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Gauge theory correlators are potentially more singular in the infrared than those in non-gauge theories. 
We determine the implications that these singularities have on the spectrum of the theory, proving that 
the appearance of generalised poles implies the existence of on-shell states with fixed mass, but zero 
norm. For quantum chromodynamics these poles have direct relevance for the confinement of coloured 
states. Using lattice data for the Landau gauge gluon propagator we subsequently test for the presence of 
these poles, establishing that the data is indeed consistent with such a component.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

As with any quantum field theory (QFT), the fundamental field 
correlators in quantum chromodynamics (QCD) completely en-
code both the mathematical and physical properties of the theory. 
Analysing the structure of these objects is therefore essential for 
understanding these characteristics. Although the confinement of 
coloured states is a well-established feature of QCD, the precise 
mechanism which governs this phenomenon remains a deep open 
problem. Since the non-observability of colour occurs irrespective 
of whether the theory contains quarks or not, the structure of 
the gluon field correlators must therefore play a significant role 
in determining why confinement occurs in QCD, as opposed to 
other QFTs. Besides their purely theoretical relevance, gluon cor-
relators are also of importance phenomenologically, entering into 
the calculation of many non-perturbative observables, including 
bound-state properties of hadrons such as decay widths and mass 
spectra [1–5].

For many years it has been understood that the gluon propaga-
tor, and in particular its low-momentum infrared behaviour, is im-
portant for unravelling the non-perturbative structure of QCD [6]. 
Motivated by the idea that gluons could directly give rise to 
a linearly rising confinement potential, in the late 1970’s Man-
dlestam [7] hypothesised that the non-perturbative gluon prop-
agator may have a double massless pole as p2 → 0. This idea 
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was supported by phenomenological models at the time [8,9], as 
well as initial calculations of the Dyson-Schwinger equations [10]. 
Nevertheless, the earliest lattice data suggested that the infrared 
propagator was in fact describable by an ordinary massive pole, 
corresponding to some sort of effective excitation [11,12]. From a 
different perspective, motivated by the issues surrounding gauge 
copies, Gribov suggested that the gluon propagator could instead 
have a pair of complex conjugate poles [13]. Based on these ideas 
it was further argued by Zwanziger [14,15] that the propagator 
must also strictly vanish in the limit p2 → 0, and up until a decade 
ago lattice evidence seemed to support this hypothesis. However, 
once it became feasible to perform calculations using large lat-
tice volumes, results started to suggest that the propagator was 
actually non-vanishing at zero momentum [16,17]. Despite fur-
ther ideas being put forward to account for this behaviour [18,19], 
including several recent studies that propose the existence of com-
plex mass poles [20–22], it still remains an open question as to 
how the propagator should behave in the infrared regime, and ul-
timately what theoretical implications this has for QCD.

Although the precise non-perturbative structure of correlators 
in QCD remains largely unknown, progress can be made by first 
establishing the general properties of these objects. In local formu-
lations of QFT quantum fields are defined to be operator-valued 
distributions, which among other things implies that any field cor-
relator must be a distribution [23–25]. It turns out that by combin-
ing this characteristic with the Poincaré transformation properties 
of the fields, and the physical assumption that the states in the 
theory have positive energy, this imposes significant analytic con-
straints on the structure of correlators, including the existence of 
a spectral representation [25]. Despite the complications that can 
arise in gauge theories [26], analogous results also hold for the cor-
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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relators in QCD, and in particular the gluon propagator [27,28]. The 
major goal of this work will be to fully elaborate the connection 
between the infrared structure of this representation, and the spec-
trum of the theory. Focussing on the specific case of Landau gauge, 
we will then use the Euclidean generalisation of this representa-
tion in order to test the feasibility of different infrared ansätze 
using the high precision pure Yang-Mills lattice data from [29], and 
ultimately help to shed new light on the non-perturbative gluon 
spectrum.

