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Abstract: Degeneration of articular cartilage (AC) is a common healthcare issue that can result
in significantly impaired function and mobility for affected patients. The avascular nature of the
tissue strongly burdens its regenerative capacity contributing to the development of more serious
conditions such as osteoarthritis. Recent advances in bioprinting have prompted the development
of alternative tissue engineering therapies for the generation of AC. Particular interest has been
dedicated to scaffold-based strategies where 3D substrates are used to guide cellular function and
tissue ingrowth. Despite its extensive use in bioprinting, the application of polycaprolactone (PCL) in
AC is, however, restricted by properties that inhibit pro-chondrogenic cell phenotypes. This study
proposes the use of a new bioprintable poly(ester urea) (PEU) material as an alternative to PCL for
the generation of an in vitro model of early chondrogenesis. The polymer was successfully printed
into 3D constructs displaying adequate substrate stiffness and increased hydrophilicity compared to
PCL. Human chondrocytes cultured on the scaffolds exhibited higher cell viability and improved
chondrogenic phenotype with upregulation of genes associated with type II collagen and aggrecan
synthesis. Bioprinted PEU scaffolds could, therefore, provide a potential platform for the fabrication
of bespoke, pro-chondrogenic tissue engineering constructs.
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1. Introduction

The number of patients at risk of suffering from cartilage-related diseases is predicted to expand
significantly as a direct result of increased life expectancy and an aging global population. Recent
studies show that osteoarthritis (OA), the most common form of degenerative joint disease, affects
nearly 59 million people in the United States and European Union combined, with the numbers
expected to double by 2020 [1]. Current clinical therapies, including microfracture, mosaicplasty
and autologous chondrocyte implantation (ACI) have shown limited capacity for restoring normal
phenotype and functionality to early-stage damaged cartilage [2–4]. Moreover, the efficiency of such
techniques is still hindered by significant drawbacks, such as poor control over cell differentiation,
limited repairable defect size, tissue availability and patient site morbidity [2,3]. In cases of end-stage
OA, total joint replacement remains as the surgical standard allowing the reestablishment of some
function and reduction in pain. However, in the long run, this solution can carry considerable practical
and economic cost due to the high price and complexity of revision surgeries [5]. The low success rate
of clinical therapies has, consequently, promoted a move towards new strategies for repairing damage
to AC. One approach that has attracted significant interest is the application of tissue engineering (TE)
to regenerate AC defects. More specifically, promoting tissue repair by designing a physical template
(scaffold), either cellular or acellular, capable of integrating into the defect and promoting the adhesion
and proliferation of autologous cells and their synthesis of new extracellular matrix (ECM), has been a
major goal [6–8]. The scaffold plays a pivotal role by providing temporary mechanical support and
regulating cellular activity towards guided tissue ingrowth [9]. To achieve this goal, scaffolds should
be designed to mimic the complex multi-functional and multi-compositional organisation of the native
tissue. From a manufacturing view-point, 3D bioprinting offers a platform for the precise control over
the spatial distribution of cells and materials, allowing for the controlled uniformity or heterogeneity
of the final structure [10]. This computer-controlled technique operates in a layer-by-layer fashion and
can be combined with computer aided design (CAD) or medical imaging to produce patient-specific
implants [11,12].

