer

Some of the main challenges and disadvantages of using in vitro and in vivo models are related to
the difficulties intrinsic to the maintenance of the models, the high biological variability, and the ethical
concerns inherent to the use of biological species. To surpass the mentioned disadvantages, in silico
models were created to perform biological studies without using biological entities, allowing higher
control over the experiments, to increase the number of parameter/variabilities to test and eliminating
all ethical apprehensions [44,45].
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In silico models combine complex mathematical equations with potent computational resources
to simulate and investigate biological mechanisms. These models can be designed by gathering
and analyzing the data obtained from previous in vitro and in vivo experiments [45,191], and/or by
applying predictive and modeling techniques. They allow obtaining important information regarding
chemical, physiological, and pathophysiological features, but at the moment, their validation is still
dependent on in vitro and in vivo experiments.

The applications extent of in silico models is far-reaching. There are examples of models
participating in different research fronts, going from the identification and understanding of
the disease’s cancer-driver factors [192–196], to its assessment regarding metabolism [197,198]
and progression [199,200], to its diagnostic [201–204] and up to its treatment [205–210].

As aforementioned, the majority of the data analyzed for the design and development of in silico
models comes from previous in vitro and in vivo experiments, which can be obtained from people
belonging to the same group, from already published works [201], or from open sources such as
libraries and databases. There are already well-organized and big databases gathering information
about several cancers, especially regarding the cancer genome [211,212] and cancer proteome [213].
Moreover, researchers created a more advanced database with a million profiles, collecting information
on genes, drugs, and disease states, which led to the creation of the so-called connectivity maps [214],
potentiating the development of novel cancer-targeted therapies. Furthermore, some of the data used
for creating in silico models can also be obtained from patients’ medical exams [209,215] acquired prior
their diagnostic, during the course of their treatments, or afterwards.

Genomic and proteomic data allow the development of computational methods not only to
identify cancer-driver mutations and pathways, but also to discover novel drugs and more targeted
therapies. The methods used to identify cancer-driver mutations and pathways can rely on [44,192]:

• using known pathways from public databases [194,216,217], which consists of the comparison of
genetic modifications related to cancer with pathways already reported in the literature through
the application of statistical and machine learning methods;

• network-based methods [193,195,218], identifying cancer-associated genes and pathways related
with interactions at the cellular and molecular level in biological networks;

• learning cancer pathways de novo [196,219], making deductions on cancer genes and pathways
based on the identification of co-occurrence patterns or mutual exclusivity between genetic
aberrations, without replicating state-of-the-art knowledge.

The data extracted from databases and from work already published allow creating simulations
of breast cancer fundamental aspects such as tumor growth [199,200], metabolism [197], and solute
transport in tumor tissues [198]. Moreover, researchers developed computational methods to evaluate
the efficacy of new targeted drugs. The use of machine learning to predict potential targeting sites
was also described based on multiple data types, foreseeing, simultaneously, new drug repositioning
opportunities and identifying similarities between drug classes [206]. It allowed making assumptions
regarding previously unexplained clinical observations. There are also reports of the use of in silico
methods combined with in vitro methods to assess the potential of new drugs as anti-cancer agents [207].
Tumors response to a single drug or a combination of drugs was already simulated [205,220], providing
a very useful tool for developing more targeted and efficient drugs and for comparing the efficacy of
different medicines.

Another sector in which in silico methods present high potentiality is in computer-aided decision
making [215] which, likely, allows validating medical assessments regarding diagnosis and treatment
options, leading to a reduction of the probability of human error occurrence. The majority of
the computer-aided decision methods are related with the classification of the tumor types based on
medical exams’ data, such as mammograms [201,202] and infrared spectroscopy [203,204].

Additionally, in silico models can be applied to create virtual tissue models, also known as virtual
phantoms, for assessing and predicting different tissues responses to different stimuli. This kind of
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model can be designed based on medical data or can result from mathematical simulations. When
considering the virtual models constructed based on medical data, there are projects reporting the use
of computerized tomography data [221,222] and others reporting the use of 3D histopathological
reconstructions [223,224]. Other types of models are designed by applying mathematical models,
which are used for instance to optimize the acquisition of medical images [225] or by using finite
element simulations to estimate the viscoelastic profile of breast tissues [226,227], as an example.

