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Abstract

We consider the analytic continuation of Euclidean propagator data obtained from 4D simulations to 
Minkowski space. In order to perform this continuation, the common approach is to first extract the Källén-
Lehmann spectral density of the field. Once this is known, it can be extended to Minkowski space to yield 
the Minkowski propagator. However, obtaining the Källén-Lehmann spectral density from propagator data 
is a well known ill-posed numerical problem. To regularise this problem we implement an appropriate ver-
sion of Tikhonov regularisation supplemented with the Morozov discrepancy principle. We will then apply 
this to various toy model data to demonstrate the conditions of validity for this method, and finally to zero 
temperature gluon and ghost lattice QCD data. We carefully explain how to deal with the IR singularity of 
the massless ghost propagator. We also uncover the numerically different performance when using two—
mathematically equivalent—versions of the Källén-Lehmann spectral integral.
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1. Introduction

A plethora of practical Quantum Field Theory calculational tools, both analytical and nu-
merical, have been developed in a Euclidean setting, despite living in a Minkowski spacetime. 
In particular, non-perturbative approaches to Quantum Field Theory tend to rely solely on the 
Euclidean formulation of the theory due to its technical advantages. This is also the case for 
the discretized lattice approach to Yang-Mills theory, or most of its continuum studies using the 
Dyson-Schwinger equations, although there are also examples of solving the Dyson-Schwinger 
equations directly in Minkowski space [1–3]. The Euclidean formulation accesses only space-
like momenta and, therefore, phenomena that are associated with time-like momenta cannot be 
investigated within Euclidean Quantum Field Theory. Moreover, whereas in perturbation theory 
the analytical continuation of the Euclidean correlation functions into the entire complex mo-
menta Argand plane relies on the usual Wick rotation, it is not clear that the same rule can be 
applied for the non-perturbative regime. Oftentimes the analytical structures of the perturbative 
correlation functions are known, allowing to go from the Minkowski to Euclidean spacetime 
and vice-versa in an unambiguous way. However, for the non-perturbative regime, the analytical 
structure of the correlation functions is difficult to determine per se and the analytical continua-
tion of the Euclidean space correlation functions into the complex plane becomes a much harder 
problem. Additionally, with numerical data in particular, we only have a discrete set of data at 
our disposal which we wish to analytically continue to the complex plane, while it is well-known 
that such a continuation is only unique when departing from a function known over an open 
subset of C.

For two-point correlation functions, a possible strategy is to compute the Källén-Lehmann 
spectral density ρ(ω) from the Euclidean data and reintegrate ρ(ω) to determine the propagator 
for Minkowski p2 ≤ 0. The spectral density encodes information about the spectra and, at finite 
temperature, it can be related to transport coefficients and thermodynamical properties of e.g. the 
quark-gluon plasma [4]. In this paper we discuss the computation of the spectral density from 
Euclidean data, focusing on the inversion of the propagator data and on how to improve the 
method set out in [5].

One might wonder why it is relevant to investigate the spectral representations of gauge vari-
ant degrees of freedom like gluons, ghosts or quarks in the first place, since in general their 
propagators will be gauge dependent and therefore so will the corresponding spectral densities. 
But because the physical bound state spectrum is gauge invariant despite being constructed from 
gauge variant gluon, ghost and quark propagators [6], the spectral function of a bound state 
propagator must therefore be nontrivially influenced by the analytic structure of the underlying 
constituents, see for instance [6–11] for discussions and examples. This explains the relevance of 
various studies devoted to the spectral properties of a priori unphysical degrees of freedom. The 
Landau gauge in particular is a standard choice to study the physical bound state spectrum of 
QCD, see [6–9,11], exactly because there are ample estimates, both from the continuum as from 
the lattice side, about the necessary Green functions that serve as input for the Bethe–Salpeter 
equations. A beautiful example is the seminal paper [12], where the Bethe-Salpeter equations for 
glueballs are considered, making explicit use of the spectral properties encoded in the spectral 
functions of gluons and ghosts, reported earlier in [13]. Our research output gives a direct lattice 
verification of how trustworthy these latter gluon and ghost spectral functions actually are.

The story continues at finite temperature, as at some sufficiently high temperature above de-
confinement, we expect to achieve some kind of physical quasi-particle behaviour for the spectral 
functions of deconfined quarks and gluons [14,15]. From the previous perspective, it may also 
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be interesting to note that recent lattice studies went beyond Landau gauge, and saw only a very 
mild dependence on the gauge parameter for at least gluon and ghost propagators [16–18]. This 
suggests that the gluon and ghost spectral densities will themselves only mildly depend on the 
gauge parameter, so a study of the lattice Landau gauge spectral functions can teach us some 
generic properties of confined degrees of freedom, whilst allowing to confront other analytical 
estimates which are based on certain essential underlying assumptions and approximations which 
do not plague lattice computations.

The Euclidean two-point function G(p4) can be expressed in terms of its Källén-Lehmann 
spectral density ρ(ω) as (see e.g. [19–21])

G(p4) =
∞∫

ω0

2ωρ(ω)

p2
4 + ω2

dω (1)

≡
∞∫

ω2
0

ρ̃(μ)

p2
4 + μ

dμ (2)

with p4 the imaginary frequency and ω0 an IR-cutoff, potentially zero. Henceforth, the represen-
tation in Eq. (2) will be referred to as the p2-formalism, the strategy followed earlier in [5].