A wide range of natural and synthetic biomaterials have been used in combination with bioprinting
to generate mono or multi-phasic scaffolds, capable of mimicking the structural composition of
cartilage tissue [13–16]. Synthetic polymers, including polycaprolactone (PCL), poly(lactic acid)
(PLA), poly(lactic-co-glycolic acid) (PLGA), poly(ethylene oxide terephthalate) (PEO), poly(butylene
terephthalate) (PBT), polyurethane (PU), polyethylene oxide (PEO), and polyethylene glycol (PEG),
have attracted great interest due to the tunability of their mechanical properties and degradation
rates [17]. PCL, a linear aliphatic polyester approved by the Food and Drug Administration (FDA)
for medical purposes, is the most reported scaffolding material in the literature [7,8,18–21]. Multiple
research groups have taken advantage of the high thermal stability, processability, and blending ability
of PCL to generate highly accurate 3D scaffolds for TE applications [19,22–24]. However, the use of
PCL as a cell-compatible and cell-instructive material for AC tissue regeneration is still hindered by its
slow degradation rate (i.e., from six to thirty six months as a function of molecular weight), release
of acidic by-products and poor biomechanical performance [18]. Additionally, PCL scaffolds often
have to be surface treated to increase hydrophilicity in order to maintain chondrocyte phenotype [25].
Biodegradable and bioabsorbable α-amino acid based poly(ester urea)s (AA-PEUs)have been proposed
as a new class of polymers with enhanced bioactivity for TE [26,27]. Synthesis of AA-PEUs is relatively
easy to achieve through poly-condensation of bis(α-amino acid)-alkylene diester monomers, which
allow for a controlled hydrolytic degradation process [27]. The first attempt in the preparation of PEUs
was reported by Huang and co-workers in 1979, but the low molecular weight of the material prevented
its application in TE [28]. An alternative method for the synthesis of PEUs yielding high molecular
weight and enhanced mechanical properties was later proposed by Katsarava with the introduction of
an acid chloride of carbonic acid in the interfacial polycondensation reaction with a di-p-toluenesulfonic
acid salt of a bis(α-amino acid)-alkylene diester [29]. This allows for the preparation of PEUs with
improved physicochemical properties and potentially opens new opportunities in terms of processing
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technologies for tissue-engineered devices. Biodegradable PEU and PEU-based composites in the form
of electrospun meshes and 3D printed scaffolds have recently been reported as adequate templates
for TE, supporting the adhesion and proliferation of different cell lines (e.g., fibroblasts, osteoblasts,
chondrocytes and epithelial cells) and the osteogenic differentiation of human mesenchymal stem cells
(hMSCs) [30–34]. In this work, an extrusion-based bioprinter was used to demonstrate the potential
of hydrophilic, leucine-based poly(ester urea) (PEU) materials as TE platforms for the generation
of chondrogenic 3D constructs with precise control over the geometry and dimensions of extruded
filaments. Through comparison with PCL scaffolds, the pro-chondrogenic potential of PEU scaffolds
was explored, using analysis of cell viability, proliferation and expression of chondrogenic markers by
TC28a2 human chondrocytes.

2. Materials and Methods

2.1. Materials

Poly(ε-caprolactone) (PCL, CAPA 6500, Mw = 50,000) in the form of 3 mm pellets was obtained
from Perstorp Caprolactones (Cheshire, UK) and used as received. l-leucine (≥98%), p-toluenesulfonic
acid monohydrate (p-TSA) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Anhydrous
sodium carbonate (Na2CO3) was purchased from Fisher Chemical (Loughborough, UK). Triphosgene
was obtained from TCI Europe (Zwijndrecht, Belgium), and 1,6-hexanediol (99%) were purchased
from Acros Organics (Geel, Belgium). Chloroform (CHCl3), and toluene were supplied by José Manuel
Gomes dos Santos Lda (Odivelas, Portugal). CHCl3 was dried over calcium chloride and distilled prior
use. Deuterated dimethylsulfoxide (DMSO-d6) was purchased from Eurisotop (Saint-Aubin, France).

2.2. Synthesis of Poly(Ester Urea) (PEU)

The synthesis of the PEU can be divided in two steps: (a) preparation of the bis(α-amino acid)
ester and (b) reaction of the bis(α-amino acid) with triphosgene to yield the PEU. For the synthesis of
the bis(α-amino acid) ester, a suspension of l-leucine (0.24 mol), 1,6-hexanediol (0.12 mol), and p-TSA
(0.264 mol) in 300 mL of toluene was heated up to 150 ◦C with magnetic stirring, in a round bottom
flask equipped with a Dean-Stark apparatus, and a condenser with a drying tube (Figure 1a). The
suspension was heated to reflux until no more water was distilled. The excess of toluene was removed,
and the resulting material was recrystallised twice using 300 mL distilled water, to yield 65 g of a white
powder [35].
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Figure 1. A representation of the chemical synthesis of PEU including (a) synthesis of bis(α-amino
acid) ester from l-leucine and 1,6-hexanediol and (b) the reaction between bis(α-amino acid) ester from
l-leucine and 1,6-hexanediol and triphosgene to yield the l-leucine-based PEU.
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Bis(α-amino acid) ester of l-leucine and 1,6-hexanediol: yield: 80%; 1H-NMR (400 MHz,DMSO-d6):
0.90 (d, 12H) 1.34 (s, 4H) 1.61–1.71 (m, 8H) 2.30 (s, 6H) 3.97 (t, 2H) 4.15 (d, 4H) 7.13 (d, 4H) 7.49 (d, 4H)
8.31 (s, H).