2. The spectral structure of the gluon propagator

Irrespective of the matter content of the theory, it turns out 
that the gluon propagator has the following spectral representa-
tion [27,28]:

D̂ab F
μν (p) = i

∞∫
0

ds

2π

[
gμνρ

ab
1 (s) + pμpνρ

ab
2 (s)

]
p2 − s + iε

+
N∑

n=0

[
cab

n gμν(∂2)n + dab
n ∂μ∂ν(∂2)n−1

]
δ4(p), (1)

where cab
n and dab

n are complex coefficients, and ∂μ = ∂
∂ pμ . Defin-

ing: D(p) = gμν D̂aa F
μν (p) and ρi = ρaa

i , it follows from Eq. (1) that 
the trace component of the Landau gauge gluon propagator D(p)

can be written

D(p) = 3i

∞∫
0

ds

2π

ρ1(s)

p2 − s + iε
+

N+1∑
n=0

gn(∂
2)nδ4(p), (2)

with gn = 4caa
n + daa

n . As detailed in [27] and references within, 
the representation in Eq. (2) follows from very broad assumptions, 
including the Poincaré covariance of the fields and the positiv-
ity of the energy-momentum spectrum. In particular, this implies 
that Eq. (2) holds independently of the non-perturbative sub-
tleties associated with local quantisations such as Landau gauge. 
One can immediately recognise the first term in Eq. (2) as hav-
ing the familiar-looking Källén-Lehmann spectral form, whereas 
the second term is purely singular. The potential appearance of 
non-vanishing singular terms involving derivatives of δ4(p) arises 
because in gauge theories such as QCD the gauge symmetry pro-
vides an obstacle to the locality of the theory [26]. In order to 
consistently quantise the theory one therefore has two options: ei-
ther allow non-local fields, or explicitly preserve locality. A general 
feature of local quantisations such as Landau gauge is that addi-
tional degrees of freedom are introduced into the theory, resulting 
in a space of states which includes unphysical negative-norm states 
such as ghosts [30]. It is precisely this loss of state-space posi-
tivity which prevents one from ruling out the existence of δ4(p)-
derivative components [25].

2.1. Generalised pole terms

Just as the loss of state-space positivity allows for the possibil-
ity of purely singular terms, this feature also implies that the gluon 
spectral density ρ1(s) can potentially have more singular types of 
components. An important example of such components are gen-
eralised pole terms [31,32]:

δ(n)(s − m2
n) =

(
d
ds

)n
δ(s − m2

n), n ≥ 1. (3)

Due to the appearance of derivatives in this expression these 
terms give rise to contributions in the propagator of the form 
(p2 −m2

n + iε)−n−1, which are more singular than ordinary massive 
poles. One can also demonstrate that each such term is associated 
with the existence of a finite-norm state |�n〉, satisfying the fol-
lowing conditions [31]:

(P 2 − m2
n)n|�n〉 �= 0, (4)

(P 2 − m2
n)n+1|�n〉 = 0, (5)

where P 2 is the squared energy-momentum operator. Eq. (4)
clearly emphasises that these states are off shell, and therefore 
represent unphysical degrees of freedom. The appearance of these 
types of states was first mentioned in [31], although it was never 
established whether their presence is significant for the on-shell 
spectrum of the theory. In the remainder of this section we will 
address this question.

Given |�n〉 satisfying Eqs. (4) and (5), consider the state |�̃n〉
defined by the repeated action (n times) of the mass-shell operator 
(P 2 − m2

n):

|�̃n〉 ≡ (P 2 − m2
n)n|�n〉. (6)

Due to Eq. (5) and the definition of |�̃n〉 it follows that:

(P 2 − m2
n)|�̃n〉 = (P 2 − m2

n)n+1|�n〉 = 0, (7)

and therefore |�̃n〉 defines an on-shell state with mass mn . More-
over, taking the inner product of |�̃n〉 with itself one finds

〈�̃n|�̃n〉 =
(
〈�n|(P 2 − m2

n)n, (P 2 − m2
n)n|�n〉

)
= 〈�n|(P 2 − m2

n)n−1(P 2 − m2
n)n+1|�n〉 = 0, (8)

where the last equality is implied by Eq. (5). From this one can 
conclude that the appearance of an unphysical off-shell state |�n〉
necessarily implies the existence of an on-shell zero-norm state 
|�̃n〉, with mass mn . Since |�n〉 are intrinsically connected to the 
appearance of generalised pole terms as in Eq. (3), this proves that 
despite the unconventional structure of these components, they 
nevertheless have a definite impact on the spectrum of the theory. 
For many years it has been understood that δ(s − m2

0) components 
in the spectral density with weights of differing signs correspond 
to on-shell states with either positive or negative norm, depend-
ing on the normalisation. Since δ(n)(s − m2

n) with n ≥ 0 are the 
only discrete mass terms that can appear in any spectral density, 
this analysis completes the classification of all possible on-shell 
states. Although the main focus of this work is the gluon propa-
gator, these results apply generally to any QFT that has a space of 
states with an indefinite inner product.