As discussed in this section, in silico models are valuable resources for doing a deeper and more
complete analysis of the data obtained from in vitro and in vivo experiments. Moreover, computational
simulations of biological systems, structures, and environments offer more controllable and flexible
tools with enhanced easiness to evaluate multiple parameters in the same study than in vitro and in vivo
systems. Nonetheless, it must be kept in mind that the greater the complexity of the system to study,
the more computational power needed, and the extra technical and computational skills required.

2.4. Other Models Helpful in Breast Cancer

In addition to the models already mentioned, there are two different ones worth mentioning:
the physical phantoms and 3D microfluidic models.

Physical phantoms are physical structures designed and produced to mimic biological structures’
properties. Phantoms are frequently used to calibrate and optimize diagnostic techniques, such as
X-ray-based imaging systems [228,229], microwave breast imaging systems [230,231], and terahertz
spectroscopy systems [232]. Another common application of phantoms is to assess radiation doses
reaching the tissues upon exposure to a radiation source. They are particularly important to determine
the radiation dose reaching the tissues surrounding the irradiated area at radiotherapy sessions [233,234],
since it will allow better treatment planning by adjusting the intensity, exposure time, and directionality
of the radiation needed. Furthermore, the use of phantoms was already reported to mimic the dielectric
properties of healthy and tumor tissues for further applications in novel diagnostic tools using
millimeter-wave imaging [235].

3D Microfluidic models, also called on-chip 3D models, are particular models that combine in
the same system micron-sized fluidic channels with tubing pumping peripherals, fluids, and cells.
Once these models have cells, they could be considered as in vitro models, but since they use
a microfluidic system, they will be here considered as a different class of models. The combination
of cell culture and microfluidic systems bring multiple advantages for a closer approach to in vivo
systems. The fact of using microchannels limits the volume of reagents needed, which makes
cost reduction possible. Moreover, the use of circulating fluid allows maintaining a continuous
perfusion of the cells and removing the degradation products resultant from the cellular metabolism,
which is similar to what happens in vivo, making it possible to keep longer and more stable cell
cultures. Furthermore, the fluid is pumped with a laminar flow, which is highly studied, allowing
a controllable and predictable behavior, applied not only to the fluid but also to the entities flowing
in the fluid, such as particles or cells. In summary, these systems demonstrate a terrific potential
to better mimic in vivo tumor microenvironments, which make them ideal for studies of drug
screening and disease modeling. On-chip 3D models are frequently used for drug screening assays,
existing reports on the creation and characterization of these models [236], and reports already
demonstrating the application of the models for drug screening tests [237], such as Carnosic Acid
and Doxorubicin [238]. These models are also commonly used for therapy assessment, including
the mimicking of magnetic particles guidance through narrow mammary ducts models [239] for
developing possible future treatments for the evaluation of photodynamic [240] and photothermal [241]
therapy systems. Moreover, these models are ideal candidates for modeling tumors’ invasion
mechanisms [242–244], tumors’ microenvironments [245] and tumors’ metastatic behavior [246,247].
Despite the undeniable potential and advantages of these models, they also present their weaknesses,
such as the complexity to design, produce, and handle the systems’ hardware. Moreover, the use of
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cells, although presenting less ethical concerns than the use of animals, still implies the use of resources
extracted from biological sources.

Overall, a brief comparison of the main advantages and disadvantages identified by the authors
(based on personal opinion) for each type of model is summarized in Table 5.

Table 5. Summary table exposing the main advantages and disadvantages identified by the authors for
each breast cancer model mentioned in this review article.