For the synthesis of the PEU, the l-leucine based bis(α-amino acid) (0.008 mol), anhydrous sodium
carbonate (1.8 g, 0.017 mol) and 80 mL of distilled water were placed in a 250 mL glass reactor, equipped
with a mechanical stirrer. The mixture was stirred at 35 ◦C, for 30 min. The reactional system was
cooled to 0 ◦C and anhydrous sodium carbonate (0.0085 mol) in 30 mL of distilled water was added
to the reactor. After the reaction medium became transparent, triphosgene (0.003 mol) in 20 mL of
dry CHCl3 was quickly added to the reactor. After 30 min, a solution of triphosgene (0.2 g, 0.7 mmol)
in 6 mL of dry CHCl3 was added dropwise to the reactor. The reaction was allowed to proceed for
2 h (Figure 1b). After that time, the reaction mixture was placed in a separatory funnel. The organic
phase was extensively washed with distilled water, and was then placed in a Teflon plate to allow the
evaporation of CHCl3. Yield: 60%. Tg = 26 ◦C (see Figures S1 and S2 for the heat flow curve of PEU).

2.3. Scaffold Design and Fabrication

An extrusion-based 3D printing system (3D Discovery, regenHU, Switzerland) equipped with a
screw-driven printing head and a 330 µm nozzle was selected for the fabrication of both PCL and PEU
scaffolds. Adopting a methodology previously published by our group, rectangular prisms measuring
20 mm (length) × 20 mm (width) × 4 mm (height) were initially designed using BioCAD software
(regenHU, Switzerland) and subsequently printed employing an optimised set of parameters (Table 1).
The internal pore geometry (quadrangular) was defined by keeping a constant filament distance of
830 µm and alternating the deposition angle of adjacent layers between 0◦ and 90◦. The obtained
scaffolds were then cut into smaller specimens and used for further analyses.

Table 1. Optimised set of process parameters used for the printing of PCL and PEU scaffolds. Parameters
are denoted as deposition velocity (DV), slice thickness (ST), liquefier temperature (LT), extrusion
pressure (EP) and screw rotation velocity (SRV).

Process Parameters

DV (mm/s) ST (µm) LT (◦C) EP (bar) SRV (rpm)

PCL 20 280 90 5 11
PEU 22 280 125 5 8

2.4. Preparation of Films from the Scaffolds

The scaffolds were hot pressed in a laboratory hydraulic press (CARVER®), at 120 ◦C, and
0.1 metric tonne, for 15 min using cardboard moulds. The obtained films were then used in the contact
angle measurements.

2.5. Characterisation of PEU and Scaffolds

2.5.1. Identification of the Chemical Structure of the Poly(ester Urea) (PEU)

ATR-FTIR analysis of PEU was carried out with a Cary 630 FTIR spectrometer. Data collection was
performed with 4 cm−1 spectral resolution and 64 accumulations in a 650 and 4000 cm−1 wavenumber
range. 1H NMR spectra were obtained at 25 ◦C on a Bruker Avance 400 MHz Spectrometer using a
5 mm broadband NMR probe, in DMSO-d6. Tetramethylsilane was used as the internal standard.
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2.5.2. Morphological Analysis

The morphology of 3D printed PCL and PEU scaffolds was assessed using scanning electron
microscopy (SEM, FEI Quanta 200) and micro-computed tomography (Micro-CT, SkySCan 1072,
Aartselaar, Belgium). After gold-sputtering the polymeric scaffolds (EMITECH K550X Sputter Coater,
France), top and cross section SEM micrographs were obtained under high vacuum conditions
employing a voltage of 15 kV and a pressure of 3.2 × 10−5 Torr. ImageJ software (National Institute of
Health, Bethesda, MD, USA) was subsequently used to evaluate the structural integrity of the scaffolds
and consistency between theoretical (pre-defined in the BioCAD) and experimental values of RW and
FG. Micro-CT analysis was performed using a rotational step of 0.9◦ over an angle of 180◦ in order
to assess the porosity, surface area to volume ratio, and interconnectivity of the scaffolds. Skyscan
software packages and Image J software were employed for the reconstruction of cross sections and
3D models.