From the antisymmetry property for a spectral density corresponding to a propagator of scalar 
degrees of freedom [21], ρ(−ω) = −ρ(ω), it follows that Eq. (1) can equivalently be written as

G(p4) =
∞∫

−∞
�(ω,ω0)

ρ(ω)

ω − ip4
dω , �(ω,ω0) =

{
0 |ω| < ω0

1 otherwise
. (3)

This representation will be referred to as the ip-formalism. When presented with a finite data set 
for G(p4), one can rewrite Eq. (2) or (3) as a matrix equation

G = Kρ, (4)

where K is the respective integral kernel represented as a matrix, and try to solve it for ρ(ω). 
Writing K in terms of its singular value decomposition 

∑
ij uiSij v

†
j , where Sij is a rectangular 

diagonal matrix, the least-squares solution to Eq. (4) is then given by

ρ =
N∑

i=1

u
†
i G

si
vi, (5)

with si being the singular values of the matrix K . However, since the singular values of the matrix 
K span a very large range, the matrix is ill-conditioned, meaning that even a small error in the in-
put values can cause a huge variation in the output. Therefore, the inversion problem represented 
in Eq. (4) has to be regularised in order to be able to compute a solution for ρ(ω). A modification 
has to be made such that the condition number is reduced and the resulting problems limited.

Tikhonov regularisation solves this inversion problem by adding a term proportional to the 
norm of the solution to the residual sum of squares1:

Jα = ‖Kρ − G‖2
2 + α2‖ρ‖2

2. (6)

1 More general regularisation strategies with different norms also exist.
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In terms of the singular values of K the solution is then given by

ρ =
N∑

i=1

s2
i

s2
i + α2

u
†
i G

si
vi . (7)

By comparing with Eq. (5), we find that the Tikhonov parameter α2 dampens the effect of the 
smallest singular values si .

For Tikhonov regularisation to work, an appropriate choice for the parameter α2 has to be 
made, but there is no unique way to select the value of α2. In this paper we will use the Morozov 
discrepancy principle [22], which seems a good choice to invert lattice data since such data 
always feature a statistical error σi for every data point Gi . The Morozov discrepancy principle 
states that α2 should be selected such that

‖Kρ − G‖2
2 =

∑
i

σ 2
i , (8)

where 
∑

i σ
2
i is the total variance in the data. The α2 obeying this constraint is guaranteed to 

be unique [22] and this choice for the regularisation parameter means that the quality of the 
reconstruction matches the quality of the original data set. It can be shown that in the limit 
σi → 0 and N → ∞, the Morozov solution converges to the exact solution [22]. It is also worth 
noting that Tikhonov regularisation using the Morozov criterion can alternatively be understood 
from a Bayesian approach as “historic MEM”, with a default model m = 0. This default model 
choice is well motivated, as the UV asymptotics of the ghost and gluon spectral functions predict 
that they will tend to zero, corresponding with a default model m = 0 in the UV. But the Tikhonov 
functional Eq. (6) is special among different possible choices of prior distributions, as it can be 
solved analytically and thus numerical difficulties associated with solving non-Gaussian priors 
can be avoided.

This paper reports on applying the procedure outlined above to gluon and ghost two-point 
functions obtained from lattice QCD. However, before applying the Tikhonov procedure to such 
lattice data, two different implementations of Tikhonov regularisation are outlined in Section 2, 
corresponding to solving either Eq. (2) or Eq. (3). Then, both of these methods were applied 
to three different toy models, the results of which are detailed in Section 3. The first of these 
toy spectral densities is an everywhere positive distribution, chosen to represent an observable 
physical particle. Indeed, via the optical theorem the spectral function can be related to an ob-
servable probability [20], implying its positive definiteness. By contrast, the second and third toy 
spectral densities display positivity violations, mimicking the expected behaviour for unphysical 
(confined) particles such as gluons and ghosts. Lastly, the two methods were applied to lattice 
gluon and ghost T = 0 data sets, the results of which are given in Section 4.

2. Survey of the method

The lattice data for the propagator come with known statistical uncertainties and, furthermore, 
given that the different momenta are computed from the same set of gauge configurations, the 
different momenta are statistically correlated. These two effects can be taken into account in 
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the variational principle behind the Tikhonov regularisation scheme, replacing (6) by the new 
minimising functional2

Jα = (Kρ − G)T �−1(Kρ − G) + α2ρT ρ, (9)

where � is the covariance matrix. For lattice data, the covariance matrix can be computed from 
the different gauge configurations as

�(pi,pj ) = 1

NConf

NConf∑
k=1

(
Gk(pi) − 〈G(pi)〉

) (
Gk(pj ) − 〈G(pj )

〉 )
, (10)

where NConf is the number of gauge configurations used to compute the propagator, Gk(pi) is 
the propagator for gauge configuration k at momentum pi , and 

〈
G(pj )

〉
is the lattice estimation 

for the propagator. However, for both the gluon and ghost lattice data we have checked that the 
covariant matrix is an almost diagonal matrix and, therefore, herein we shall only consider a 
diagonal covariance matrix �ij = σ 2

i δij (no sum), where σ 2
i is the variance of G(pi):

σ 2(pi) = 1

NConf

NConf∑
k=1

(
Gk(pi) − 〈G(pi)〉

) (
Gk(pi) − 〈G(pi)〉

)
. (11)

Solving for the minimum of function (9) involves computing Jα/ρ = 0, which results in

1

2

∂Jα

∂ρ
= KT �−1(Kρ − G) + α2ρ = 0. (12)

Defining c := Kρ − G, then gives

ρ = − 1

α2 KT �−1 c . (13)

However, since c itself depends on ρ, substituting Eq. (13) into the definition of c, the following 
linear system is found:

c + 1

α2 M �−1c = −G where M = KKT . (14)

Solving this linear system for c at a given value of α, the spectral function ρ can be reconstructed 
using Eq. (13). From the above definitions, it follows that the reconstructed propagator written 
in terms of c reads

G = − 1

α2 M �−1 c . (15)

2 Given that the propagator and the spectral density are real functions of their real argument (as for our data), in the 
minimising functional one only needs to consider the transpose. For complex valued quantities, in Jα one should consider 
the Hermitian conjugate rather than the transpose.
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2.1. The p2-formalism

Starting from Eq. (2), the Tikhonov functional (9) becomes3

Jα =
∑

i

1

σ 2
i

⎛
⎜⎜⎝

∞∫
ω2

0

ρ̃(μ)

p2
i + μ

dμ − G(pi)