2.2. Asymptotic behaviour

The relevance of the generalised pole terms in Eq. (3) to the 
asymptotic behaviour of correlators was first recognised in [33,34]. 
In particular, it was proven that these terms can potentially cause 
the correlation strength between clusters of states to grow with 
distance, a feature which does not occur in ordinary non-gauge 
theories [23]. This characteristic is often referred to as a violation 
of the cluster decomposition property (CDP). For clusters of coloured 
states this characteristic provides a mechanism which can guaran-
tee their absence from the asymptotic spectrum, since a growth 
in correlation strength between coloured states would prevent the 
independent measurement of either of these states at large dis-
tances [30]. Establishing the spectral structure of the gluon prop-
agator, or in fact the correlators involving any coloured fields, is 
therefore of particular importance for understanding confinement. 
In order to violate the CDP the spectral density must not only con-
tain a component as in Eq. (3), but this component also needs 
to influence the behaviour of the correlator at p2 = 0 [32–34], 
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which requires that mn = 0. The purely singular terms in Eq. (1)
involving derivatives of δ4(p) can also cause the CDP to be vio-
lated. However, in this case this occurs not because of the spectral 
characteristics, but due to the singular properties of the correlator 
itself.

3. Lattice data fits

Although many different parametrisations of the gluon propaga-
tor have been considered over the years, the potential appearance 
of generalised poles has not yet been fully investigated. In the re-
mainder of this section we will outline infrared fits to the lattice 
data of [29] testing for the existence of these terms. Since lattice 
calculations are inherently Euclidean, one must first consider the 
Euclidean generalisation of Eq. (2). Under the assumption of the 
validity of the Euclidean analytic continuation, the Landau gauge 
gluon propagator has the form

D(p) = 3

∞∫
0

ds

2π

ρ1(s)

p2 + s
+

N+1∑
n=0

gn(−∇2)nδ4(p). (9)

Although the pole structure of the Euclidean and Minkowski prop-
agators differ to one another, the spectral density itself remains 
unchanged. Nevertheless, since lattice simulations inherently pos-
sess a finite momentum resolution, the singular terms at p = 0, 
if they exist, are presumably not detectable. We therefore disre-
garded these terms for the purpose of this analysis.

In this analysis we used the β = 6.0 data of [29] with both 
644 and 804 lattices, corresponding to a lattice spacing of a =
0.1016(25) fm and physical volumes of (6.57 fm)4 and (8.21 fm)4, 
respectively. Specific details of the sampling, gauge fixing and other 
definitions regarding the data can be found in [29] and references 
within. The first goal of our analysis was to test whether the fol-
lowing single-pole infrared propagator ansätze could fit the lattice 
data up to some scale pmax

Di(p) = Zi

(p2 + m2
i )

i+1
, i = 0,1,2. (10)

The motivation for performing these specific fits is that it pro-
vides a way of testing whether the data is consistent with the 
appearance of different types of simple isolated poles in the gluon 
spectral density ρ1(s). If there does indeed exist such a pole at 
s = m2

i , together with a gap (m2
i , sc) in the spectrum up to some 

continuum threshold sc , the infrared structure of the propagator 
will be dominated by these poles.1 In particular, Di(p, mi) would 
provide a good fit to the data up to some pmax <

√
sc . For these 

fits to make physical sense one requires that pmax > mi . It is im-
portant to emphasise here that the ansätze in Eq. (10) correspond 
to real mass poles of differing orders, in contrast to the complex 
mass pole ansätze often considered in the literature [20–22].

