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Abstract: With the increasing role that unmanned aerial systems (UAS) are playing in data collection
for environmental studies, two key challenges relate to harmonizing and providing standardized
guidance for data collection, and also establishing protocols that are applicable across a broad range
of environments and conditions. In this context, a network of scientists are cooperating within the
framework of the Harmonious Project to develop and promote harmonized mapping strategies
and disseminate operational guidance to ensure best practice for data collection and interpretation.
The culmination of these efforts is summarized in the present manuscript. Through this synthesis
study, we identify the many interdependencies of each step in the collection and processing chain,
and outline approaches to formalize and ensure a successful workflow and product development.
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Given the number of environmental conditions, constraints, and variables that could possibly be
explored from UAS platforms, it is impractical to provide protocols that can be applied universally
under all scenarios. However, it is possible to collate and systematically order the fragmented
knowledge on UAS collection and analysis to identify the best practices that can best ensure the
streamlined and rigorous development of scientific products.

Keywords: UAS-based mapping; environmental monitoring; effective workflow; guidelines

1. Introduction

Over the last decade, lightweight unmanned aerial systems (UAS) have evolved to become an
integral element of spatially distributed environmental monitoring. UAS systems are increasingly a
routine component of remote sensing tool-kits, providing a unique earth observation capacity that has
been incorporated across a large number of applications, including the mapping and monitoring of
both natural ecosystems and managed forest plantations [1–4], precision agriculture [5,6], river and
streamflow measurements [7], topographic surveys [8,9], and natural hazard mapping [10], to highlight
just a few examples. The expanding use of UAS in environmental studies has produced a diversity of
approaches for collection, processing and analysis, which emphasizes the need to develop standardized
protocols for UAS mapping [11]. Within the last few years, a range of UAS survey protocols have
emerged across specific environmental studies, such as the mapping of glacial geomorphology [12],
river landscape mapping [13], classification of wetland vegetation [14,15], and routine vegetation
monitoring using multispectral sensors [16]. In parallel, standardized workflows and reviews have
been developed for the many different processes undertaken within UAS surveys, whether these are
radiometric calibrations [16,17], optimizing topographic surveys [8], or best classification methods
assessments [18,19].

Despite the diversity of environmental UAS surveys, the majority of applications cluster around a
few core areas, such as topographic mapping, precision agriculture or forestry; yet we are still far from
the definition of standard protocols that can be translated across different contexts and environments.
For example, Singh et al. [20] observed that many surveys paid little attention to the planning and
processing of UAS imagery; perhaps the key steps need to be taken with forethought and care to ensure
useable imagery. Given the emerging nature of this technology, it is not surprising that many studies
may lack the use of standardized georeferencing procedures, radiometric and atmospheric correction,
sensors calibration and error characterization [21], or even a classification accuracy assessment [22].
Such procedures constitute a constellation of interconnected, and often interdependent, tasks, that
requires a structure and framework to describe and develop a robust collection, characterization and
processing methodology.

Across the wide variety of UAS environmental applications, the primary data source remains
optical imagery (i.e., photographs) and video recordings used for the development of orthomosaics
and digital elevation models (DEM) [23]. In parallel with advances in the technology and operation
of the UAS flight systems, researchers are also exploring a range of new sensors and platforms for
data collection and interpretation. Common to all applications, and often irrespective of the type and
goal of the specific research, is the requirement for a comprehensive experimental design to enable the
delivery of useable, useful, and informative output. From a more fundamental perspective, ensuring
the retention of detailed metadata for each survey step facilitates quality assessment and reproducibility
of research. So, each specific research application may have its peculiarities or unique requirements
experiences gained from different contexts, which are likely to assist in avoiding repetition of mistakes,
collections and processing errors, identification of common challenges, and recognition of sensor
constraints. Likewise, given the many commonalities across collection efforts, such aggregation of
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experience can help to inform the description and establishment of accepted protocols for mapping
environmental features.

Although the field of UAS-driven data collection represents a multidisciplinary system of
rapidly-developing science areas, there are many unifying elements and associations in their application.
One of the key objectives of this present work is to provide UAS users with general practical guidance,
that can optimize the collection and delivery of high-quality output for subsequent analysis and
interpretation. Across diverse UAS applications, a general framework can describe work within
five interconnected steps (Figure 1): (1) study design; (2) pre-flight fieldwork; (3) flight mission;
(4) processing of aerial data; and (5) quality assurance. Each of these steps can be subdivided into
a sequence of activities, that we have also attempted to detail and explore. In collating both a
standardized set of procedures and also undertaking a harmonization across different methods and
approaches, we also examine the results and conclusions from a literature survey of recent research
and reviews on different types of UAS surveys. Further details on each of these five steps are provided
in the following sections.
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2. Study Design

Each UAS study is unique in its own way, and detailed mission planning presents the first essential
step to ensure a safe and successful UAS data acquisition. A wide range of different parameters
must be considered before any flight collection survey. It is important to note that the mission
planning should consider measurement requirements in conjunction with practical limitations, since
the accuracy and resolution of the data collected by the UAS are affected not only by the flight mission
parameters itself, but by target design, platform, sensor configurations, topography, and meteorological
conditions [24,25]. Moreover, UAS survey requirements are obviously linked to the specific research
question being addressed. Therefore, the data type and quality (resolution, precision, accuracy, repeat
frequency, etc.) required for each variable being assessed should be identified in advance, to achieve
sufficient detail for appropriate intra- and inter-survey comparisons.

To illustrate the complexity of the problem, Figure 2 attempts to summarize the diversity of factors
involved in UAS mapping application, for the development of a digital terrain model. The graph
illustrates how the different elements of data collection are strongly interconnected and concepts of



Remote Sens. 2020, 12, 1001 4 of 35

optics, photogrammetry, programming and radiometry should be considered in the study design.
In particular, the different factors, influencing UAS-based products, are divided into six groups: output
product (red), quality parameters (purple), software and hardware (blue), experiment design (orange),
environmental conditions (light blue), and internal parameters (green) and the mutual dependencies
(direct or indirect) are identified.
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For example, the final quality of a terrain model depends on a range of factors, including: UAS
hardware (platform), environmental conditions (sun-angle, cloudiness, wind speed), analysis tools
(processing software), and of course the field experiment design (everything else). The equipment
configuration directly affects the obtained data quality and completeness [26,27]. Exact equipment
characteristics determine the subsequent image processing techniques, while the sensor’s spectral
resolution defines the required radiometric calibration and correction methods. The next independent
factor is represented by the environmental conditions. The type of study area, size, relief complexity,
spatial heterogeneity, and meteorological conditions restrict the maximum available output model
quality [2,28]. For example, elevation differences of the study area compared to the flight altitude
lead to a variety of ground footprint sizes and can result in accuracy reduction in the lowlands [29].
The third factor affecting the terrain model quality is experiment design and it is the most flexible
factor that can be managed by the researcher, according to the purposes of the study.

Therefore, the quality of UAS-based outputs is influenced by multiple interacting factors.
For instance, to provide specific spatial resolution, it is necessary to take into account the sensor
resolution and focal length, the effect of the terrain complexity and the flight altitude on the ground
footprint. Increasing the spatial resolution by reducing flight height leads to smaller coverage areas,
increasing the number of flight missions required for a specific study site and, consequently, potentially
increasing the variability in environmental conditions (e.g., cloudiness, sun angle) that complicate
radiometric correction and reduce spectral accuracy. Additionally, flight altitude prescribes the
appropriate target size for their detection in images. As a consequence, the presented cross-interactions
between study conditions and the data processing approaches can help to identify the controlling
factors for a specific research objective.

The overall goal of this section is to provide a comprehensive workflow description for mission
planning and control, with a specific focus on the following elements: (1) UAS regulations and
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legislation; (2) platform and sensor choice; (3) camera settings and UAS control software and (4)
target georeferencing.

2.1. UAS Regulations and Legislation

Familiarization with local UAS regulations and restrictions is the first consideration on any
UAS application [30]. Three key aspects encapsulated within most UAS regulations include [31]:
(1) targeting the regulated use of airspace by UAS; (2) imposing operational limitations; (3) tackling the
administration procedures of flight permissions, pilot licenses, and data collection authorization. With
regards to the first point, many countries have restrictions for the use of UAS in the vicinity of airports,
military installations, or protected areas, such as national parks and nature reserves. Additionally, there
are limitations regarding the distance to built-up areas and the general presence of people. UAS flights
are often restricted to a specific maximum flight height, depending on the type of operation, size, and
weight of the aircraft, and pilot and company licensing. Operational regulations frequently identify
different limitations based on the type of flights adopted. The main categories are visual line of sight
(VLOS), extended visual line of sight (EVLOS), and beyond visual line of sight (BVLOS). In all cases,
it is the pilots’ responsibility to ensure that flights are carried out according to local regulations [31].
Future standardized use of UAS in environmental studies may eventually lead to the harmonization of
UAS regulations on a regional and even global scale. A promising step in this direction is represented
by recently adopted EU regulations on unmanned aircraft systems and third-country operators of
unmanned aircraft systems [32].

2.2. Platform and Sensor Choice

The best choice of platform and sensor will ultimately depend on the requirements of the survey,
in terms of spatial and spectral resolution, areal coverage, and image quality. In addition to these
technical requirements, factors such as available time and budget may also need to be considered.
More generally, the main issues that need to be addressed to establish the appropriate platform and
sensor design are: the desired spatial coverage; the required ground resolution; and the needed
spectral resolution.