⎞
⎟⎟⎠

2

+ α2

∞∫
ω2

0

ρ̃(μ)2 dμ . (16)

Upon repeating the functional equivalent of the steps taken above, the following expressions for 
M and ρ̃ are found:

Mij :=
∞∫

ω2
0

dμ
1

(p2
i + μ) (p2

j + μ)
=

⎧⎪⎨
⎪⎩

1
p2

j −p2
i

ln

(
p2

j +ω2
0

p2
i +ω2

0

)
i 
= j

1
p2

i +ω2
0

i = j,

(17)

ρ̃(μ) = − 1

α2

∑
i

ci

p2
i + μ

1

σ 2
i

. (18)

2.2. The ip-formalism

Repeating these steps but starting from Eq. (3) instead, yields

Jα =
∑

i

1

σ 2
i

⎛
⎝ ∞∫

−∞
�(ω,ω0)

ρ(ω)

ω − ipi

dω − G(pi)

⎞
⎠

2

+ α2

∞∫
−∞

ρ(ω)2 dω , (19)

resulting in

Mij :=
∞∫

−∞

dω

ω − ipi

�(ω,ω0)

ω − ipj

=
⎧⎨
⎩

2
[
arctan

pj

ω0
− arctan pi

ω0

]
/(pj − pi) for i 
= j

2ω0/(p
2
i + ω2

0) for i = j,

(20)

ρ(ω) = − 1

α2

∑
i

ci

ω − ipi

1

σ 2
i

. (21)

It is worth noting that as ω0 → 0,

Mij →
{

2π/
(|pi | +

∣∣pj

∣∣) for pi pj ≤ 0 ,

0 otherwise .
(22)

This is proportional to the M found when inverting a Laplace transform [23], whereas the spectral 
representation in Eq. (1) can be viewed as a double Laplace transform. This will become relevant 
when discussing the observed difference in reconstruction quality between the two methods. Al-
though both representations are mathematically equivalent, the associated inversion procedures 
perform differently at the numerical level.

3 Note that we are not taking into account the correlation between the different momenta, just the variances.
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2.3. Construction of toy models

In principle, any of the above methods can be used to compute the spectral function and from 
it rebuild the propagators. However, from the numerical point of view, given the different char-
acteristics of the matrix M = K KT , the two procedures can behave quite differently. Therefore, 
before applying the inversions to the reconstruction of the propagators, we investigate their per-
formance on three toy models.

A Breit-Wigner type model

ρ(ω) = 1

π

2ωγ

(ω2 − γ 2 − M2)2 + 4ω2γ 2 , (23)

with M = 3 and γ = 1 (dimensionless). This toy model for the spectral function was investigated 
in [24]. A similar type of toy model, albeit with a wider peak, was also used in the paper [5].

A “Bessel” model without IR-cutoff,

ρ(ω) = J1(ω)J3(ω)

ω2 , (24)

with Jn(ω) being the Bessel functions of the first kind, was constructed to obey the same sum 
rule as gluons and ghosts are supposed to obey, namely

∞∫
ω0

ρ(ω)ω dω = 0. (25)

This model is extended to ω < 0 by demanding ρ(−ω) = −ρ(ω). In Appendix A we have recol-
lected the argument why the spectral functions of the gluons and ghosts, assuming the associated 
propagators have a Källén-Lehmann spectral representation to begin with, must obey the sum 
rule (25); see [25,26,6,27] for further reference. In short the sum rule (25) can be obtained using 
the large momentum behaviour of the propagator, whereto, thanks to asymptotic freedom, per-
turbation theory applies. Obviously Eq. (25) implies that the spectral function can no longer be 
positive-definite. Consequently, one has to resort to inversion strategies that can accommodate 
for such spectral functions [28,29,5,30,31,24,32], which excludes e.g. the popular (standard) 
Maximum Entropy Method [33,34,4]. Alternative methods include Padé rational function ap-
proximation [35] or machine learning-based methodologies [36], of which it still needs to be 
established if these also perform well for unphysical Green functions. Yet another recipe for 
inversion was proposed in [37] based on analytical insights, but to our knowledge it has never 
been tested in practice, most likely due to the reason mentioned in [38]: the required preci-
sion to obtain sensible results is unrealistic in numerical computations. Besides these numerical 
approaches, analytical estimates of spectral functions can also be made. Oftentimes these are 
performed in conjunction with numerical tools; see [13,32,39,4,40,41] and references therein for 
examples.

A third model, not only obeying Eq. (25) but also featuring an IR-cutoff, was constructed with 
the spectral function

ρ(ω) = − 1

ω4 + 4
+ A

ω6 + 2
for ω ≥ √

2 , (26)

where

A = 3π

2 3
√

2
(
π

√
3 + a − 2b + 2

√
3c
)
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a = log
(

1 + 2 3
√

2 − 22/3
)

,

b = log
(

1 + 22/3
)

,

c = tan−1

(
1 − 25/3

√
3

)
.

Again the spectral function was extended to ω < 0 using ρ(−ω) = −ρ(ω).

2.4. Data building and analysis for the toy models

In order to mimic the conditions of a lattice simulation, we proceed as follows. For a given 
spectral density (23), (24), (26), the “propagator” Gorig is computed using either Eq. (2) or 
Eq. (3). From this Gorig, Nbootstrap data sets Gε are generated satisfying a Gaussian distribu-
tion with mean value Gorig and variance (εGorig)

2, i.e. the Gε are distributed according to a 
probability distribution Gε ∼ N (Gorig, (εGorig)

2), where ε is the noise level (in percentage) of 
the samples. Furthermore, for each data set Nres momenta are uniformly sampled in the inter-
val p ∈ [−10, 10] for the ip-formalism, of which the range p ∈ [0 , 10] are squared for the 
p2-formalism. The p are dimensionless, as there is no physical scale here. The choice for this 
particular range is motivated by the fact that all relevant features of the toy models lie within this 
range.