2.5.3. Mechanical Analysis

Nanoindentation Tests

Nanoindentation tests were carried out on the filaments of PCL and PEU scaffolds. All the
measurements were performed in 1 mN to 5 mN load range using a Nanotest Platform (Micromaterials,
UK) with a diamond pyramid-shaped Berkovich-type indenter tip. Trapezoidal load functions were
used considering a load hold period of 20 s and a loading–unloading rate of 300 µN/s. Load–depth
curves were recorded and hardness values were evaluated using the Oliver and Pharr method.
Hardness (H) was determined according to Equation (1), where Pmax and Ac are the applied peak load
and the projected contact area at the specified load, respectively. The projected contact area Ac was
determined from the penetration depth, depending on the geometry of the tip.

H =
Pmax

Ac
(1)

Compression Tests

PCL and PEU block-shaped scaffolds were characterised by a length (l) of 5.0 mm, a width (w)
of 5.0 mm and a height (h0) of 6.0 mm. All the tests were performed at a rate of 1 mm/min up to a
strain of 0.4 mm/mm, using an INSTRON 5566 testing system. The procedure used to evaluate the
“apparent” stress and strain was described in a previous work [7,36]. The compressive modulus was
evaluated as slope of the initial linear region of the stress–strain curve.

2.5.4. Water Contact Angle Measurements

Contact angle testing of distilled water was conducted on both films and single filaments of PCL
and PEU scaffolds using a DATAPHYSICS OCA 20 apparatus. Distilled water was dropped on films
and single filaments in different sites and the contact angle was evaluated. In particular, CCD cameras
recorded the process of the droplet dropping on the filament until disappearing gradually.

The baseline for a sessile drop contact angle was made at the liquid–solid interphase. Contact
angles were evaluated using the ellipse method for the extraction of the drop profile, as described in
the literature, and reported as mean value ± standard deviation [37,38].
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2.5.5. Cell Seeding

TC28a2 human chondrocytes were cultured to 70% confluence in supplemented DMEM (10% FBS,
2.5% l-glutamine) before being dissociated with trypsin and counted using an automated cell counter
(Countess, Life Technologies, UK). Cells were seeded into PEU and PCL scaffolds (5 × 105 cells/scaffold)
and cultured for 21 days with media changed every other day (DMEM Glutamax™ supplemented
with 10% foetal bovine serum, 37 ◦C, 5% CO2).

2.5.6. Confocal Microscopy Imaging

Cell-loaded scaffolds were fixed with 4% paraformaldehyde in PBS at room temperature for
30 min, washed with PBS and incubated with 100 mM glycine in PBS for 1 h. Then, samples were
permeabilised with 2.5% Triton X-100 in PBS for 45 min and blocked with 1% BSA for 30 min. F-actin
was stained with rhodamine phalloidin (1:40 v/v in 1% BSA/PBS) (Invitrogen) for 1 h and cell nuclei
were counterstained with 4′,6-diamidino-2-phenylindole (DAPI) (1 µg/mL in PBS) (Bio-Techne, UK)
for 5 min. Samples were then imaged using a confocal laser scanning microscope (CLSM, Leica SP8,
Leica Microsystems).

2.5.7. Cell Viability

Cell viability within the scaffolds was analysed at 7, 14 and 21 days after seeding using a resazurin
metabolism assay. Briefly, cell-loaded scaffolds were incubated in supplemented media containing
0.1 mg/mL resazurin for 3 h at 37 ◦C. Medium was then aspirated and transferred to a 96-well plate.
Absorbance at 570 nm was measured for each sample in triplicate using a BioTek™ ELx800™ absorbance
microplate reader (BioTek, UK).