The choice of UAS platforms is between fixed and rotary-wing, of which the latter has become
the more frequently used. While we note that there are a number of hybrid options that combine
elements of fixed-wing and rotary systems (particularly for vertical take-off and landing), they currently
represent a relatively small proportion of the market. The main advantages of rotary-wing platforms
are vertical takeoff and landing, hovering ability, recovery capability, and a generally much easier
automated flying experience [33]. Even though the recent rise of UAS popularity has been driven in
part by the flexibility of rotary-wing multi-copters, traditional fixed-wing platforms are still preferred
for larger-scale surveys (e.g., 1km2), for their energy efficiency characteristics. Thereby, for successful
study design, researchers must consider the limits of UAS platforms for flight duration, based on
battery capacity and maximum flight distance [30], both of which are increasing with new advances in
power supply and operational efficiencies. Platform selection is further influenced by a combination
of factors including user experience, research field, sensor type and required payload, and also the
available dedicated software for flight control. In Table 1, we summarized some of the main advantages
and disadvantages associated with the use of different platforms.

For most UAS surveys, commercial red-green-blue (RGB) cameras are the most common sensor
choice, mainly due to their low-cost [11,20]. RGB cameras are sufficient in many applications, such
as land mapping, morphological studies, vegetation classification, and river surveys. More recently,
researchers have also turned to modified off-the-shelf RGB and near-infrared (NIR) cameras, in pursuit
of more accurate vegetation mapping [34–39]. This provides an advantage for vegetation mapping,
leading to an increase in the classification accuracy of up to 15% [40].

The miniaturization of sensors such as thermal, multispectral, and hyperspectral cameras (mostly
in the VIS-NIR) have further enabled their installation on small UAS, allowing a dramatic increase in
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the range of potential applications (Table 2). Apart from the increased cost, these sensors are not always
consumer-friendly, and can require significant additional resources to ensure calibration accuracy and
sufficient user-training in order to extract useable, and scientifically relevant information.

Table 1. (Dis)advantages of different platforms.

Platform Advantages (+) and Disadvantages (-) Flight Time/Coverage

Rotary-wing

+ flexibility and ease of use
+ stability

+ possibility for low flight heights and low speed
+ possibility to hover
- lower area coverage

- wind may affect the vehicle stability

Flight time typically 20–40 min

Coverage 5–30 × 103 m2 depending on flight altitude

Fixed-wing

+ capacity to cover larger areas
+ higher speed and reduced time of flight execution
- take-off and landing require an experienced pilot
- faster vehicle may have difficulties in mapping

small objects or establish enough overlaps

Flight time up to hours

Coverage e.g., >20 km2 depending on flight altitude

Hybrid VTOL (Vertical
Take Off and Landing)

+ ability to hover, vertical take-off and landing
+ ability to cover larger areas

- complex systems mechanically (i.e., tilting rotors
or wings, mixed lifting and pushing motors)

Flight time up to hours, but usually less than fixed
wings

Coverage × 106 m2

Table 2. Type of sensors mounted on UAS and their possible applications.

Sensor Type Specifics Main Applications

RGB Optical aerial photogrammetry, SfM-based 3D modeling, change
detection, fluid flow tracking

Multispectral (<10–20 bands) Multiple wavelengths vegetation mapping, water quality, classification studies

Hyperspectral overlapping
contiguous bands Analyzing the shape of spectrum vegetation mapping, plant physiology, plant phenotyping

studies, water quality, minerals mapping, pest-detection

Thermal Brightness surface temperature
thermography, plant stress, thermal inertia, soil water content,

urban heat island mapping, water temperature,
animal detection.

LiDAR (Light Detection and
Ranging) Surface structure 3D reconstruction, digital terrain mapping, canopy height

models, plant structure, erosion studies

The standalone use of thermal sensors is adequate for the field monitoring of brightness
temperature differences, especially for precision agriculture, as the canopy temperature is closely related
to plant stress [41,42]. Furthermore, thermal sensors have proved to be useful in mapping urban heat
islands [43], heat losses in large objects [44], soil water monitoring [11], and for animal detection [45].
When using thermal sensors, radiometric calibration needs to be considered, as well as the lower spatial
resolution compared to RGB or multispectral sensors. Capabilities for multi-sensor combinations to
better inform processes has been a particularly useful benefit of UAS. For example, to explore the
impact that these sensors may have on the accuracy of vegetation mapping, Komárek et al. [40] showed
that identification accuracy of aquatic vegetation increased from 60–68% (using only visible) to 63–71%
(combining visible + thermal). Replacing the visible with multispectral data further improved the
accuracy interval to 74–81%. In other work, by combining light detection and ranging (LiDAR) with
multispectral images, the classification accuracy of individual species was increased considerably,
with an overall classification accuracy of 96% [46,47].

2.3. Camera Settings and UAS Control Software

Testing and defining appropriate camera settings is crucial, and one significant variable that needs
to be determined to define the camera settings is the ground sampling distance (GSD), which results
from the combination of flight height, focal length, and sensor resolution. In addition to these
parameters, factors that may affect image quality are motion blur (dependent on GSD, flight speed and
shutter speed), and exposure (as a function of shutter speed, aperture, and ISO level [48]). The required
GSD should be defined based on the size of the features of interest, while other camera settings require
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trade-offs for survey optimization. A practical guidance for camera system selection, configuration,
and image acquisition was presented by [49], while a comprehensive overview of camera settings
importance was given by [48], with an in-depth analysis of parameters such as shutter speed, ISO, and
lens and camera body choice. A planning workflow is represented by firstly ascertaining the minimum
feature size of interest, and using this to determine the required GSD. Based on camera, lens and
aircraft characteristics, flying speed and height are then optimized. By dividing the product of pixel
pitch and flying height with the size of the camera focal length, one can calculate the GSD and scale
estimated photogrammetric errors to the geographic coordinate system. Motion blur can be calculated
by multiplying the flight speed of the UAS with shutter speed, and then dividing by the intended
GSD [48]. Considering the impact flight speed has on motion blur, it is one of the most underreported
survey characteristics and its values should be provided with published UAS surveys, along with other
camera parameters. Flight speed and height, along with shutter speed, must be included in mission
planning. Another important parameter is the image file format, as many researchers consider the
RAW file format to be superior in comparison to compressed formats (e.g., JPEG, PNG), as the latter
could introduce unnecessary noise [20,50]. The RAW format contains the unprocessed data acquired
by the sensor, in contrast to JPEG, where image compression can lead to some loss in fidelity.

A significant component in mission planning is the determination of the forward and side image
overlap, particularly for structure from motion (SfM) photogrammetric reconstructions, which require
features observed in multiple images for developing digital models, orthomosaics, and 3D models [23].
The quality of the final SfM product can be influenced by the percentage of image overlap, where
increasing overlap can lead to more precise final models. Yet, high overlap requires more images to be
acquired, increasing data volumes and computation time. Published literature demonstrates significant
variability in overlap values used, as they are affected by the characteristics of the study area, autopilot
software, and SfM package used, as well as the user-driven specifications of the final product.

The flight plan should take into consideration the level of surface complexity, as well as topographic
variation, of the required area in terms of the number of details or spatial uniformity. To obtain the
best quality final product with the shortest computation time possible, optimal flight configuration
can be defined as the minimum number of images with a sufficient amount of overlap. The optimal
overlap will also depend on the sensor type, with thermal sensors (due to their lower spatial resolution)
often requiring higher overlap [51] than multispectral. Besides, the overlap also defines the angular
composition of the data. Thus, a balanced across and along track overlap is beneficial [42,52].

Many studies have used, or recommend large front and side overlap to compensate for aircraft
instability [53–57]. In most of the studies, a forward overlap of 80% and side overlap of 60–75% has led
to the production of high-quality 3D model and orthoimages [3,34,58]. Overlaps may need to be at the
higher end of the range, when surveying areas containing uniform patterns, which often result in fewer
tie points being identified. For instance, thermal surveys (which generally contain much less feature
information than optical images), often require overlaps at least of 80% [51]. Therefore, this upper end of
the image overlap range is adopted in cases where a high level of accuracy is required [56,57,59], while the
lowest overlaps, for rapid observation with low accuracy requirements, should not be less than 55% [60].
Some studies have also found that interactions between flight collection variables, including flight altitude,
image overlap, flying direction, speed and solar elevation affect UAS data quality and the subsequent
processing results, emphasizing the need for flight planning optimization [61].

Such settings can be managed using flight planning and autopilot software, the details of which are
explored in Table 3. Most of the flight planning applications for mobile devices are able to plan waypoint
planar flight missions, while some have valuable additional functions. For example, Pix4Dcapture
(Pix4D SA, Lausanne, Switzerland) provides the option of double gridded flights, which benefits
thermal mapping due to the high image overlap needed, as well as for constructing high quality 3D
models. Litchi (VC Technology Ltd., London, England) can take control of both the gimbal and the
drone’s yaw axis and has an embedded computer vision algorithm for target tracking. DroneDeploy
(DroneDeploy, San Francisco, USA) can generate cloud-based orthomosaics.
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Table 3. List of the UAS mission planning software and their main characteristics.