For each of the Gε bootstrap samples, the inversion is performed using the two formalisms 
discussed previously. For each ε we have used Nbootstrap = 1000 samples. In this way the dis-
tribution of the optimal α parameter as a function of ε and Nres could be studied. Typically, the 
distribution of the optimal α is Gaussian or almost Gaussian. The exception occurs for large 
enough Nres where the α distributions show a tail that touches the point α = 0. For these small 
optimal α values, the initial ill-defined inversion reappears, the inversion fails and the original 
propagator data cannot be reconstructed. To prevent these pathological cases we require the op-
timal α distribution to be compatible with a normal law, i.e. that they can be fitted by a Gaussian 
law. From the practical point of view, this is enough to prevent the small optimal α values.

The quality of the reconstructed spectral function ρre, defined as the spectral function returned 
by the inversion methods derived in Eqs. (16)–(22), can be measured from the coefficient of 
determination defined as

R2 = 1 − 
2
res


2
tot

, (27)

where


2
res =

∑
i

(
ρorig(ωi) − ρre(ωi)

)2
, 
tot =

∑
i

(
ρorig(ωi) − ρ̄orig

)2
, (28)

ρorig are the input data points used to build the propagator and ρ̄orig is the mean value of ρorig; 
because the function ρ(ω) is odd, for the evaluation of R2 only data with ω ≥ 0 was considered. 
The coefficient of determination measures how the variation of the dependent variable matches 
the variation of the independent variable. It has a maximum value of 1, indicating a perfect fit, 
but is not bounded from below.

The quality of the reconstruction could have been measured using a quantity different than R2. 
For example, in a recent work [24], the authors defined the applicability of the reconstruction 
method as the ability to find the position of the dominant peak to within 10%. Therefore, we 
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will provide heat maps for R2 in (ε, Nres)-space onto which solid black contour lines have been 
drawn to indicate the accuracy in finding the dominant peak position.

All numerical analysis was performed in the Python language, using the symfit optimisation
package [42].

2.5. Determination of ω0

In general, a physical cutoff ω0 should ideally not depend on the choice of regularisation, in 
particular it should not depend on our choice of the Tikhonov parameter α. This means that the 
variation of ω0 w.r.t. α should be as small as possible in practice. Since numerically we have 
easier access to the variation of α w.r.t. ω0, the optimum value for α is more easily identified as 
the regions where the variation of α w.r.t. ω0 is maximal.

This means that after generating the ω0 v.s. α curve from our bootstrap, the point with the 
largest standard deviation in α w.r.t. ω0 corresponds to the most likely physical cutoff ω0.

This concept will guide our choices of the optimal ω0 and hence, the corresponding α(ω0).

3. Toy model—results and discussion

For all of the toy models described in the previous section, the p2- and ip-formalism derived 
in Equations (16)–(20) will be applied to data sets generated as described in Section 2.4, while 
setting �ij to either σ 2

i δij or δij during the inversion, where σ 2
i is the variance of G(pi).

3.1. The Breit-Wigner spectral function

We start our analysis by looking at the inverse problem for the Breit-Wigner type model given 
in Eq. (23). This model has no IR-cutoff and the inversions performed here therefore consider 
ω0 = 0. This implies that the p = 0 data point has to be excluded from the inversion for both 
methods. The effect of a non-zero ω0 will be studied later on.

In Fig. 1, the effect of Nres at fixed noise ε = 0.1% is shown for the various methods. A com-
parison of Fig. 1a with Fig. 1c, and Fig. 1b with Fig. 1d, shows that taking into account the 
error on the data, i.e. setting � 
= 1, does not visibly change the quality of the spectral function 
computed from the inversion. Furthermore, Figs. 1a and 1b show that the ip-method performs 
better for this toy model at low momentum scales, as the spectral function evaluated with the 
p2-method has larger oscillations at small ω. For the p2-method, the IR oscillations are reduced 
by increasing Nres. The different IR behaviour of the two methods will be discussed quantita-
tively below.

Another important feature that can be observed from Fig. 1 is that for the level of noise con-
sidered, ε = 0.1%, the inversions do not have a strong dependence on the number of data points, 
Nres, taken into account in the inversion. Although the computed spectral functions coming from 
the inversions are not perfect, it seems that both methods capture the main features of ρ(ω) for 
any Nres. As discussed below, it is the value of ε that seems to play the most important role in 
the inversion, with the inverted spectral function getting closer to the exact spectral function as 
ε is reduced, as expected. Note also that despite the dependence on Nres of the computation of 
ρ is mild, the match between the computed and input spectral function slightly improves as Nres
increases.

The effects of the noise level ε is shown in Fig. 2 for the two methods and for Nres = 128. 
Other values of Nres show similar results. Again, taking into account the statistical errors re-
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Fig. 1. Spectral function from the inversion as a function of Nres at a fixed noise of ε = 0.1% for the Breit-Wigner model. 
Here, ω is a dimensionless quantity. The inversion using the p2-method returns a spectral density with larger oscillations 
when ω → 0. More on the origin of this in Section 3.4. (For interpretation of the colours in the figure(s), the reader is 
referred to the web version of this article.)

sults in a reconstructed ρ with smaller errors. In general, reducing the noise level results in a 
computed spectral function that is closer to the exact ρ(ω); see Fig. 2a against 2c, and compare 
Fig. 2b with 2d. Additionally, as shown in Figs. 2a and 2b, the ip-method provides a spectral 
function that is less oscillatory in the IR. This is also evidenced by the corresponding increase 
in the standard deviation for ρ, suggesting that the p2-reconstructions are less IR stable. How-
ever, concerning the location and height of the maximum of the computed ρ(ω), the ip-method 
captures the location best, while the p2-method seems to better captures the height of the maxi-
mum.