Due to the difficulty in precisely accessing the systematic un-
certainties of the lattice data we decided to perform the fits using 
three different choices of uncertainties, with increasing levels of 
conservatism. For the first case we considered the statistical er-
rors only, which are O(10−3). For the second case, we took into 
account both the statistical errors as well as an energy-dependent 
systematic error. This shape uncertainty was derived using gluon 
propagator data with different lattice spacings in [35], and used an 
empirical function that can describe the differences between these 

1 A simple argument for this characteristic can be made by performing a small 
momentum expansion of the spectral representation, and observing that the contin-
uum contributions are increasingly suppressed as the gap (m2

i , sc) becomes larger.
Fig. 1. Chi-squared map for the 804 data D1(p) fit with statistical and polynomial 
shape uncertainty. The inner and outer black lines indicate the 1σ and 2σ uncer-
tainty contours, respectively, and pmax = 1 GeV.

results and hence capture the general shape changes which occur 
due to systematic effects. This approach is particularly well-suited 
to cases where the data is heavily influenced by spectrum shape 
effects, such as in the assignment of nuclear reactor flux errors for 
neutrino experiments [36]. Lastly, we adopted a data-independent 
choice for the systematic errors: we assumed that the propaga-
tor data could be modified by a fourth-order polynomial in p2, 
with deviations at the 2.5% level. This was the most conserva-
tive choice for the systematic error since it allows for significant 
shape changes. In all of these fitting scenarios the goodness of 
fit was assessed using a Chi-squared minimisation procedure. The 
Chi-squared statistic definitions together with the fit results for the 
644 and 804 lattice data are provided in the appendix. Since the 
p = 0 data points in both the 644 and 804 data sets have a con-
siderable systematic uncertainty relative to the other points, due 
to their calculation, we decided to omit p = 0 from each of the fi-
nal fits. Nevertheless, the omission of this point did not result in a 
significant modification to the parameter values in the fits.

Comparing all of the fits in the different systematic error sce-
narios we found that D1(p) was the only ansatz which could pro-
vide a consistent fit to the data. In order to assess the robustness 
of these fits we performed a two-dimensional Chi-squared minimi-
sation of the ansätze parameters, and also tested the sensitivity of 
these fits to the momentum cutoff pmax. We found that neither 
D0(p) nor D2(p) provided a reliably stable fit for both data sets 
as pmax varied, and that the fitted parameter values were highly 
sensitive to the choice of systematic errors. The D1(p) fits on the 
other hand resulted in a good fit to the data for both choices 
of (non-vanishing) systematic errors. Although the overall quality 
of the fits improved when using the larger volume data, the pa-
rameter values remained stable across the 644 and 804 fits. The 
Chi-squared values in (Z1, m1) parameter space for the 804 data 
with the polynomial shape choice of systematics are plotted in 
Fig. 1. The parameter values at the global minimum of this fit are

Z1 = 48+12−8 GeV2, m1 = 0.93+0.07−0.06 GeV, (11)

where the uncertainties indicate a 1σ variation. We found that this 
fit remained convergent and physically consistent (pmax > m1) up 
to pmax = 1.5 GeV.

In principle it is also possible that the gluon spectral density 
could contain multiple types of poles. To investigate this possibility 
we therefore considered the simplest case of the two-term linear 
combinations of single pole components



4 S.W. Li et al. / Physics Letters B 803 (2020) 135329
Fig. 2. Best fit plots of the D1(p) and D01(p) ansätze together with the 804 lattice 
data points. The statistical errors on the lattice data are very small and therefore 
not observable in the plot. The p = 0 data point is plotted for reference, although 
it was not included in either of the fits due to its significant systematic uncertainty 
relative to the other data points.

Dij(p) = Zi

(p2 + m2
i )

i+1
+ Z j

(p2 + m2
j )

j+1
, (12)

where i, j = 0, 1, 2 and i �= j. Overall we found that D01(p) pro-
vided a very good description of the lattice data, even when only 
statistical errors were included. The best fit was obtained with the 
804 data, yielding the corresponding generalised pole parameter 
values

Z1 = 51+8−6 GeV2, m1 = 0.88+0.09−0.06 GeV, (13)

and: Z0 = −3.4+0.5−0.5 GeV2, m0 = 0.36+0.04−0.04 GeV. We found that 
this fit remained convergent and physically consistent (pmax >