2.5.8. RT-PCR

RNA was extracted and purified from TC28a2 cells within PEU and PCL scaffolds using an
RNeasy® isolation kit after 7, 14 and 21 days in culture. The purity and concentration of isolated
RNA was determined using a NanoDrop™ spectrophotometer (ThermoFisher, UK) before cDNA was
generated using an iScript™ cDNA synthesis kit. A 20 µL qPCR reaction was prepared for each sample
using 25 ng of cDNA and primers for COL1A1, aggrecan and COL2A1. PCR was then performed
using a Quantstudio qPCR machine (Applied Biosystems, UK) and the relative expression for each
gene was calculated using the 2−∆∆CT method with GAPDH as reference housekeeping gene.

2.6. Statistical Analysis

Statistical analyses were performed using one way ANOVA followed by Bonferroni post hoc tests,
statistical differences were set at p < 0.05.

3. Results and Discussion

3.1. Characterisation of the Chemical Structure of the l-Leucine-Based PEU

The chemical structure of the l-leucine-based PEU was studied by Fourier transform infrared
(FTIR) and proton nuclear magnetic resonance (1H NMR) spectroscopies (Figure 2). In the FTIR
spectrum, distinct bands corresponding to the ester and urea linkages were observed (Figure 2a). At
1726 cm−1, a band was detected ascribed to the stretching vibration of the –C=Oester. At ca. 3300 cm−1

and 1629 cm−1, it was also possible to isolate the bands corresponding to the stretching vibration of
–NHurea and –C=Ourea, respectively. The band at ca. 1562 cm−1 was assigned to the bending vibration
and stretching vibration of the –NHurea and C-Nurea. Further insights into the structure of the PEU
were provided by 1H NMR analysis (Figure 2b). The resonance (a) at ca. 6.3 ppm corresponds to the
protons of the –NH group of the urea linkage. The peaks observed between 3.9–4.25 ppm are ascribed
to the protons–CH(C=O) (b) and –(C=O)OCH2– (f). The CH2 protons (c,g,h) and CH (d) protons
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resonate between 1.25–1.75 ppm. At ca. 0.8 ppm, the peak (e) can be identified, corresponding to the
–CH3 protons. All the attributions are consistent with the anticipated chemical structure. Considering
the results provided by the spectroscopic analysis, we concluded that the l-leucine-based PEU had
been synthesised successfully.
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(b) the 1H NMR spectrum of l-leucine-based PEU.

3.2. Morphological Analysis

The interconnectivity and the distribution of pores together with pore geometry and size strongly
influence cell distribution, proliferation and migration whilst shaping tissue ingrowth [7,36]. For this
reason, the morphological features of PCL and PEU scaffolds were investigated by scanning electron
microscopy (SEM) and micro computed tomography (Micro-CT). SEM micrographs demonstrated the
successful printing of PCL and PEU scaffolds with well-defined square pore geometries and regular
dimensions of approximately 500 µm × 500 µm (Figure 3). It is worth noting that the processing of
PEU did not produce fibres as consistent in diameter as those produced for PCL. However, optimising
process parameters still allowed for the extrusion of circular filaments with a fairly reproducible
diameter (approx. 320 µm) and good adhesion between adjacent layers, thus ensuring the structural
integrity of the constructs.

Additionally, results from micro-CT analysis confirmed the generation of PCL and PEU scaffolds
with a fully interconnected pore network and a repeatable microstructure with precise pore shape and
size. Independently of the material, all constructs presented similar values of porosity (~63%) and
surface area to volume ratio (13 mm−1). These data suggest a strong consistency was achieved between
the values obtained from the experimental analyses and theoretical values defined during the scaffold
fabrication (i.e., process and design parameters).
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Figure 3. SEM micrographs of 3D printed scaffolds. (a) PCL scaffold top view; (b) PEU scaffold top
view; (c) PCL scaffold cross-sectional view; (d) PEU scaffold cross-sectional view.