The behaviour of the coefficient of determination R2 as a function of the noise level ε and 
number of momenta Nres is summarised in Fig. 3. On the figure the solid black contour lines 
indicate the accuracy in finding the dominant peak position, i.e. the relative error on the momen-
tum position of the maximum of the spectral function. The results in this figure indicate that both 
methods perform better when the statistical errors on the propagator data are taken into account 
in the inversion. In general, the value of R2 is closer to unity for the ip-method. In particular 
for the smaller values of Nres, the p2-method oftentimes has R2 � 0.5. These results for R2 can 
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Fig. 2. Spectral function from the inversion as a function of ε for Nres = 128 for the Breit-Wigner model. Here, ω is a 
dimensionless quantity.

be viewed as an indication that overall the solution provided by the ip-method is closer to the 
original spectral function.

As can be seen in Fig. 3 it is the value of ε that has a major impact on the reconstruction of 
the spectral function. If, for example, R2 > 0.9 is demanded, a noise level of about ε � 0.1% is 
needed for the ip-method to fulfil this condition, while the p2-method requires an ε � 0.05% to 
achieve the same values of the coefficient of determination R2.

The spectral function under analysis was also investigated in [24] using various inversion 
techniques namely Maximum Entropy (MEM), Backus-Gilbert (BG) and the Schlessinger point 
method (SP). According to the authors of [24], the MEM, BG and SP are able to locate the 
maximum of ρ quite well, both its position and height. The SP provides the best reconstructed 
spectral function but not necessarily for the smallest errors (see their Fig. 6). A fair comparison 
is difficult to perform. Their spectral functions that were reconstructed using BG are too broad 
and clearly quite far away from the input ρ(ω) (see their Fig. 5). Their implementation of the 
MEM returns a spectral function with large oscillations at small momentum scales, i.e. for ω �
220 MeV, and although it provides a good description of the position of the maximum of ρ, it 
clearly underestimates its strength. Even though [24] does not calculate R2, their graphs suggest 
that the corresponding R2 values would be smaller due to lesser overlap between the original 
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Fig. 3. R2 as a function of ε and Nres for the Breit-Wigner model. Solid black contour lines indicate the accuracy in 
finding the dominant peak position.

and the reconstructions as Nres decreases or ε increases. The best choice of algorithm therefore 
seems to depend on the desired feature of the data we are trying to capture.

Let us now discuss the effects due to a non-vanishing IR-cutoff ω0 on the inversion. Recall 
that, as discussed in Section 2.5, the physical cutoff ω0 should correspond to the point where the 
variation of α w.r.t. ω0 is maximal.

As a first example, the current Breit-Wigner model has no cutoff. As can be observed in 
Fig. 4 for Nres = 128, in the low noise limit with both methods the maximal standard deviation is 
achieved around the maximum of the ω0 v.s. α curve, suggesting that ω0 = 0 is indeed the right 
choice.

3.2. The Bessel spectral function

In this section we discuss the results for the inversion when the input function used to generate 
the propagator data is the Bessel model given in Eq. (24). The interest in this type of function 
arises from the property
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Fig. 4. ω0 vs. α for the Breit-Wigner model at Nres = 128.

∞∫
0

ρ(ω)ω dω = 0 ,

i.e. ρ(ω) necessarily has regions where it takes positive and negative values and, therefore, 
mimics a spectral function that can be associated with unphysical particles. Firstly, we con-
sider the inversion with ω0 = 0, which requires excluding the p = 0 data point to avoid the 
singularity in the matrix M . Later on we also look at the case where a finite IR cutoff is 
present.

In Fig. 5, the effect of Nres at fixed noise of ε = 0.1% is shown for the various methods. 
Similar to the Breit-Wigner model, it seems that including the �-matrix has no visible advantage 
at this noise level; compare Fig. 5a with 5c, and Fig. 5b with 5d. The comparison of Fig. 5a with 
Fig. 5b shows, again, much greater oscillatory behaviour in the IR associated with the p2-method. 
As for the Breit-Wigner model, the inversion shows only a mild dependence on Nres, with the 
main effect associated with an increase in the number of momenta included in the inversion 
being a reduction of the statistical errors. Both methods are able to locate the maximum of ρ(ω)

rather well, with the ip-method performing slightly better. Moreover, both methods struggle to 
reproduce the oscillatory tail of the model for ω � 4.
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Fig. 5. The reconstructed ρ(ω) for various Nres and for a fixed noise level ε = 0.1% for the Bessel spectral function.

In Fig. 6, the effect of the noise level on the inversion is shown for Nres = 128. Again, as for 
the Breit-Wigner model discussed in Section 3.1, the reconstructed spectral function becomes 
closer to the input ρ(ω) when ε is reduced. By comparing Figs. 6a and 6c, and Figs. 6b and 6d, 
it can be observed that including the �-matrix gives a minor advantage in the IR as the noise 
level increases. Additionally, as Figs. 6a and 6b show, the IR behaviour of the ip-method is less 
oscillatory than that of the p2-method.

Fig. 7 shows how R2, as defined in Eq. (27), changes as the resolution Nres and the noise ε
are varied. As can be observed, both methods perform better when the �-matrix is included. In 
general, in order to reproduce a given R2, the ip-method allows for a larger noise value than 
the p2-method. For example, if one requires an R2 > 0.9, a noise level of about ε � 0.1% is 
needed for the ip-method, while ε � 0.05% is required for the p2-method. The dark areas in 
Fig. 7 appearing for the p2-method with Nres = 64 and where R2 ≈ 0 are due to the large IR 
mismatch. Indeed, as can be seen in Fig. 5, for this particular inversion the p2-method returns 
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Fig. 6. The reconstructed ρ(ω) as a function of ε at a fixed number of momenta Nres = 128 for the Bessel model.

a spectral function highly oscillatory in the IR that is far from the original function. Looking at 
the effect of the parameters ε and Nres, it is clear that ε has a much larger effect on the quality of 
reconstruction than Nres.

As for the Breit-Wigner spectral function, we also investigated how the inversion performs 
when an IR-cutoff ω0 is introduced. In Fig. 8 we report the ω0 versus α curve for Nres = 128 at 
various noise levels. A pattern analogous to that of the Breit-Wigner case emerges, with ω0 = 0
being suggested as a good candidate.