Name Software (SW) Options Operating System Home Page Type of License

Flight planning app

Pix4Dcapture Planar flights; Double gridded flights; Circular Flights. Android/iOS/Windows http:
//pix4d.com/product/pix4dcapture Free to use

DJI GS Pro 3D mapping iOS http://dji.com/ground-station-pro Free to use

Precision flight free Resume interrupted flights. Android http://precisionhawk.com/
precisionflight Free to use

DroneDeploy Planar flights; Cloud-based orthomosaics. Android/iOS https://www.dronedeploy.com/ Free to use

Litchi Art computer vision algorithms; the gimbal and the
drone’s yaw axis. Android/iOS https://flylitchi.com/ Proprietary SW

Phenofly Planning tool Photographic properties, GCP placement, Viewing
angle estimation JavaScript browser http://www.phenofly.net/

PhenoFlyPlanningTool Free to use & modify

Ground station software

MAVProxy Loadable modules. Portable Operating System (POSIX) https://ardupilot.github.io/
MAVProxy/html/index.html Free to use

Mission Planner Hardware-in-the-loop UAV simulator. Windows http://ardupilot.org/planner Free to use

APM Planner 2/Mission
Planner Live data; Initiate commands in flight. Linux/OS X/Windows http://ardupilot.org/planner Free to use

QGroundControl GCS Multiple vehicles. Android/iOS/Linux/OS X/Windows http://www.qgroundcontrol.org/ Free to use & modify

UgCS Photogrammetry; Custom elevation data import;
battery change option. OS X/Linux/Windows https://www.ugcs.com/ Proprietary SW

mdCOCKPIT Real-time telemetric data; Flight analytics Module. Android http://microdrones.com/en/
mdaircraft/software/mdcockpit Proprietary SW

UAV Toolbox Telemetry data conversion. Android http://uavtoolbox.com/ Proprietary SW

eMotion 3 Supports both fixed-wing and multirotor operations;
Full 3D environment for flight management. Windows http://sensefly.com/software/

emotion-3.html Proprietary SW

http://pix4d.com/product/pix4dcapture
http://pix4d.com/product/pix4dcapture
http://dji.com/ground-station-pro
http://precisionhawk.com/precisionflight
http://precisionhawk.com/precisionflight
https://www.dronedeploy.com/
https://flylitchi.com/
http://www.phenofly.net/PhenoFlyPlanningTool
http://www.phenofly.net/PhenoFlyPlanningTool
https://ardupilot.github.io/MAVProxy/html/index.html
https://ardupilot.github.io/MAVProxy/html/index.html
http://ardupilot.org/planner
http://ardupilot.org/planner
http://www.qgroundcontrol.org/
https://www.ugcs.com/
http://microdrones.com/en/mdaircraft/software/mdcockpit
http://microdrones.com/en/mdaircraft/software/mdcockpit
http://uavtoolbox.com/
http://sensefly.com/software/emotion-3.html
http://sensefly.com/software/emotion-3.html
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Ground station software usually has more functions than flight planning applications. Widely
used examples include MavProxy [62], Mission Planner [63], APM Planner 2 [64] QGroundControl [65]
UgCS [66] etc. which support the MAVlink protocol based autopilots (e.g., the ArduPilot or PX4). They
have similar basic functions, like mission planning and flight monitoring, while various other features
exist among them. For instance, the MavProxy supports loadable modules like antenna trackers and
moving maps. Mission Planner can create a full hardware-in-the-loop UAV simulator via the interface
with a PC flight simulator. The APM Planner 2 allows the connection of a 3DR Radio to view live
data and to initiate commands in flight. The QGroundControl GCS is an open-source simulation
environment for full flight control and multiple vehicle setup and simultaneous control [67]. UgCs
can import DEM and KML files to enable map customization, and have a built-in photogrammetry
planning tool and option to resume the route from the last point after the battery change. Others, such
as mdCOCKPIT, can receive and record real-time telemetered data to detailed flight logs. The UAV
Toolbox provides a flexible way to download and convert telemetry data. For instance, the eMotion
3 [68] supports both fixed-wing and multirotor operations and provides full 3D flight management.
This last option is particularly valuable for maintaining a constant flight distance from the surface in a
site, with significant changes in elevation.

In a recent review of mission planning software, Roth et al. [50] identified two main causes of
error in data collection: (1) inadequate values set for camera parameters and (2) sub-optimal settings
of the mapping mission, mostly caused by the tendency of UAS pilots to set automatic camera settings
for “minimizing experiment complexity”. In addition, most of the studies are lacking in providing a
comprehensive description of the survey in terms of parameter setting, limiting the replicability of
the experiments.

Relatively few mission planning tools (e.g., DJI GS Pro, UgCS and DroneDeploy) consider camera
settings such as shutter speed and may control motion blur value to some extent, but these tend to be
limited to specific cameras. In an attempt to bridge the gap between UAS based mission planning
and the control of camera settings, the free software PhenoFly Planning Tool was developed as a
community tool to increase the efficiency and success of UAS mapping [50]. This planning tool
considers GCP number, their placement pattern and frequency, as well as the viewing geometry.
However, the PhenoFly Planning Tool does not provide autopilot functionality and presents the only
free “offline-tool” flight planning software without vendor-specific and operating system restrictions,
supporting all input parameters of various frame-camera and thin-lens combinations.

For initial flights with a new system, it is highly recommended to use the software provided by
the manufacturer (e.g., mdCOCKPIT for Microdrones’ UAVs, DJI GS Pro for DJI products), because
sometimes detailed aspects of flight preparation (e.g., calibration of onboard sensors and the remote
controller) can be performed only by that particular software. In other cases, the operating system
of the ground station hardware will influence the choice of the software used, e.g., Mission Planner
can be installed only on Windows machines but QGroundControl GCS supports all three major
operating systems (Android, iOS, Windows) with the same capabilities and tools as Mission Planner
for ArduPilot/PX4 based UAVs. Only after several flights, when the pilot has built up flight experience,
should other software options be explored, with this decision guided by the most frequent survey case
that will be undertaken.

2.4. Georeferencing

The camera orientation and location for each captured image is defined by six exterior orientation
parameters (EOP). Traditionally, in manned aerial photogrammetry, the determination of EOPs in a
photogrammetry block is solved indirectly using the aerial triangulation method [69,70]. In this method,
the EOPs are estimated from several ground control points (GCPs) and their corresponding image
coordinates are manually identified. If additional positioning and orientation sensors are used during
the flight, direct georeferencing becomes possible [71]. Therefore, the accuracy of the georeferencing
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method is dependent on two aspects: i) the accuracy of the GCP measurements (which are in general
performed with GNSS receivers or total stations) and ii) the accuracy of the onboard sensors.

Currently, onboard differential global navigation satellite system (DGNSS) techniques are being
adopted for UAS-photogrammetry, to provide high-quality camera position measurements and enable
direct georeferencing to centimeter-level accuracy [72–74]. Such techniques require two GNSS receivers:
a base station receiver or a service of continuously operating reference stations (CORS), to provide
differential correction data, along with a rover GNSS receiver mounted on the UAS. If the onboard
receiver communicates with the base station using a radio link, the DGNSS corrections are applied in
real-time and the method is referred to as real-time kinematic direct georeferencing (RTK-DG). If the
differential corrections are computed by processing the two GNSS signals (base station and rover) and
applied post-flight, the method is known as post-processed kinematic direct georeferencing (PPK-DG).

In any case, a few categories of errors appear in the process of direct georeferencing [75,76]:

I errors generated from external orientation sensors (e.g., GNSS and internal measurement
unit—IMU errors);

II errors generated from internal orientation procedure (e.g., stability of the focal length, lens
distortion, over-parameterization through self-calibration);

III errors generated from the measurement of image point coordinates.

In a comparison of four georeferencing methods for environmental monitoring, Padró et al. [77]
concluded that the traditional method based on the use of GCPs still presents an accurate and low-cost
solution. However, it is a time-consuming process involving a considerable manual effort in field
positioning, especially when the survey area includes inaccessible sites.

Currently, one of the best solutions is a combination of direct and indirect georeferencing, especially
in cases of poorly textured areas, very steep forested areas, motion blur and image noise, or anywhere
the SfM-based approaches may not succeed. The knowledge of EO parameters delivered by the direct
georeferencing sensors can facilitate the tie-point matching process and reduce processing time.

In this context, technological miniaturization led to the possibility of applying DGNSS methods
for direct georeferencing on board. The RTK/PPK method is less influenced by onboard flight patterns,
vegetation phenology, and data post-processing. Notably, the RTK/PPK method succeeds in surveying
inaccessible or hazardous terrains, such as dense forests [72], volcano tectonics [78], or settlement
landfills [79] and ice sheets [80,81]. A recent study by Zhang et al. [82] showed that the PPK method can
provide the same accuracy as the use of GCPs, with a small variation in vertical accuracy, which could
be solved by including only one GCP. Furthermore, this study provides a UAV-PPK-SfM workflow,
which is provided to assess the positional accuracy, repeatability, and reproducibility of digital models.
Additionally, using GPS precise point positioning (PPP) without GCPs proved to be sufficient for
large-scale UAS mapping of the most remote areas [83].

Regardless of the method used for georeferencing and its accuracy, it is necessary to evaluate
the accuracy of the geospatial products (see Section 5.1). This can be done by using independent
checkpoints, reference surfaces or length measurements [84]. In particular, digital surface models
(DSMs) are generated by SfM-photogrammetry and may contain errors and outliers. Existing accuracy
metrics like root mean square error (RMSE), standard deviation and mean error are based on the
assumption that outliers don’t exist and that errors are normally distributed [85]. Therefore, in order to
check the accuracy of the DSMs, it is necessary to use a robust accuracy assessment methodology and
metrics that are mainly based on independent check points and preferably not influenced by outliers,
or by a skew distribution of the errors. A robust RMSE estimator of vertical accuracy able to account
for non-normal error distributions in a DSM obtained by SfM and dense correlation techniques is
introduced by Gonçalves et al. [86].



Remote Sens. 2020, 12, 1001 11 of 35

3. Pre-Flight Fieldwork

There are three main phases that have been identified in pre-flight fieldwork: 3.1 reconnaissance
of surveyed area; 3.2 GCPs distribution and radiometric calibration, and 3.3 field data collection, each
of which is explored in the following paragraphs. Given the importance of these various pre-flight
decisions for accurate UAS data collection, we have provided a generalized check-list that can be used
to guide users to avoid common planning and collection mistakes and also to ensure safe operation of
surveys (see Appendix A—Table A1).

3.1. Reconnaissance of the Surveyed Area

For safety reasons, visual assessment of the surveyed area is very important to seek out potential
obstacles that could potentially damage the UAS or block either the line of sight or radio signal.
Additionally, choosing safe takeoff and landing sites and identifying potential alternative spots for
landing in case of unexpected situations is important [13]. During area reconnaissance, safe spots with
maximum visibility for GCPs deployment should be considered, including the potential for using
existing stationary man-made or natural objects as GCPs.