Models Pros Cons

In vitro

• Cheap, relatively easy, and fast maintenance
• Wide range of cell lines available, depending on

the properties to test
• Highly controlled experiments
• Ability to mimic intra

and intercellular mechanisms
• Less ethical containments

• Lack of contextualization regarding the tumor
microenvironment and immunological
response, namely lack of blood flow

• Different expression of genes and markers
from humans

• Less sensitivity to the same environmental
features than humans

• Inevitable mutations of certain cellular features
caused by the successive new generations

In vivo

• Better mimicking of tumor microenvironment
(angiogenesis, potential of replication, tissue
invasion, apoptosis)
and immunological response

• Closer genetic expression to humans
• Sensitivity to environmental conditions similar

to the ones of humans

• Ethical concerns (mechanism of diseases’
induction, type of treatments used, and number
of animals sacrificed)

• Long experiments to induce the desired
pathology in the animals

• More expensive (acquisition of the animals,
maintenance of the animals, and method to
induce the disease)

In silico

• Absence of ethical concerns because there are no
animals sacrificed

• Higher control over the experiments
• Ability to increase the parameters under study
• Less prone to factors external to the models
• Possibility to be used as validation method of

other models

• Lack of complete biological mimicking of
the tumor microenvironment
and immunological response, although it can be
mathematically simulated

• Need of using in vitro or in vivo data either to
develop either predictive or modeling tools to
validate the models

• Need of expertise computing skills and high
computational power

Physical Phantoms

• Absence of ethical concerns
• Ability to simulate biological structures

and properties both in healthy and pathological
states without using any biological entity

• Difficulty of designing and constructing
biological structures with rigor, and mostly,
accurately mimicking their properties

3D Microfluidic Models

• Less ethical concerns than for in vivo, although
they still use cells

• Better mimicking of tumor microenvironment
(e.g., continuous cellular perfusion allowing
also the removal of cellular metabolites)
and immunological response

• Higher control and predictability over
the fluid flow

• Need of smaller volumes of reagents due to
the reduced size of the microfluidic channels,
which can be related to lower expenses

• Complex design, production, and handling of
microfluidic devices

• Requirements of specific microfluidic
equipment (pump systems, tubing . . . )

3. Conclusions

Breast cancer was always considered a complex disease, but with the evolution of the research, its
complexity was proven and there is still a lot to discover. Research evolution and society pressure has
demanded more and more improvements in what is known about cancer fundamentals, diagnostics,
and treatments, which boosts novel and innovative projects on breast cancer. These current demands
have already led to important and impactful discoveries, which while providing useful answers also
demand the development of more advanced tools to fulfill the research needs. Some of those demands
include the development of more sophisticated models to allow performing cutting edge and more
accurate studies.



Sci. Pharm. 2020, 88, 32 17 of 29

This work presents an extensive review on the main models used in breast cancer research,
highlighting their main advantages, challenges, disadvantages, and potential depending on
the applications. In the authors’ opinion, in vivo models and 3D microfluidic models are overall
the most informative and complete models when considering that they do a better job of mimicking
live organisms systems. Nonetheless, they present strong disadvantages such as the ethical concerns
inherent to the use of animals and the complexity of the microfluidic devices, respectively.

Among the in vivo models, there are several types of models already being used but there is
no an ideal one, since it will greatly depend on the focus of the study. In CDX, PDX, and Syngeneic
models, the development of tumors is more controlled, and their characteristics are more homogeneous
and better defined. However, they use immunocompromised animals, which does not mimic what
happens in humans and results in a lack of immune system response. In contrast, chemically induced
models in addition to developing more heterogeneous tumors with longer latency do a better job
of mimicking what may be underlined in the development of breast cancer in humans. These
models might allow the analysis of different types of tumors, their development (carcinogenesis),
and the impact of constant exposure to environmental toxic agents. Moreover, this type of model offers
higher cost-effectiveness and greater ease of application.

To conclude, the authors believe that there is no single optimal model that is ideal for all
the applications or studies, but a combination of multiple models may lead to exquisite results
and discoveries and will surpass the main disadvantages inherent to individual models. The choice
of the most suitable model will certainly depend on the research topic, the resources available,
the preferences of the researcher, and on ethical concerns related to the use of biological resources, so
there is no standard model or group of models to be used; instead, it will be tailored to each project.
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