The spectral function (24) was designed to obey the sum rule (25). However, in practice the 
numerical integral over a large momentum range tends to diverge as the reconstruction at higher 
momenta does not go to zero faster than 1/p2 as expected, but stays small and finite. We found 
that this can be remedied by imposing the sum rule as a constraint on the minimising functional. 
The constraint does not change the IR, but forces the UV tail to zero as p2 → ∞ in such a way 
that the sum rule is satisfied. Such a constraint fit is numerically more expensive and, therefore, 
we choose here to focus on the bootstrap results. The analysis of the constrained fit will be the 
subject of a future publication.
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Fig. 7. R2 in the (ε, Nres)-space for the Bessel model. Solid black contour lines indicate the relative error in finding the 
dominant peak position.

3.3. The spectral function for a model with a cutoff

We now consider the toy model (26) which has a physical IR cutoff ω∗
0 = √

2. We start the 
discussion by looking at the dependence of the inversion on ω0. Ideally, the ω0 we determine 
during the inversion will coincide with ω∗

0.
The optimal ω0 as a function of α for Nres = 128 can be estimated from Fig. 9. Indeed, at low 

noise, α(ω0) is varying rapidly around the sharpest maximum which is located close to the phys-
ical cutoff ω∗

0. This is also evident from the curve having the biggest standard deviation there, 
though it might not be immediately apparent from this plot. Following our earlier discussion on 
minimal dependence of ω0 on α, we will use the location of this sharpest maximum as an esti-
mator of ω∗

0 . Such a maximum appears for both methods and is more clearly present for the less 
noisy samples.

Looking back at the curves α(ω0) for the Breit-Wigner and Bessel spectral functions in Figs. 4
and 8, we see that the last local maximum in the α(ω0) curve is the one with the largest variance 
of α w.r.t. ω0 for all toy models studied, and therefore we infer that the last maximum in the 
α(ω0) curve provides best guess for the values of ω0 and α.



D. Dudal et al. / Nuclear Physics B 952 (2020) 114912 17
Fig. 8. ω0 vs. α for the Bessel model at Nres = 128.

A comparison of the reconstructed spectral function taking α at the sharpest extremum of 
the curve α(ω0), corresponding to an ω0 � √

2, with setting ω0 = 0 can be seen in Fig. 10 for 
both the ip- and p2-method. In all these cases � was included. In general, for both methods the 
reconstructed spectral functions are quite similar outside of the IR and, clearly, the introduction 
of a finite cutoff gives a ρ(ω) that is closer to the original input function. Moreover, both methods 
are sensitive to the maximum of the spectral function even at relatively large noise levels.

3.4. Comparing the ip vs. p2 method: numerical and analytical insights

The analysis of the toy models suggests that, in general, the ip-method outperforms the 
p2-method. In particular, the reconstructed spectral function shows a highly oscillatory behaviour 
in the IR for the p2-method which is not observed with the ip-method; see e.g. Figs. 1 and 2. 
Moreover, the ip-method has an overall larger R2 as shown in e.g. Fig. 3.

A first hint at this difference is given by the object M for both methods. Comparing Eq. (20)
with (17) and setting ω0 = 0, we find

Mij =

⎧⎪⎨
⎪⎩

1
p2

j −p2
i

ln

(
p2

j

p2
i

)
i 
= j

1
2 i = j

(29)
pi
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Fig. 9. ω0 vs. α for the cutoff model at Nres = 128.

for the p2-method and

Mij =
⎧⎨
⎩

2π

|pi |+
∣∣pj

∣∣ pipj ≤ 0

0 otherwise
(30)

for the ip-method. The latter is identical to that of a Laplace transform apart from the fact that it 
is only valid when pipj ≤ 0.

In fact, it can be shown that the p2-formalism can be directly obtained by performing G =
LLρ,

Lt {Lμ{ρ(
√

μ)}(t)}(k) =
∞∫

0

dt e−k2t

⎛
⎝ ∞∫

0

e−tμρ(
√

μ)dμ

⎞
⎠

=
∞∫

0

dt e−k2t

⎛
⎝ ∞∫

0

2ωe−t ω2
ρ(ω)dω

⎞
⎠

=
∞∫

dω
2ωρ(ω)

ω2 + k2 , (31)
0
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Fig. 10. Spectral density for the cutoff-model. All reconstructions used a � 
= 1 and for ω0 > 0 its values were determined 
by the position of the last maximum in the corresponding Fig. 9.

whereas the ip-formalism is obtained by performing G = iLFρ:

iLt {Fω{ρ(ω)}(t)}(k) = i

∞∫
0

dt e−kt

⎛
⎝ ∞∫

−∞
dωe−itωρ(ω)

⎞
⎠

= i

∞∫
0

dt

∞∫
−∞

dωe−(k+iω)tρ(ω)

=
∞∫

−∞
dω

ρ(ω)

ω − ik
. (32)

This helps to understand the difference in performance of the two methods. The Laplace trans-
form is a common example of an ill-conditioned inversion problem, so doing it twice is not likely 
to improve the situation. On the other hand, the Fourier transform has a well-defined inversion 
and therefore this operation will not negatively affect the quality of the inversion.
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Fig. 11. Heatmaps of the condition number of
(
1 + 1

α2 M�−1
)

at median α.

The analysis of the condition number, defined via the ratio of the maximal and minimal singu-

lar value of the matrix 
(
1 + 1

α2 M�−1
)

, also helps understanding the difference between the two 
methods. Recall that this is the matrix which has to be inverted in order to find the residual c. We 
have computed the condition number associated with the matrix for both methods at median α
for the whole (ε, Nres)-range for the Breit-Wigner model. The results of this analysis are shown 
in Fig. 11 and it is apparent that the condition number of the p2-algorithm is consistently 2–3 
orders of magnitude larger, which could explain the different behaviour in the IR region. Also, 
the ip-method consistently reaches higher values of R2 at lower statistical noise levels when 
compared to the p2-method.