3.2. Ground Control Point Distribution and Radiometric Calibration

As we have seen previously (Section 2.4), GCPs are an essential prerequisite for performing the
classical aerial triangulation of any image block. In general, the coordinates of these points represent the
only known vertex of a stereo-model. Therefore, their measurement, distribution, and placement have
to be carefully planned, as they directly influence the accuracy of the bundle block adjustment (BBA).
Taking into account the specificities of the different study areas, the distribution, number, and density of
GCPs largely depend on the required accuracy, precision and spatial extent of the survey (as determined
from the study design). The required GCP deployment will also depend on the image content (e.g.,
vegetation and surface type), terrain characteristics, survey design and camera characteristics, which
influence the potential for systematic error to develop within the image block. The optimal number of
GCPs and their spatial distribution is one of the most important issues in indirect georeferencing [8,87].
From a mathematical point of view, a minimum of three GCPs is required to generate georeferenced
geospatial products in a particular geographic or projected coordinate system. The literature suggests
that DSM accuracy tends to increase with the number of GCPs, reflecting increasing mitigation of
systematic error. For surveys with little susceptibility to systematic error, asymptotic behavior can
be reached rapidly. For the examples of this trend presented in Figure 3, optimal GCP densities are
around five GCP/ha for planar and 10 GCPs/ha for vertical geo-referencing [73].

The spatial distribution of GCPs is also important, because evenly distributed points in space
generate geospatial products of higher accuracy than grouped GCPs. As this GCP deployment is
time-consuming, it may be advantageous to use double gridded flight plans, and include some
oblique images, to increase 3D model accuracy and reduce the number of required GCPs [73]. Despite
the difficulties in deploying GCPs and the expected contributions of high-precision IMU/GNSS
technologies to reduce their number, GCPs are still needed for acquiring high geometric accuracies
(see Section 2.4) [74]. In this context, PhenoFly Planning Tool [50] can be helpful in managing the
arrangement and frequency of GCPs. An additional consideration is the physical dimension of GCPs,
and it is advised to use targets with dimensions 7–10 times the GSD obtained with a particular
survey [16]. GCP size must correspond to sensor type, resolution, and intended GSD, so increasing the
flight height generally requires larger GCPs.
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Precise georeferencing of ground truth data presents another compromise of survey goals, type of
environmental survey, and time management. GCPs and ground truth data coordinate acquisition
is accomplished by infield measurements, using a GNSS total station and associated receiver. While
accurate, acquiring GNSS data could be very time-consuming, as each georeferencing feature requires
an observation time that can vary from a couple of minutes [83] to the suggested 15–20 min [5,92]
or more. As mentioned (Section 2.4), GNSS stations can also read the data from a network of a
permanent reference station (PRS) and with the combination of DGNSS measurements, GNSS stations
can determine the receiver position more precisely than with RTK measurements [90]. Successful
georeferencing can depend on the type of sensor used, as many multispectral and hyperspectral sensors
produce non-aligned bands, have an insufficient interior orientation or produce low spatial resolution
images [17].

Similar to considerations of the GCP design, the configuration of the spectral target, along with
their number and location, depends on the particular area and the study purpose. A control site can be
equipped with various types of targets: resolution bar target, Siemens-star target, reflectance target,
spectral characteristic target, moveable targets [93], and coded targets [93,94]. Most often, single white
or white with black panels are used for radiometric correction [95,96] but, in some cases, there is a
need for an increased number of radiometric targets. For example, light and dark panels could be put
at the end of each flight line to compute a calibration curve for every transect and mitigate changes in
illumination during the collection mission [97]. The radiometric calibration can be performed by a
combination of irradiance measurements by the spectrometer and object radiance measurements by
an UAS hyperspectral camera [97–99]. This approach can be used separately or in combination with
calibration panels [99,100]. When hand-held spectrometer measurements are available for field-based
assessments, the calibration target can be made from a range of commonly available materials, with
Masonite and oak boards painted with matt paint proving to be acceptable standards if properly
prepared [21]. Reflectance targets should have close to Lambertian reflectance characteristics, and
space between black and white-colored parts/targets should be sufficient for avoiding adjacency error.
Alternatively, [101] recommended using eight radiometric calibration targets of different brightness,
measuring their reflectance values with field spectrometer at 13 different angles. A detailed insight
in radiometric processing is given in Section 5.2. Although nadir images acquired by parallel flight
line surveys are the predominant viewing geometry, for many applications it can be advisable to use
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additional oblique imagery and cross lines, as a method to improve both the radiometric and overall
quality of the generated geospatial products [102].

3.3. Field Data Collection

Field data sampling and collection depends largely on the type and nature of environmental
research, so providing specific case-by-case guidance is not practical. Nevertheless, this step is as
important as any other aspect of these guidelines, so instead of generalizing collection strategies, we
provide a number of representative examples, that can be used as guidance for other environmental
studies. For instance, in the case of geomorphic studies, the most important is precisely georeferenced
GCPs and checkpoints. For fine-scale research on surface ice melt on an Arctic glacier, [103] used
an ablation stake network as ground truth data for measuring melting variability, while an analysis
of slow geomorphological processes [104] used terrestrial laser scan as a reference. For soil water
content measurement, the most common method is soil sampling, within defined sampling cells [105]
or precisely determined locations [106] of crop fields at a specific depth. Afterward, soil samples
are oven-dried in laboratory processing and used as reference data. The same practice was used in
the research of karst mountainous area [107], where soil samples were collected from six different
vegetation types. Field measurements are also very useful, as by receiving real-time data, researchers
can acquire additional reference data and validate UAS and laboratory results [106].

Obtaining ground truth data is also achieved by identifying major terrain and vegetation units
within the surveyed zone [88], or by selecting samples directly on images on the basis of GNSS surveyed
points and handwritten documentation [18,36]. For vegetation patches that are easily distinguished
from surroundings by their size, specific growth pattern or phenology traits, there is no need for
detailed georeferencing. On the other hand, for multi-temporal monitoring, exact georeferencing is
crucial for image collocation, thus enabling researchers to fully understand spatio-temporal processes.
For structural vegetation survey, besides georeferencing, ground truth data are acquired by collecting
structural data such as plant height and population count [32]; tree height and crown cover diameter
for each tree [108]; tree girth [109] or foliage, seed/flower/fruit, branching and bark characteristics [58].
As active LiDAR sensors are most prevalent for these types of studies, plant height and crown diameter
are the most important ground truth data.

4. Flight Mission

Weather conditions are an obvious factor that cannot be planned with certainty. Factors such as
illumination and cloudiness impact the quality of images, while wind and fog are also unfavorable for
survey quality. Illumination changes may affect the overall quality of the spectral data, while wind can
impact flight duration and presents a major safety concern. Besides wind speed and direction, [110]
showed that air humidity has a large impact on the radiometric image quality, since higher humidity
contributes to a greater dispersion of light. As such, air humidity should be included and provided
with other research parameters. In this context, there are numerous useful real-time weather condition
and forecast sites, and even a dedicated smartphone app (UAV Forecast™, covering Europe) that
can forecast the optimal time for flight missions: but all are based on operational meteorological
systems, which may be less accurate in countries lacking ground-based meteorological infrastructure.
In addition to the percentage of cloudiness and chance for rain, the UAV Forecast™ platform offers
values of planetary K-index (Kp index), for measuring geomagnetic disruptions caused by solar activity,
affecting the satellite signal positioning of UAS [111]. By interpreting all available data, it provides
a final assessment about flying conditions. Of course, no web-site or forecast can beat site-based
assessment, and this will always be the gold standard.

Most of the UAS-based surveys for landscape mapping are carried out by autopilot software on
the ground control station, where the intended GSD, image overlap, flight speed, and altitude are
defined in advance (see Section 2.3). Nevertheless, flight patterns should be developed in consideration
of the weather conditions and especially the wind direction, as these can have a direct influence on
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retrieval quality (e.g., movement of vegetation affecting 3D reconstructions; impact of wind-speed
on thermal measurements and sensors). If the area of interest has a particular structure, e.g., when
the vegetation is planted in rows, it is beneficial to plan the flight path along these lines, to later use
spatial correction algorithms to minimize the impact of fluctuating environmental conditions on the
results [42]. The appropriate flight pattern significantly impacts the overall quality of the survey. For
instance, cross flight patterns significantly improve self-calibration processes, as more tie-points are
acquired for the SfM algorithm. In mapping heterogeneous terrain, this effect is not so conspicuous,
but in the case of flat and homogeneous areas, cross flight pattern improves the vertical and overall
accuracy [112]. Furthermore, acquiring images with different camera tilt (e.g., nadir and oblique) also
improves the self-calibration and the final quality of digital models. This method is very useful in
mapping on steep slopes, river banks [13] or in forest monitoring [112,113]. In a recent assessment
of DSM accuracy, [73] showed that usage of a tilted camera can vastly improve the DSM elevation
accuracy of inclined surfaces, and the combination of different flight trajectories is also tremendously
beneficial. On the other hand, acquiring spectral data using a different camera tilt is more complex and
requires additional radiometric calibration. Given the fact that illumination and viewing geometry
depends on zenith and azimuth angles of the sun, some regions may have increased brightness (“hot
spots”) as a result of the same viewing and illumination angles [114].

Since the accuracy of estimating tie points, and consequently the reconstructed surface geometry,
depends on the ground resolution of the input imagery, flight altitude is an important parameter that
defines the precision of the output terrain data. For mapping the surface with elevation differences
(including natural and built features), the altitude should be defined by taking into account the lowest
point on the study area, i.e., the maximum GSD, or modified in order to obtain a uniform distance
from the surface.