{m0, m1}) up to pmax = 1.4 GeV. Although the D02(p) and D12(p)

ansätze appeared to give a reasonable fit to the data based on 
the χ2/d.o.f. values alone, the fitted mass parameters were found 
to be degenerate, possessing a sensitivity to the momentum cut-
off pmax. An important conclusion from this analysis is that the 
best fit Z1 and m1 parameter values from the D01(p) fit coincide 
(within errors) with those obtained in the D1(p) only fit. More-
over, adding a D1(p) component to either D0(p) or D2(p) ended 
up leading to a significant improvement in the quality of these 
fits. Taken together, these results support the hypothesis that the 
gluon propagator data is consistent with the existence of an in-
frared D1(p) contribution. The D1(p) and D01(p) ansätze with the 
best fit parameter values in Eqs. (11) and (13), respectively, are 
plotted together with the 804 lattice data points in Fig. 2.

Due to the spectral structure in Eq. (9), a D1(p) contribution 
means that ρ1(s) contains a generalised component Z1δ′(s − m2

1), 
where Z1 = 2

3 π Z1. With the parameters given in Eq. (13) it fol-
lows from the previous theoretical analysis that the appearance of 
such a component implies the existence of an on-shell zero-norm 
state in the spectrum, with mass m1 = 0.88 GeV and weight Z1. 
An important characteristic of this component is that it directly 
satisfies the Landau gauge superconvergence constraint [28,37,38]: ∫

ds ρ1(s) = 0, not due to any continuous oscillatory-type be-
haviour [39], but because of the generalised singular properties of 
the δ′ distribution. Since m1 > 0 this also suggests that the gluon 
spectral density does not induce a singular enough behaviour near 
p2 = 0 to result in a violation of the CDP. It could well be the case 
that a violation is indeed caused by the non-vanishing of one of 
the coefficients gn in Eq. (9), but this remains to be seen. A non-
violation of the CDP would imply that clusters of states created 
from single gluonic fields should decorrelate as they are separated 
further apart. Whilst this might initially appear surprising, one 
should note that the gluon correlator itself is not gauge-invariant, 
and so a non-violation of the CDP in this specific case does not 
contradict the physical expectation that asymptotic coloured states 
are prohibited.

4. Conclusions

In locally quantised gauge theories the field correlators can po-
tentially contain more singular generalised-pole contributions in 
their spectral densities. In this work we establish for the first 
time the connection between these types of components and the 
spectrum of the theory. In particular, we prove that the pres-
ence of generalised poles implies the existence of on-shell states 
in the spectrum with fixed mass, but zero norm. Despite their 
non-physicality, it turns out that these states can fundamentally 
alter the large-distance behaviour of correlators, which is impor-
tant in the context of confinement. With these theoretical motiva-
tions in mind we analysed the high-precision Landau gauge gluon 
propagator lattice data from [29] in order to assess whether the 
data can accommodate generalised-pole contributions. Overall, we 
found that the data was consistent with the appearance of a mas-
sive single-derivative of delta component in the spectral density, 
and hence the existence of a corresponding zero-norm state in the 
spectrum. The non-vanishing mass of this state suggests that the 
spectral structure of the propagator alone is not sufficiently singu-
lar to guarantee the confinement of states involving single gluonic 
fields. Since generalised spectral components are also potentially 
present in other correlators, this work opens up a new direction 
for understanding the infrared structure of QCD.
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Appendix A. Goodness of fit results

The goodness of fit results for the Di(p) and Dij(p) ansätze 
with the 644 and 804 lattice data of [29] are found in Tables A.1
and A.2, respectively. In each fit a value of pmax = 1 GeV was ini-
tially chosen to determine whether a convergent and physically 
consistent (pmax > mi ) fit could be achieved. If not, the value of 
pmax was lowered or raised until these conditions were satisfied. 
The values of pmax in the tables reflect this final choice of cutoff. 
The D02(p) fits to both data sets were found to not be consistent 
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Table A.1
Chi-squared fit results for Di(p) and Dij(p) under the three different systematic 
error scenarios with the 644 lattice data.