Of the two methods considered herein, one can claim that overall the ip-method performs 
better and, therefore, for the analysis of the lattice data for the gluon and ghost propagators we 
will report only the results from this method. For the record, a p2-method analysis of similar 
gluon and/or ghost data can be found in earlier work [5,43].

4. The Landau gauge spectral functions from lattice data

We now proceed to compute the spectral function from the Landau gauge lattice gluon and 
ghost propagators at T = 0. Due to rotational invariance at T = 0, it is permissible to switch be-
tween the use of p2

4 to p2 as the fundamental variable in Eqs. (1), (3). Indeed, as is well-known 
from e.g. [20,44], the standard variable in the Källén-Lehmann representation at T = 0 is p2. 
However, due to lattice effects this rotational invariance is violated, and a significant difference 
between p2

4 and p2 appears. In order to correct for this we have followed the standard technique 
of applying momentum cuts, as developed in the seminal papers [45,46] to deal with the break-
ing of rotational invariance. After these cuts the corrected p2 provides the better measure, and 
is therefore used instead of the on-axis p2

4. In Appendix B we provide a comparison of these 
momentum sets to illustrate this point in detail.

The lattice data for the gluon propagator was taken from [47]. For the ghost propagator we 
use the data published in [48]. The propagators were obtained from simulations on an 804 lattice 
with β = 6.0, with lattice spacing a = 0.1016(25) fm, corresponding to a physical volume of 
(8.1 fm)4. The lattice data shown below refers to renormalised data within the MOM scheme at 
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Fig. 12. The regularisation parameter α as a function of the IR cutoff ω0 for the reconstruction of ghost and gluon 
propagators. Note that the α-axis is in arbitrary units.

the scale μ = 4 GeV, i.e. the scalar form factors associated with the gluon and ghost propagators 
are such that

G(p2)

∣∣∣
p2=μ2

= 1

μ2 . (33)

Details on the sampling, gauge fixing and definitions can be found in [47,48].
The lattice gluon propagator was computed with a large ensemble of 550 gauge configurations 

and its noise level is of the order ε ∼ 0.5% for the all Nres = 219 momentum values. On the 
other hand, the ghost propagator was computed using a much smaller ensemble that included 
only 100 gauge configurations. However, the use of several sources considerably improves the 
quality of the ghost lattice data and the corresponding noise level is ε ∼ 1% or less for all the 
Nres = 219 momentum values. In order to estimate the variance in the reconstructions we rely on 
the bootstrap method, where each bootstrap sample was inverted individually, giving an ensemble 
of spectral density functions which was then used to calculate the mean spectral density and its 
variance. In total 5500 bootstrap samples were considered for the gluons, and 700 for the ghosts. 
However, the reconstruction and spectral function of a bootstrap sample were only included in 
calculating the mean and standard deviation if the Morozov criterion was met to a precision of at 
least 10−10 during the inversion. This was true for about 25% of the samples.

From the results of the toy models for the noise levels and number of data points used in the 
inversion, see Figs. 3a and 7a, one can expect an R2 ≈ 0.9 for the gluon inversion and an R2 ≈ 0.8
for the ghost inversion. Moreover, one also expects a good determination of the location and 
height of the absolute maximum of the gluon and ghost spectral functions. We call the readers 
attention to the fact that our analysis does not take into account possible systematics, nor do we 
account for correlations between the different momenta. From the technical point of view, this 
last remark means that we only consider variances, not covariances. This refinement, amongst 
other things, will be discussed in future work.

In Fig. 12 we report the curves α(ω0) for the inversion of the gluon data when �ij = σ 2
i δij

(no sum) and �ij = δij , i.e. with or without taking into account the statistical errors during the 
inversion, and for the ghost inversion with �ij = σ 2

i δij (no sum). Taking �ij = δij is not dis-
played because for the ghosts this does not yield any interesting new information. The pattern 
of the α(ω0) curves for the gluon and ghost inversions look rather different. For the gluon inver-
sion, α(ω0) has several extrema that can be associated with several values of the cutoff ω0 where 
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∂ω0/∂α � 0. On the other hand, for the ghost inversion the α(ω0) curve has a single maximum 
at ω0 = 0 and a steep decrease towards small values of α as ω0 departs from zero towards larger 
values. We take this behaviour as an indication that the right cutoff value for the ghost data is 
ω0 = 0 and hence we will only display the results for the ghost inversion at this particular cutoff. 
In the inversions of the gluons and ghosts the diagonal covariance matrix �ij = σ 2

i δij (no sum) 
was always included since our toy model studies showed that this gives better reconstructions 
than without including a covariance matrix.

We do not attempt to check the sum rule (25) as in our formulation, by construction, the correct 
UV asymptotic logarithmic tails of neither propagator nor spectral function are reproduced. This 
is best seen from Eqs. (12)–(16) in [5], and the discussion thereafter. Roughly speaking the 
current Tikhonov implementation gives, for μ large, ρ(μ) ∼ 1/μ and G(p) ∼ (lnp2)/p2. As 
mentioned earlier, the situation could be improved by including the sum rule as a constraint. We 
will come back to this issue in future work.

4.1. The gluon spectral function

As can be seen in Fig. 12, for the gluon data inversion the curve α(ω0) shows several regions 
where α changes quickly as ω0 varies slightly, which can be associated with values of the cutoff 
ω0 that are stable against variation of the regularisation parameter α, i.e. where ∂ω0/∂α � 0. 
The precise values where the derivative vanishes are more difficult to identify. From a practical 
point of view, and based on the observations for the toy models, we take the location of the 
corresponding nearby maxima as the estimated value for the IR cutoff. However, inversions are 
also performed at the locations of the minima in this curve to allow for a direct comparison.