On the one side, altitude increase reduces the flight duration and allows one to cover larger areas,
which can be important to keep relatively constant environmental conditions (cloudlessness, sun angle,
and radiance) during the flight mission. On the other side, increased field of view, resulting from high
flight altitude, leads to poorer spatial resolution, which may affect feature delineation [115]. In general,
higher altitude flights produce a sparser point spacing, leading to a less detailed DSM. The result for
low altitude flights is a more irregular shaped DSM that might be filtered as well, and these effects
have to be taken into account [54].

The UAS flight path is planned according to the defined flight parameters mentioned above,
with the task largely automated via specific software (see Table 3). Given the mass utilization of
UAS, the flight path algorithms have been the subject of many studies and mostly divided into
two overall categories (i) optimal algorithm and (ii) heuristic algorithm. Beside general differences
between these algorithms, we can also distinguish (i) optimal path planning and (ii) coverage paths
algorithms. The use of these algorithms is study-specific, and for environmental monitoring, coverage
path planning is most commonly used [116]. The main purpose of the optimal flight plan focuses on
cost-efficiency in the sense of flying and computation time, respectively. By calculating the optimal
path, passing through waypoints is ensured with minimal energy consumption [117]. Currently, grid or
double-grid flight missions dependent on the required overlap are the common approaches for terrain
and vegetation monitoring [118–120]. Nevertheless, new cost-efficient flying paths are emerging, such
as spiral coverage path. [121] In the case of computation time, a new approach was proposed [122], by
combining different methodologies for mapping of the 3D environment. In pursuit of the optimal flight
plan, Fu et al. [116] proposed three cost functions, of which path security cost is used to determine
the feasibility of the survey and the length cost and smoothness cost of the path are referred to as the
energy consumption of UAS flight mission.
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5. Processing of Aerial Data

5.1. Geometric Processing

UAS imagery usually contains a range of distortions (barrel, pincushion, and mustache distortion)
that alter the geometry of the represented object. Distortion is influenced by the camera lens and the
point of view at the time of the shooting. Importantly, images can be orthorectified by applying the
required corrections, due to the optical distortions associated with the adopted camera, and apparent
changes in the position of ground objects caused by the perspective of the sensor view angle and
position. In aerial photogrammetry, the rectification plane is always the XY plane. However, in near
object photogrammetry, the rectification plane can be any defined by the user. In general, the third
coordinate will be the distance to the object measured perpendicular to the rectification plane. In order
to obtain the third coordinate, a 3D digital model is necessary. This digital model must faithfully
represent the geometry of the objects that appear in the photograph. Due to the high point density
obtained with SfM algorithms, it is usually possible to obtain a detailed model. SfM-photogrammetric
processing can produce a range of mapping products: point clouds, digital terrain and surface models
(DTM, DSM), 3D models, canopy height models and orthoimages [20,54].

For DSMs and orthoimage production, SfM software follows a general workflow: (1) calculating
camera locations to generate a low-density point cloud; (2) generating a high-density point cloud from
the results; and (3) using the high-density point cloud to build a georeferenced mesh with texture
(color) overlay, or another geospatial product [123]. Most of SfM software can be divided into either
commercial package (e.g., Pix4D and Agisoft Metashape), that have standardized workflows and
“black box” type operation (with correspondingly little insight for researchers on its internal workings);
or, open-source software with much more complex workflows, but which allows internal inspection
(e.g., VisualSFM, MicMac).

Extracting tie-points from low-quality images can introduce undesirably large errors to the SfM
products. As such, images need to be either corrected or excluded. Metashape offers automatic image
quality assessment, where images with a value less than 0.5 (even 0.7) are advised to be removed from
photogrammetric processing [123]. This value is calculated based on the sharpness level of the most
focused part of the image. For GCPs integration, the first essential step is consistency in coordinate
systems of GCPs and sensor GNSS data. After importing the GCP data, a manual association of
points with their locations is required. If using Metashape, before this step, it is crucial to uncheck
all geotagged photos, to avoid the production of a distorted DSM due to the attempt to reconcile
high-quality GCP data with the less accurate sensor GNSS data. After manual identification of one GCP
in two photographs, the software automatically starts filtering out the rest of the images containing
the given GCP. By optimizing camera alignment, georeferencing accuracy is significantly improved.
Following optimization, the GCPs and camera estimated coordinates are updated with georeferencing
errors. RMSE reprojection error is related to estimate positional planar and vertical accuracy. In the
context of required accuracy, GCPs with high total reprojection error (larger RMSE value) should be
examined or removed before generating the dense point cloud. The quality of final SfM products has
been the focus of research over the past years [124], including efforts that optimize UAS topographic
surveys and GCP deployment using Monte Carlo approaches [8], or evaluating ground surface models
in disturbed conifer forests [125,126]. Results from the latter research indicate that RMSE is three times
more impacted by canopy cover than by terrain slope.

The most critical aspect for geometric processing is determining the magnitude of absolute
vertical and horizontal error that might restrict the application of topographic mapping, especially for
change detection. The most efficient way to assure high-quality results with reduced absolute errors
is by planning appropriate study design. The distribution of GCPs also plays an important role, as
stratified arrangement inside the investigated area can optimize the vertical accuracy [90] and using a
cross-flight pattern with a nadir and oblique camera can decrease the vertical error [73]. Regardless of
the choice of software, we recommend the reporting of processing parameters such as accuracy level,
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preselection mode, the key point limit, and tie point limit, as well as parameters for the dense point
cloud reconstruction.

Another important element for successful product retrieval is the hardware requirements for using
SfM software. In most cases, central processing unit (CPU) power and random-access memory (RAM)
is a limiting factor, but most of the software allows the use of graphics processing unit (GPU) cores,
significantly improving the processing performance. For example, aligning 500 photos (12 megapixels)
requires 2.5 GB of storage space, building a high-quality model of another 8 GB and building a
high-quality arbitrary model up to 180 GB of storage space, with computation time approaching 24 h if
a platform with a basic configuration is used.

5.2. Radiometric Processing

During the sensing process, the radiometric signal of an object is influenced by the measurement
geometry (sun-object-sensor), the illumination conditions (direct-diffuse ratio), absorption and
scattering of the atmosphere on the path from the object to the sensor and the sensing systems
itself (vignetting and response function of the optical path and the chip, respectively) [127,128].
To obtain a radiometrically reliable signal, these effects need to be quantified, and where possible,
normalized. Additionally, the radiometric calibration of the sensor and the data processing procedures
affect the final data product [17]. Thus, the spectral response of a system needs to be known to
generate spectro-radiometric consistent data products. Notably, [17] identified several essential steps
that need to be carried out to get a radiometrically and spectrally consistent and comparable data
product: (i) sensor characterization and calibration (both spectral and radiometric), (ii) reflectance
factor generation (c.f. [129]), (iii) radiometric scene normalization, (iv) radiometric validation and (v)
metadata generation. When radiance is required, the transformation to reflectance in step (ii) can be
omitted. Additionally, step (ii) and (iii) can be swapped or carried out together.

Sensor calibration and characterization are usually carried out periodically in the lab. The sensor
is exposed to a homogeneously illuminated target to normalize for the non-homogeneous illumination
of the chip due to the optical path of the system (e.g., vignetting) and differences in the radiometric
response function of the individual elements of the chip. The result is a correction function that
transforms the digital numbers recorded by the chip to linear radiometric coefficients. Additionally, if
the radiometry of the light source is known, the response of the sensor can be mapped to physical
units of radiance. For the spectral characterization of each band (response function or at least central
wavelength and full width half maximum (FWHM), the sensor is exposed to light with a known
spectral emission [21]. Additionally, the spectral smile and keystone effects need to be characterized
during lab calibration and should be taken into account in the post-processing of the data. Often,
sensor calibration is carried out by sensor vendors, but ongoing assessment is important to ensure the
stability of collection systems.

To generate reflectance images from the calibrated images, two approaches are usually used in
low-altitude UAS remote sensing: (i) radiometric reference targets (RRT) or (ii) irradiance measurements,
based on a second sensor (or optical path) that measures the spectrally resolved downwelling
illumination [99]. In the RRT approach, several (near-) Lambertian targets (mostly panels or tarps) of
known spectroradiometric properties are placed within the survey area and overflown during the flight.
The reflectance of these targets (after convolving them to the sensors’ spectral band characteristics) can
then be used with the empirical line method (ELM) [130] to generate reflectance and normalize signal for
different illumination conditions between flights and for atmospheric effects (although the atmosphere
between the ground and UAS may only have limited impact on low-altitude for standard reflectance
measurements [131]). It has to be noted that using a one-point empirical line calibration, where the
sensor is pointed above one RRT before or after takeoff (similar to field-spectroscopy procedures),
should be avoided, due to biases related to the shading of the hemisphere [c.f. 52]. When irradiance
measurements based on a second sensor are used, these measurements can be employed to transform
radiance measurements of the target objects to reflectance by dividing radiance by irradiance after both



Remote Sens. 2020, 12, 1001 17 of 35

sensing systems have been cross-calibrated for spectral and radiometric response. The assumption
here is that the atmosphere between the ground and the sensing system does not influence the signal,
and the illumination is the same for both. This could be checked by comparing the signals over the
calibration panels at the ground and the flight levels at (or near) real-time. Ideally, the irradiance sensor
is also mounted on the UAS at a reciprocal angle to the measurement geometry of the sensor (if a
sensor is pointing nadir, the irradiance sensor should point zenith), and both sensors should be actively
stabilized to minimize the impact of tilt and roll of the UAS. The latter approach has the advantage
over stationary approaches (RRT or stationary irradiance measurements) that changes in illumination
during the flight may be compensated (this does not work in cases where, for example, a shadow is
cast on the area within the field of view (FOV) of the sensor from an oblique angle, such that it does
not shadow the irradiance sensor). Ideally, also the diffuse proportion of the irradiance field should be
characterized by having an additional sensor measuring the diffuse irradiance (e.g., shading the direct
illumination). The latter is particularly useful when radiative transfer models should be used later on.