3.3. Mechanical Analysis

Nanoindentation measurements were conducted to facilitate analysis of the surface properties of
the scaffold filaments. In comparison to microindentation techniques, nanoindentation allows for force
displacement and application with much greater spatial resolution, leading to a better interpretation of
localised surface hardness [39]. Data obtained from nanoindentation are influenced by the orientation
and flexibility of polymer chains within the bulk structure [40]. Consequently, nanoindentation
can be used to bridge the gap between atomic force microscopy and macroscale mechanical testing,
allowing for the mapping of surface mechanical properties and assessment of microstructural features.
Nanoindentation mapping of the bioprinted scaffolds revealed distinct mechanical properties between
PCL and PEU filaments (Figure 4a).

In a load range of 1–5 mN, PCL filaments exhibited a higher hardness value (0.47 GPa–0.27 GPa
vs. 0.33 GPa–0.20 GPa for PEU). Additionally, compression tests conducted on both scaffolds
revealed stress–strain curves (Figure 4b) that were consistent with those previously reported for
3D printed PCL structures [7,36]. PCL and PEU scaffolds exhibited similar profiles of stress–strain
curves; however, significant differences were observed for the bulk mechanical properties of the two
scaffolds. More specifically, the values of compressive modulus (60.2 ± 1.4 MPa) and maximum stress
(8.1 ± 0.2 MPa) achieved for PEU scaffolds were significantly lower than those obtained for PCL
structures (79.8 ± 1.5 MPa and 10.9 ± 0.2 MPa, p < 0.001, n = 5).
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Combined, these data suggest that the bioprinted PEU scaffolds were significantly softer than the
PCL scaffolds. This is of importance, as PCL is commonly applied in TE approaches to bone regeneration
because the inherently stiff polymer provides mechanical cues to promote osteogenesis [41–43]. In
contrast chondrogenic applications of PCL are often limited by the high matrix stiffness. Cartilage
tissue is considerably softer than bone and, consequently, chondrogenesis has been reported to be
enhanced on substrates with lower matrix stiffness leading to research groups often modifying PCL
scaffolds to include a second, softer component [44–47]. The reduced hardness and compressive
modulus of PEU scaffolds could, therefore, facilitate a better biological response from chondrocytes by
providing a matrix stiffness that is more tailored to chondrogenic phenotype retention.

3.4. Water Contact Angle Measurements

Wettability and hydrophilicity of both films and filaments of PCL and PEU scaffolds were
investigated using water contact angle measurements (Figure 5). The technique involves introducing
a liquid droplet to a surface and analysing the angle at which it interacts with the solid
surface [48]. A contact angle <90◦ is indicative of a hydrophilic surface while contact angles of
>90◦ represent hydrophobicity.Polymers 2020, 12, x FOR PEER REVIEW 10 of 15 
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Water contact angle values obtained for PEU filaments (52.7 ± 5.4◦) were significantly lower than
those obtained for PCL (86.9 ± 7.1◦, p < 0.001). Additionally, the same trend was observed when
comparing PCL and PEU films (89.3 ± 7.4◦ and 55.8 ± 6.0◦ for PCL and PEU respectively, p < 0.001).
Consequently, PEU scaffolds appear to be significantly more hydrophilic than the PCL counterparts.
This adds further strength to the application of bioprinted PEU scaffolds to cartilage TE, as multiple
studies have demonstrated that hydrophilic substrates promote chondrogenesis by enhancing secretion
and deposition of cartilage ECM by chondrocytes [49–51].