Stat. only 
χ2

1 /d.o.f. (pmax)
Stat. + Shape 
χ2

2 /d.o.f. (pmax)
Stat. + Poly. 
χ2

3 /d.o.f. (pmax)

D0(p) > 150 (0.7) > 30 (0.6) 3.5 (0.7)
D1(p) > 90 (1.0) 3.5 (0.9) 2.7 (1.0)
D2(p) > 45 (1.3) > 45 (1.3) 3.1 (1.3)
D01(p) 1.9 (1.0) 2.2 (1.0) 2.1 (1.0)
D02(p) — 2.7 (1.2) 2.8 (1.3)
D12(p) > 15 (1.0) 3.4 (1.0) 2.5 (1.0)

Table A.2
Chi-squared fit results for Di(p) and Dij(p) under the three different systematic 
error scenarios with the 804 lattice data.

Stat. only 
χ2

1 /d.o.f. (pmax)
Stat. + Shape 
χ2

2 /d.o.f. (pmax)
Stat. + Poly. 
χ2

3 /d.o.f. (pmax)

D0(p) > 80 (0.7) 7.3 (0.6) 2.4 (0.7)
D1(p) > 25 (1.0) 1.8 (0.9) 1.7 (1.0)
D2(p) > 15 (1.3) > 15 (1.3) 1.8 (1.3)
D01(p) 1.1 (1.0) 1.2 (1.0) 1.2 (1.0)
D02(p) — 1.6 (1.2) 1.6 (1.3)
D12(p) 6.3 (1.2) 1.7 (1.2) 1.5 (1.2)

when only statistical errors were included, regardless of the value 
of pmax.

Appendix B. Chi-squared definitions

For each propagator ansatz tested we used three different 
choices for the systematic error, each of which requires a separate 
Chi-squared statistic definition in order to determine the goodness 
of fit. In the least conservative scenario for which we only consider 
the statistical errors, we used the following Chi-squared definition:

χ2
1 = (G − D)T C−1(G − D), (B.1)

where G is the n-dimensional vector of lattice data at the discrete 
momenta {p1, ..., pn}, and D is the vector of the fitted propagator 
functional form evaluated at these same momenta. The covariance 
matrix C quantifies the statistical correlations between different 
field configurations in the data, and is highly diagonal. In the limit 
of zero cross-correlations C becomes the matrix of statistical vari-
ances at each lattice point, and Eq. (B.1) reduces to the standard 
Chi-squared form. The minimum χ2

1 follows a χ2-distribution with 
n − m degrees of freedom, where m is the number of free param-
eters in the propagator ansatz.

In the second scenario we took into account both the statistical 
error and an energy-dependent systematic error. The correspond-
ing Chi-squared statistic is defined by

χ2
2 = (G · f − D)T C−1(G · f − D) + (a − α)2

σ 2
a

+ (b − β)2

σ 2
b

,

(B.2)

where now the lattice data is modified by an effective shape func-
tion f = f ({pi}, a, b). This fitting approach is particularly well-
suited to cases where the data is heavily influenced by energy-
dependent effects, for example in assigning a shape error to a nu-
clear reactor flux for neutrino experiments [36]. Since the purpose 
of f is to simulate the sort of shape changes that can occur due 
to systematic effects, such as the appearance of Gribov copies [29], 
we used the propagator data from [35] in order to establish a rea-
sonable functional form. In particular, f was established such that 
the shape of the data sets for the different lattice spacings in [35]
could be transformed into one another after multiplication by this 
function. With this procedure the components of f were deter-
mined to have the functional form

f i(pi,a,b) = a + p2
i

ab + p2
i

, (B.3)

and the priors: (α = 0.21, σa = 0.016) and: (β = 1.0, σb = 0.1)

were found to cover the full range of shape differences observed 
in [35]. Due to the definition in Eq. (B.2), the minimum χ2

2 has 
n − (m + 2) degrees of freedom. In the most conservative system-
atic error scenario we used the following Chi-squared statistic

χ2
3 = (G · g − D)T C−1(G · g − D) + |g − γ |2

σ 2
g

, (B.4)

where the systematic shape function g was chosen to be a forth-
order polynomial in p2 (with 4 free coefficients), with priors γ =
1 and σg = 0.025 simulating a 2.5% variation from the data. The 
corresponding minimum χ2

3 has n − (m + 4) degrees of freedom.
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