Measurement geometry has a significant influence on the apparent reflectance, due to the
anisotropic reflectance of most objects [52,132,133]. The anisotropy of an object can be quantified by
assessing its bidirectional reflectance distribution function (BRDF) [129]. For imaging sensors, each
pixel (due to its instantaneous field of view) has a different viewing geometry. Although the FOVs of 2D
imaging sensors are rather small, it was shown that even small differences in the measurement geometry
significantly affect the apparent reflectance [52,133,134] and thermal signal [42,135] when standard
photogrammetric software is used. The reason for this is that when compiling an orthomosaic, the
processing mode has a significant influence on which information from which pixel, and consequently
with which measurement geometry, is used in the orthomosaic. When the information from all images
is averaged, the result represents the average from multiple viewing geometries. In contrast, when
no blending is used, then only viewing geometries close to nadir (depending on the image overlap)
are used. Notably, [52] developed a conceptual framework to capture this principle and defined the
specific field of view (SFOV), which describes the composition of pixels and their angular properties
within a scene used to characterize a specific area of interest on the ground. It is very important to
deliver information on the viewing geometry as metadata, since without it, a spectral scene cannot
always be interpreted accurately. In order to minimize viewing geometry effects as well as changes in
illumination conditions during the flight, [136] developed a radiometric block adjustment for UAS
remote sensing, that can normalize for these. Finally, it is important to validate the results. However,
as pointed out by [17,52,137], this might not be straight forward. Due to the anisotropy of most objects,
validation targets need to be selected carefully, to prevent the angular properties of data from different
sources (e.g., with a non-imaging field spectrometer with a FOV of 25◦ and imaging spectrometer data
with a very narrow SFOV) confound the validation. One method is to use Lambertian targets that have
not been previously used for the ELM.

While the aforementioned paragraphs provided the basics of radiometric processing, for “perfect”
radiometric data, some additional aspects can be taken into account. Many spectral/hyperspectral
approaches assume a perfectly diffusing reference for calculating relative reflectance (Lambertian
reference). Likewise, the basic supervised vicarious calibration (SVC) method [138] does not consider
the anisotropic nature of the hemispherical downwelling irradiance composed of the combined direct
solar and anisotropic diffuse sky downwelling irradiance. It is well established that under theoretical
conditions, with the solar zenith angle from near nadir (90◦) to slightly off-nadir (60◦), the biconical
reflectance factor (BCRF) provides radiance that can be corrected by a reflectance factor measured
upon a reflectance panel, e.g., SpectralonTM [139]. A part of the BCRF is a hemispherical-conical
reflectance factors (HCRF) characterization of flat panel samples using an integrating sphere, which is
a well-established technique from Nicodemus et al. [140] All theoretical/laboratory approaches rely on
the goniometric system and suggest applying a common ratio between HCRF (0◦) and BCRF (45◦),
which was reported as a linear relationship by [141]. In outdoor illumination conditions when the
sky has low aerosol optical depth and no clouds, the diffuse component of the incoming light is often
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ignored [142]. A recent study [143] developed a new physically-based method to estimate the HCRF, by
a combination of photogrammetry and radiometry from images of lightweight multispectral cameras,
with a downwelling irradiance sensor aboard the UAS. The main advantages of this innovative concept
are that no calibration targets are needed, it works both in clear sky and overcast conditions, and
captures the directionality of the reflectance factor. The main drawback is that a well-calibrated sensor
must be combined with a sky sensor.

Due to the influences on the spectral signature during data acquisition and processing, it is
very important to capture metadata on the quality, processing and pixel properties of the final data
product, and supply this with any data product. In [17], a list with suggested metadata is provided.
Additionally, [144] demonstrates how quality assurance information can be attached to a spectral
scene. For a detailed description and literature on the procedures, please refer to the review provided
by [17]. Examples of using these correction methods and their impact on the accuracy of the spectral
information are presented in Table 4.

Table 4. Impact of different correction methods on UAS-based radiometric observations.

Correction Method Sensor Resolution Accuracy Assessment Reference

Noise reduction;
Vignetting correction;

Lens distortion correction.

12 bands
400–900 nm

UAS via ASD
R2 = 0.99 [145]

Noise reduction;
Spectral smile correction;

Block adjustment.

48 bands
400–900 nm

Average coefficient of variation for the
radiometric tie points was 0.05–0.08 [146]

Correction coefficient;
Noise reduction;

Vignetting correction.

125 bands
450–950 nm

Average precision within the entire scene is
0.2% reflectance [144]

Correction coefficient;
Noise reduction;

Spectral smile correction.

48 bands
400–900 nm

Ratio of UAS radiance to reference
measurements varies from 0.84 to 1.17 [98]

Radiometric block adjustment. 240 bands
400–900 nm

UAS to MODTRAN predicted radiance
agreement 96.3% [147]

Vignetting correction;
RRV effect correction.

125 bands
450–950 nm

Ratio of UAS radiance to reference
measurements varies from 0.95 to 1.04 [148]

Assess dark current and white reference
consistency spatially and temporally; assess
spectral wavelength calibration; conversion

from reflectance to radiance.

270 bands
400–1000 nm

Dark current and white reference
evaluations showed insignificant increase
over time; hyperspectral bands exhibited a

slight shift of 1-3 nm; radiometric
calibrations with R2 > 0.99

[21]

6. Quality Assurance

Whereas the acquisition of UAS imagery and photogrammetric products has proliferated in
recent years, there is currently no standard specification for such UAS acquisitions that ensures data
standardization across collection strategies, as exists in other remote sensing disciplines. As the
practical usage of UAS technology involves diverse sensors and platforms, and with many different
applications, the uncertainties of the products can potentially be high and are often user-dependent.
Importantly, there is no easy-to-use tool available to perform quality assurance on UAS data, and the
data provided to users are frequently of varying and often unknown quality. Accordingly, there is a
need to provide coherent guideline on how to acquire and process the data. Learning from lessons in
other remote sensing disciplines (e.g., airborne and satellite retrieval) the parameters that need quality
assurance are divided into two domains: radiometric and geolocation. The radiometric property is
important for providing reliable physical values of the sensed target, while the geolocation property
is important as users tend to request (and develop) applications that require high spatial resolution
(and hence high spatial accuracy). UAS imposes an additional aspect for quality assurance, that is
connected to the specific protocol adopted for flight planning, sensor settings, and data processing
settings. Some comments on this are provided in the recent manuscript by [17].



Remote Sens. 2020, 12, 1001 19 of 35

6.1. Quality Assurance Metrics for Radiometric Data

The calibration/validation (cal/val) aspects of onboard UAS sensors is an important step in
ensuring the robustness of the collected data. The present section examines the cal/val process from
a wider perspective, rather than focusing on the specifics of any published method. Following a
well-known practice, sensor output validation is performed by a comparison of measured (known)
data, including field in situ measurements and other validated UAS systems. The primary intention of
cal/val approaches is to retrieve the best possible spectral ground validation results. This approach
generally involves up-scaling data from the ground to the scale of the UAS sensing, and requires
detailed quality assessment, often via standard statistical metrics. These might include Euclidean
distance, spectral angle distance, comparing absolute values [149], multiple linear regression and
the average sum of deviation square score [150]. QA is mainly performed by correlation coefficients
and RMSE. Alternative quality indicators are the at-sensor radiance-to-reflectance ratio (rad/ref), and
the radiance-to-reflectance difference factor (RRDF), suggested by [138]. The rad/ref indicator is a
quantitative regulator for inspection of the data quality and radiometric performance of the sensor
in question. Calculating the RRDF by two pairs of sensors and ground truth spectra, followed by
the inspection of the entire spectral region confirmation, is achieved only if both pairs provide fully
overlapping curves. With all of these approaches, one has to be careful to obviate influences resulting
from differing viewing geometries of different instruments (c.f. Section 5.2 and [17,52,115]). The cal/val
concept plays an essential role in bringing UAS remote sensing closer to quantitative applications.
The results of advanced cal/val technology and the QA/QI perspective of the future should be to ensure
that UAS remote sensing remains consistent with best practice.

The most common method for establishing a relationship between the imagery digital numbers
(DNs) and ground-measured reflectance is ELM. Using radiometric reference targets [151,152], ELM is
prone to accuracy deterioration due to the variation of atmospheric conditions and reference targets
properties, therefore stable weather conditions during missions and targets close to Lambertian
characteristics should be favored. Even though ELM is one of the simplest and most accurate methods
so far, overcoming the abovementioned constraints may significantly increase the cost and complexity
of an UAS survey. Recently, Iqbal et al. [153] proposed a simplified radiometric calibration for the
mini-MCA (multispectral camera array) sensor. White plastic boards, as the pseudo targets and
radiometric calibration targets, were used to convert DN to spectral reflectance using the calibration
equation. Xu et al. [154] emphasized that the ELM independently calibrate each channel, ignoring
the correlation between spectral bands. The authors proposed a spectral angle constraint method
(SACM) for the radiometric processing of all bands as a whole. For the comparison of the ELM
and SACM, the precision results were compared to spectroradiometer data and evaluated using
mean absolute error (MAE), mean relative percent error (MRPE), RMSE and standard deviation (SD).
The proposed method contributes to radiometric calibration within bands located in the visible part of
the spectrum, i.e., stretches with multiple vegetation coverage. The correlation between the bands is
more noticeable as more spectral channels are introduced, thereby quality assurance for increasingly
used hyperspectral sensors is needed. A detailed example of a procedure for hyperspectral snapshot
cameras was presented in [144], introducing a novel quality assurance to trace pixel properties from
the raw data of individual image cubes to the composed scene. Likewise, Barreto et al. [21] provided a
comprehensive assessment of a line-scanning hyperspectral system, employing a range of approaches
for quality assessment.