3.5. Biological Analysis

Single plain confocal microscopy images after phalloidin actin labelling indicated that both PEU
and PCL scaffolds were supportive for TC28a2 human chondrocytes (Figure 6a). However, resazurin
metabolism assays conducted at days 7, 14 and 21 revealed significant differences in cell viability
between PEU and PCL constructs (Figure 6b). Chondrocytes cultured within PEU scaffolds absorbed
significantly lighter at a wavelength of 570 nm. This is indicative of increased intracellular conversion
of resazurin to resorufin via mitochondrial enzymes when cells were cultured within PEU scaffolds and,
therefore, suggests the presence of a significantly higher number of viable cells [52]. In addition to this,
chondrocytes cultured within PEU scaffolds exhibited differences in expression of chondrogenic markers
when compared to cells culture in PCL scaffolds (Figure 6c–e). After 7 days of culture, chondrocytes
exhibited significantly lower expression of genes associated with type I collagen and aggrecan synthesis,
while levels of type II collagen were not significantly different (Figure 6c). At day 14 a similar trend
was observed with the exception of type II collagen, which was expressed at significantly higher levels
in the PEU scaffolds (Figure 6d). Finally, after 21 days in culture, a significantly higher expression
of aggrecan and type II collagen was observed as well as a significantly lower expression of type I
collagen (Figure 6e). At days 7 and 14 it can be argued that the differences between PEU and PCL are
not distinct from a chondrogenic perspective. Type I collagen expression is significantly reduced in the
PEU scaffolds within this timeframe and this is indicative of a more chondrogenic phenotype. However,
at the same time points, aggrecan expression is significantly higher in PCL, which is also an indicator
of a chondrogenic phenotype, while type II collagen expression does not show any differences until
day 14. At day 21, however, a much more distinct, pro-chondrogenic effect is demonstrated in the PEU
scaffolds, with lower type I collagen expression and higher expression of aggrecan and type II collagen.
Combined, these data suggest a trend in gene expression that potentially demonstrates PEU better
supports a more long-term chondrogenic phenotype in TC28a2 human chondrocytes than PCL [53,54].
This is likely due to chemical and mechanical differences between the two materials. Previous studies
have demonstrated that hydrophilic surfaces enhance chondrogenic phenotypes by limiting protein
adsorption and cell spreading, promoting a more spherical morphology [51,55,56]. Such a spherical
phenotype is correlated with synthesis of a chondrogenic matrix [57–59]. Contact angle measurements
revealed PEU to be significantly more hydrophilic than PCL and confocal microscopy images suggest
that seeded cells exhibit reduced spreading on PEU scaffolds. Additionally, nanoindentation indicated
that PEU was significantly softer than PCL, with hardness values of 0.33–0.20 GPa (versus 0.47–0.27
GPa) in the analysed load range (1–5 mN). This may also promote chondrogenesis, as prior studies
have demonstrated that reduced matrix stiffness inhibits cell spreading and enhances expression of
aggrecan and type II collagen [46,47].
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Figure 6. The biological response of TC28a2 human chondrocytes to PEU and PCL scaffolds.
(a) Fluorescence confocal microscopy images of chondrocytes seeded onto PEU/PCL scaffolds and
stained with phalloidin (actin) and DAPI (nuclei); (b) absorbance at 570 nm of chondrocyte culture
media treated with 0.1 mg/mL resazurin after 7, 14 and 21 days on PEU and PCL scaffolds; (c–e) relative
expression of COL1A1, aggrecan and COL2A1 by chondrocytes seeded on PEU and PCL scaffolds at
day 7, 14 and 21, respectively (* indicates p < 0.05, PEU vs. PCL; error bars represent standard error of
the mean, n = 3).

4. Conclusions

This study highlights an initial evaluation of the pro-chondrogenic potential of bioprinted PEU
scaffolds. Processing parameters for 3D printing were controlled such that high-resolution scaffolds of
PEU with a porosity, surface area to volume ratio and fibre diameter close to that of an FDA-approved
polymer, namely PCL, could be generated. Mechanical analyses revealed PEU scaffolds exhibited a
significantly lower hardness and compressive modulus than PCL scaffolds. Additionally, water contact
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angle measurements demonstrated that the PEU scaffolds were significantly more hydrophilic than the
PCL scaffolds. Combined, these properties stimulated the retention of a chondrogenic phenotype in
TC28a2 human chondrocytes with an upregulation of COL2A1 and aggrecan and downregulation of
COL1A1 when compared with cells seeded on PCL scaffolds after 21 days in culture. This is likely
a direct result of the softer, more hydrophilic surface of PEU scaffolds promoting a spherical cell
morphology, which is commonly reported to be critical in maintaining a chondrogenic phenotype.
Moreover, previous studies have reported that PEU based scaffolds exhibit degradation properties
that are favourable to applications for in vivo implantation [30]. However, further work will need to
be conducted to investigate the effect of PCL and PEU molecular weight on biodegradation kinetics
and cellular response. In conclusion, our results show that biocompatible AA-PEUs can be chemically
synthesised to match the printability of PCL material whilst ensuring an enhanced chondrogenic
phenotype in TC28a2 human chondrocytes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/7/1478/s1,
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