UAS mapping under variable solar conditions also has an impact on image quality. Wang et al. [155]
proposed a pixel-wise radiometric and geometric calibration, extending the sensor calibration to such
conditions and correcting vignetting effects. Stow et al. [114] showed that illumination geometry
impacts the retrieval of reflectance values, but using VIs and photogrammetry can mitigate those effects.
Even though flying height did not prove to have a conclusive effect on radiometric quality, the authors
raised a question about the atmospheric effect on radiometric calibration. Indeed, [156] highlights that
atmospheric correction has been overlooked in UAS environmental studies, due to low-altitude (<120
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m) flights. The same authors pointed out the impact of Rayleigh scattering (light scattering by particles
smaller than radiation wavelength, mostly from gas molecules), and developed an atmospheric
correction algorithm to eliminate path radiance. In a recent study, [110] included air humidity to
determine the potential impact on the quality of low-height images. Based on missions at different sites
in Poland, characterized by specific climate, sun angle at 5◦, 14◦ and 38◦, and humidity ranging 40–80%,
authors confirmed the impact of humidity and irradiation geometry on the radiometric quality of
UAS images. Moreover, a new quality assessment indicator for the visible range was proposed, which
accounts for the influence of air humidity and solar angle, including the high correlation between the
humidity at a given altitude and difference in reflection. This approach proved to be universal for
flying heights from 75 to 300 m, different humidity levels and sun angle.

6.2. Thermal Domain

UASs utilize uncooled thermal sensors, due to their size and weight benefits. However, uncooled
microbolometers tend to be less accurate and prone to thermal sensitivities, which can cause
inconsistencies and reduced accuracy in thermal retrieval. Though UAS-based thermal sensors
have improved over the last few years, calibration and validation remain challenging, but are critical
elements in obtaining useable imagery. Generally, low-cost sensors are not radiometrically calibrated
by the manufacturer, making it difficult to obtain absolute temperature measurements. Moreover,
camera optics, design and enclosure influences can introduce energy dissipation effects from the
microbolometers, resulting in distortion (vignetting) in collected imagery [157]. As such, prior to any
data collection effort, sensor calibration and vignetting correction are an essential step. Several studies
have developed protocols using available blackbody devices in the laboratory to calibrate or correct
uncooled sensors [158–160]. Nonetheless, the calibration is often different sensor-to-sensor, and needs
to be performed regularly [161].

Complementary to the laboratory cal/val, acquiring coincident thermal ground measurements
(using cooled cameras and/or well-calibrated small thermal sensors) from various targets during the
time of UAV acquisition is required [157,162]. These measurements will allow direct comparisons
with the UAS-based data. Additionally, we highly recommend deploying aluminum targets (e.g.,
pizza trays), as they are able to infer sky temperatures, due to the very low emissivity of shiny
aluminium [162]. Moreover, when used as GCPs within the observed scene, these targets help to ensure
accurate absolute geolocation of the thermal imagery [163]. For robust detection, composite materials
made out of e.g., styrofoam and black metal, have been shown to work well with thermal data [42].
Alternatively, temperature monitored water baths (along with standard thermocouple assembly) can
be installed within the observed scene to provide reference kinetic temperatures during the mission.
However, the challenge is to effectively monitor the temperature of the whole water baths, particularly
as environmental fluctuations occur.

Obtaining accurate thermal orthomosaic remains challenging because of (1) the rapid changes in
temperature during the morning and evening transitions [42], and (2) inconsistencies between images
relative to in-flight effects (wind-speed and direction) on uncooled sensors. To date, there is still a lack
of specific UAS-based thermal processing protocols for quantifying those uncertainties, so more work
is required around characterizing these effects. More generally, examining pixel-based temperature
variability between orthoimages would be essential to provide QA of thermal data. Further, mosaicking
methods proposed by commercial software are not able to account for these pixel-based thermal
variabilities. Perich et al. [42] investigated the influences of different processing modes and found
significant differences, resulting from the interaction from the viewing geometry and canopy structure
in combination with soil influences. Thus, specific thermal QA protocols (e.g., pixel-based standard
deviation of the mosaicking) still need to be developed and integrated into software, as the standard
practices for optical-based systems may not be appropriate.
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6.3. Final Quality Assurance of UAS Products

Even with numerous UAS environmental studies having been undertaken using diverse system
configuration over the past years, the level of quality assurance along each step of the workflow remains
largely underreported. In the context of the harmonization of UAS environmental monitoring, quality
assurance must play an important role in terms of standardized approaches, monitoring practices,
and reproducibility of the research itself. As already mentioned, platform choice, flying speed and
altitude are highly correlated with GSD. Moreover, [164] emphasized that using portable resolution
test charts before imaging is a very useful first step for UAS image quality assurance. These charts have
specifically designed characteristics and are used for evaluation and camera calibration. Two types
of test charts were examined by the authors: i) tri-bar pattern: calculating resolution according to
fixed bar size and frequency; and ii) Siemens star: calculating resolution by measuring boundary of
center in comparison to target outer diameter and size. The second method is more subjective due to
visual demarcating the boundary of expanding black and white lines, of which the size and number
are specified. In case of both platform types carrying two camera models at different flying altitudes,
GSD of orthoimages highly correlated to theoretical resolution (calculated GSD prior to mission—see
Section 2.3).

There is currently an unmet need for the standardization of SfM methods, along with their detailed
survey reporting and final product assessment. An example of such guidelines is the use of SfM
photogrammetry in geomorphic research [84], where the authors pinpointed three key steps in: (1)
using appropriate survey design; (2) identifying systematic errors and precision within results; and
(3) propagating uncertainty estimates into the final data product. In order to ensure reproducible
SfM-based surveys, the authors provided thirteen successive steps, including mandatory points such as
literature review, equipment choice, and calibration, detailed report on image acquisition and control
measurements, photogrammetric processing, quality of final results and error management, and final
product assessment. This workflow provides the most detailed quality assessment of photogrammetric
processing, as it includes accuracy assessment, residual error on image observation, correlation between
camera parameters, and finally comparison with independent checkpoint coordinates. Finally, the
authors draw attention to determining the potential impact of residual uncertainty on SfM final
products, whether using simulation or analytical solutions for the propagation of error.

Orthoimage mosaic is another product used for direct measurement, and classification is one of
the most common approaches [23]. The choice of classification methods largely depends on the spatial
and spectral quality of data, to what extent the targeted unit is distinguished from its surroundings and
the particular goal of an environmental survey. The pixel-based approach analyzes only the spectral
properties of each pixel, while object-based image analysis (OBIA) integrates information on the texture
and shape of pixels and their neighbors, arranging them into segments and assigning them to different
classes [165]. With the rise of high-resolution sensors, the spatial resolution has become finer than the
object of interest. Therefore a pixel-based approach on high-resolution images can cause a “salt and
pepper” effect, contributing to classification inaccuracies [165,166]. As such, the OBIA technique is
gradually replacing the traditional pixel-based approach for the classification of high-resolution UAS
imagery [167]. A systematic comparison of seven different OBIA classification techniques using RGB
images with 0.2 m spatial resolution [168] concluded that the random forest classifier gave the most
accurate results. Similarly, [19] came to the same conclusion in a review of 173 scientific publications
of supervised OBIA image classifications, where the random forest approach outperformed others.
An inseparable part of classification choice is the accuracy assessment method. However, accuracy
measurements are mainly designed for the pixel-based approach. Therefore, area-based accuracy
assessment and size of training data are proving to be more stable than traditional point-based methods.
The accuracy level of the final product largely depends on the map purpose, and the rise of object-based
supervised classification has created room for research on uncertainties and accuracy assessment in the
OBIA field.
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A recent and comprehensive document, that attempts to rectify UAS utilization in Australia and
New Zealand, may be used as a basic guide for both UAS data acquisition and quality controls [169].
Based on this “user needs report” more points that require QA are provided and a software package
(QA4) to do so has been recently developed to include different QA points.

7. Discussion and Final Remarks

The main purpose of this review document is to provide insights and overview into the necessary
steps that are required to ensure a successful UAS environmental survey. We singled out five key
elements of this process, which have been described to some extent by recent literature contributions.
Throughout the proposed workflow, we suggested specific reviews or research studies on each step
of the UAS data planning, acquisition, processing and quality assurance workflow (Figure 4). Even
though each sub-section represents a scientific discipline of its own, their mutual dependence requires
all the steps to be compatible to ensure successful outputs of an UAS study. We emphasize the
importance of UAS regulations, but the significant heterogeneity of national regulations indicates that
implementation of UAS in everyday professional use is still progressing. The impact of regulations is
most evident on the inability to survey urban areas, platform weight and allowed flight altitude. UAS
weight affects platform and sensor choice, while flight altitude limitations can impact intended spatial
resolution, flight duration, image overlap, and area covered. GSD is also impacted by camera properties
and type of sensor used. As the spatial resolution differs amongst different sensors, proper calibration is
needed, especially for simultaneous use. Intended GSD influences the choice of classification approach
and method, as well as DSM and orthomosaic quality.Remote Sens. 2020, 12, x FOR PEER REVIEW 23 of 38 
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The success of the SfM algorithm also depends on image overlap, and for specific types of
vegetation research, we can almost conclude that optimal overlap thresholds exist. The overlap settings
may be strongly influenced by the specific characteristics (heterogeneity) of the area. When tie points
can easily be identified in the scene, it is possible to use 70% front- and 40% side-overlap as minimum
values for precision agriculture [5], with flying heights between 60–90 m. Forward- and side-overlap
of at least 80% and 60% is recommended for forestry surveys [2]. A similar overlap percentage was
used for natural vegetation and invasive plant surveys, even though different sensors require specific
overlap (e.g., suggested image overlaps for thermal sensors are above 80% [51]). There is a noticeable
distinction in optimal side lap percentage, as for mapping structurally and spatially homogeneous areas,
such as crop fields, less side lap was used. Therefore it is possible that for surveys of heterogeneous
natural ecosystems (e.g., riparian vegetation), higher side lap is desirable than for homogeneous
ecosystems (e.g., rangelands, grasslands [37,170,171]). On the other hand, homogenous scenes imply
less distinct tie-points for the SfM algorithm, so for quality final products, a side overlap higher than
40% is required. Nevertheless, there is no general methodology for choosing the optimal overlap
configuration for UAS flight planning, even though monitored area can be characterized by specific
quantitative parameters, i.e., the complexity of relief can be estimated by elevation differences; or scene
homogeneity/heterogeneity can be assessed by specific tools such as FRAGSTATS [172]. In practice,
the purpose of monitoring itself plays an important role in choosing the optimal image overlap. At the
same time, even small changes in other flight parameters can affect the accuracy of the data obtained
under the same overlap conditions. For example, in a study on the monitoring of olive orchards [173],
image overlap and flying height was tested to obtain optimal configuration for generating DSMs in the
context of processing time. Side overlap was constant at 60%, while the best results were obtained, with
95% of front overlap at 100 m flying height. Quality of the 3D reconstructed olive trees was strongly
affected by overlap percentage, as well as the tree volume accuracy (TVA), which was linearly correlated
with the front overlap. The same applies to the dependency of optimal overlap configuration from the
UAS sensor type. Similarly, [60] examined the connection between image overlap, the processing time,
and low altitude flights, but the images were extracted from compressed MPEG-4 video as JPEG or
PNG image files. This approach enables extremely high forward overlap (up to 98.8%) to be achieved
without an increase in flying time, and proved to be beneficial in low altitude flights (15–30 m above
the canopy). Still, using forward overlap higher than 95% increases the processing time, while the
side overlap ranging from 50% to 70% proved to be optimal in reconstruction accuracy. Including a
cross-flight pattern and tilted camera could benefit in obtaining optimal image overlap. This optimal
value represents the compromise of sufficient image overlap for the quality final product on one side,
and computation time and more important flying time on the other side.

Flight duration limits the range of UAS, thus based on the scale of the survey, more energy-efficient
fixed-wing platforms are used for mapping large areas. The payload weight impacts flying time as well,
as heavier sensors significantly reduce the acquisition period. Besides weight, each sensor type has a
set of specific limitations that must be considered within the general workflow. The main limitation
of widely adopted RGB, modified RGB and color-infrared cameras is the overlap between spectral
bands, and the fact that these bands are not always originally used in calculating vegetation indices, as
modified vegetation indices are often generated. Many of these types of 2D imagers record all bands at
the same time, although there are also sequential 2D imagers that record desired bands sequentially in
time (i.e., Rikola or Cubert hyperspectral imagers, with 50–100 bands). The high spatial resolution
follows this wide spectral selection to some extent, but the band spatial offset needs to be corrected in
the image pre-processing step. Systems such as Tetrtacam, MicaSense Parrot-Sequoia and RedEdge
use several integrated cameras to record images of different spectral resolution, pushbroom sensors
record a line of spectral data [174] and point spectrometers acquire spectral signatures of objects.
A detailed radiometric workflow was provided in the latest review of spectral sensor technology by
Aasen et al. [17] Due to high spectral sensor diversity, a clear border between classical multispectral and
hyperspectral sensors is blurred, and it is important to emphasize that no device can meet all needs.
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Georeferencing is an irreplaceable part of UAS data processing, and besides acquiring spatial
positioning for spectral data, it is tightly incorporated within each workflow step. Developing
synchronized IMU/GNSS technology significantly improves the accuracy of sensed data, whereas a
limited number of GCPs ensure the minimizing of standardized error values. As GCPs still provide the
most accurate results, a step in mitigating their time-consuming placement and geolocation are using
specially designed GCPs with integrated GNSS, such as Propeller® AeroPoints [175]. The location
of the AeroPoints can be recorded for a couple of hours, automatically uploaded after the flight and
subsequently post-processed [95,176]. The type of GCPs deployed also depends on the sensor choice,
as for low spatial resolution and low-contrast thermal sensors, aluminum GCPs are needed, reflecting
up to 90% of thermal radiation [177]. The number and density of GCPs need to be included in the
initial study design, supported by required internal precision and overall repeatability of the survey,
with the intended GSD of final products [8]. Ultimately, precisely georeferenced ground data are
perhaps the most crucial parts of multi-temporal environmental monitoring.

Assuring the quality of each step included in this guidance guarantees the quality of final products
and ensures their suitable application. It is clear by now that QA is not an independent step within the
workflow, but rather an inseparable part of each mentioned process, especially as subsequent steps
depend on the quality of previously collected data and different system configurations. Survey cost
is an integral part of study design, and the price of each component included in the workflow can
vary from at least several thousand dollars to considerably more. This price range implies that not
all UASs can be considered as a low-cost remote sensing tool, and the utilization of more complex
systems requires greater funding and expert knowledge. With this in mind, the quality assurance
of data obtained through expensive equipment is crucial for fulfilling its full potential. Composing
optimal cost-efficient study design represents a final tradeoff between the purposes of the final product
on one side, and if improvement brought by complex systems is supported by appropriate survey cost
on the other side. Nevertheless, these expensive components are still generally used by remote sensing
“core” experts, with a tendency of lower prices for professional systems.

We strongly recommend providing all metadata, parameters, and system configuration used
within each step of the UAS environmental survey. Detailed overviews of camera settings, sensor
calibration, flight configuration, geometric and radiometric processing, as well as different software
and approaches used, enables the independent analysis and reproducibility of a study [17]. Beside
suggested literature for each step and associated literature for quality assurance, we also present a form
with necessary metadata associated with each UAS-survey, that should be provided in Appendix B.
Ultimately, cooperation of experts within each component of the workflow could be one of the solutions
for obtaining the highest quality data. Moreover, networking of geologists, ecologists, land managers,
etc. with engineers, programmers and other remote sensing specialists leads to best practice in
designing the optimal study. These processes will result in standardized procedures and workflows,
by verification of past surveys or adopting new methods.

8. Conclusions

The long unmet demand for near real-time cost-effective data has been largely resolved by
advances in UAS technology. With the availability of these new sensor and platform combinations, an
entirely new frontier in remote sensing has been revealed. While still relatively immature, new sensors
(passive and active) with high spectral resolution and spatial coverage, along with fusion capabilities
of data from several sensors, are shedding light on the potential of this technology. New platforms
that can carry heavy payloads and easy to operate UAS, with user-friendly operation and processing
systems, will no doubt make this technology a major pillar of modern remote sensing, equal or even
higher to those acquired from more traditional airborne and satellite domains.

The present manuscript provides a comprehensive review of the most recent results in the field
of UAS environmental mapping using passive sensors. The literature offers a significant amount of
useful suggestions, that have been harmonized to provide guidance in the use of drones for scientific
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applications. The information reviewed focused mainly on practical usage of UAS, and can be easily
adapted to several fields such as vegetation mapping, soil water monitoring, snow assessment, urban
mapping, and more.

Currently, it is not standard practice that UAS publications provide a detailed description of the
specific data collection and processing steps that were followed in specific studies. However, a detailed
description of the flight characteristics and preprocessing activities carried out on the published data is
extremely useful, not only for scientific reproducibility, but also to guarantee a certain quality, while
also advancing and educating the broader field. For this reason, we developed an UAS survey form
(see Appendix B—Table A2), where all potential variables and details about a survey are listed. This
form may be considered as a potential reference in future studies of UAS data collection, in order to
guarantee the reproducibly of the results. Finally, we have identified the research pillars that should be
used in an ideal workflow, where each step of the UAS survey is properly managed. Systematizing
this information, we have built a workflow that can be used as a reference workflow for UAS-studies.
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Appendix A. Checklists Before A Flight

Table A1. Preliminary checklist before flying.

N. HARMONIOUS UAS Check-List Check

1 Check the weather conditions (particularly critical maybe rain and strong wind)

2 Identify the timing of the flight with respect to the best solar illumination. The central hours of the day allow avoiding
shadows in the scene.

3 Make sure that you have GPS coverage to fly in “safe” mode.

4 Take off from areas that are sufficiently large, free of obstacles and leveled

5 Check the presence of any deformation to the propeller or frames

6 Execute a small manual flight; this ensures that the vehicle is stable and radio control is performing well

7 If the presence of people and / or animals is planned in the survey area, plan the flight when such presence is minimum.

8 In the case of critical operations, obtain all permits in advance

9 Check the status of the batteries of your drone, controller, sensors, and tablet

10 Check that the propellers are intact and well-fixed

11 Deactivate for safety the Bluetooth and the Wi-Fi of your device (we recommend the mode “Airplane”)

12 Check that you have enough free memory in the SD card used to store the data acquired

13 Do the compass calibration (magnetic compass)

14 Wait for the drone to connect to as many satellites as possible (minimum required 5)

15 Set the “return to home” point in case of anomaly before starting

16 Take off and Fly
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Appendix B. UAS-Survey Description

Table A2. Metadata associated with each UAS-survey.

Study design

Platform characteristics

Platform type

Weight & payload capacity

Maximum speed

Flight height & coverage

On-board GNSS receiver

Sensor characteristics
Sensor type & name

Sensor weight

Camera settings

Pixel size

Sensor size

Focal length

ISO

Aperture

Shutter Speed

Flight plan

GSD (cm)

Flight height

Flight speed

Forward & side image overlap

UAS Control software Software name

Georeferencing

Type of georeferencing

Number of GCPs

Arrangement of GCPs

Flight mission

Weather
Wind power & direction

Illumination condition

Humidity

Mission

Average flying speed

Flying time

Flight pattern

Camera angle

Image format

Processing of aerial data

Geometric processing

SfM tool name

Final product type

Bundle adjustment

Radiometric processing

Signal to noise ratio

Radiometric resolution

Viewing geometry

Band configuration

Reflectance calculation method

Vignetting

Motion blur

Accuracy assessment

Error measure

Statistical value

Error management

Classification accuracy
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