Fig. 13 shows the reconstructions of the gluon propagator for the ω0 identified with the ex-
trema of α(ω0) as shown in Fig. 12. As for the toy models, the p = 0 data point was not included 
in the inversion procedure. In general, the reconstructed propagators are in very good agreement 
with the lattice data for all ω0. However, when extrapolating towards p → 0+, it is clear that 
the introduction of a cutoff ω0 greatly improves the prediction of the point G(p2 = 0), with the 
minimum ω0 = 400 MeV and the maximum ω0 = 425 MeV performing most reliably. The min-
imum at ω0 = 220 MeV and the maximum ω0 = 250 MeV also still perform reasonably well, 
but the reconstructions with ω0 = 0 MeV, ω0 = 59 MeV and ω0 = 111 MeV are most certainly 
unreliable.

With this in mind we turn our attention to the spectral densities associated with the various 
extrema of α(ω0), as shown in Fig. 14. One striking observation is the stability of the positions of 
the zeroes and the extrema of ρ(ω) for all reconstructions, even if the corresponding values are 
not exactly identical. The effect of reconstructing at a maximum or minimum of α(ω0) seems 
minimal on these features. It follows that one can claim a global maximum for the spectral 
function at ω = 0.65 GeV with “Full width at half maximum”(FWHM) = 0.27 GeV, a negative 
minimum at ω = 1.19 GeV with FWHM = 0.49 GeV, a positive maximum at ω = 2.11 GeV with 
FWHM = 0.71 GeV, etc. with zeros of ρ(ω) between the quoted ω values.

The computed spectral functions reproduce the pattern observed in the preliminary study [43], 
where ρ reached a maximum at momentum ∼ 0.5 − 0.6 GeV and then oscillated, approaching 
zero at higher ω. The herein computed absolute maximum of the spectral function is roughly 
consistent with the predictions of [32] that used the numerical outcome from functional renor-
malisation group (FRG) equations compatible with the scaling scenario, i.e. a gluon propagator 
going to zero at zero momentum following a simple power law. The FRG spectral function was 
calculated using a Bayesian inspired approach that includes a dedicated guess for a basis of 
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Fig. 13. Reconstructed gluon propagator for all maxima (top) and minima (bottom) of the α(ω0) curve.

functions and takes into account a priori knowledge about its asymptotic behaviour. Once more, 
the general pattern of the spectral function computed here is in qualitative agreement with that 
computed in [32], an absolute maximum followed by an oscillatory behaviour towards zero, 
although the quantitative details differ. It should be noted, however, that contrary to [32], our 
method makes no explicit assumptions about the IR of the spectral function, i.e. we make no 
assumptions on the structure of the propagator in the IR.4 The price paid is that we observe the 
oscillations (“ringing”) in the IR.

It is known that different regularisation recipes for ill-posed inversion problems, of which the 
Källén-Lehmann spectral integral calculation is an example, can yield different results. There-
fore, it is important to have several toolkits to test the soundness of the computed spectral 

4 In the UV, model independent analytical estimates can be given for the spectral function based on the perturbative 
renormalisation group, see also our Appendix A. In the IR, such estimates are usually model dependent. We refrained 
from building in the correct UV asymptotics via appropriate choice of a prior estimate for ρ in the regulating part of 
the Tikhonov functional. Tests indicated that this has little to no influence on the reconstruction in the mid-momentum 
regime where most of the interesting phenomenology happens.
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Fig. 14. Spectral densities for the reconstructions reported in Fig. 13.

functions. This is a common observation, even applicable when gauge invariant lattice data are 
inverted for e.g. meson spectral functions [33]. But because the same dominant peak is found for 
all cutoffs ω0, as well as by [32], it is fair to say that this peak is meaningful.

Given a functional form for the spectral function as in Eq. (13), one can measure its deriva-
tives. Indeed, it can also be shown [32] that in the limit of p4 → 0+, ∂p4G(p4) = −∂p4ρ(p4)/2. 
The inset of Fig. 13b shows the derivative of the various reconstructions for small momenta. For 
all the reconstructions where a cutoff ω0 � 200 MeV has been included, the derivatives go to zero 
within error, which is consistent with having ρ(ω) = 0 below the cutoff, and hence ∂ωρ(ω) = 0, 
confirming the above result. As ω increases, this simple relationship between ∂p4G(p4) and 
∂p4ρ(p4) breaks down, so no conclusions can be drawn other than that the ω → 0 behaviour is 
correct for cutoff values ω0 � 200 MeV. For the inversions at cutoffs ω0 < 200 MeV, the relation 
between the derivatives of the propagator and of the spectral function is not satisfied, suggesting 
that a cutoff has to be included.

4.2. Ghost propagator

As discussed previously, for the ghost propagator there is no ambiguity regarding the choice 
of ω0 = 0. The ghost propagator is expected to be massless and, therefore, its spectral function 
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Fig. 15. The ghost spectral function (left), and reconstructed propagator and dressing function (right).

should have a Dirac delta function for zero momentum. But if this is the case, the inversion of 
the ghost propagator data becomes rather difficult, if not impossible, to perform. Alternatively, 
one can rely on the ghost dressing function given by

g(p) = p2G(p) =
∞∫

−∞

σ(ω)

ω − ip
dω , (34)

where σ(ω) is the corresponding spectral density function. Introducing the function

ρ̂(ω) := −σ(ω)

ω2 (35)

it follows, after integrating ρ̂, that

Ĝ(p) :=
∞∫

−∞

ρ̂(ω)

ω − ip
dω = −g(0)

p2 + G(p) (36)

and Ĝ(p) equals G(p) up to the term −g(0)/p2. In order to cancel this additional term, ρ(ω)

has to be given by

ρ(ω) = −g(0)δ′(ω) + ρ̂(ω), (37)

which can be checked by plugging Eq. (37) into Eq. (3) and performing the integral. A more 
detailed derivation of Eq. (37) can be found in Appendix C. The significance of Eq. (37) is the 
following: by inverting g(p) instead, ρ̂ can be built. This is identical to ρ, apart from the fact that 
an additional δ′(ω) has to be present at the origin. Keeping this δ′(ω) in mind, we can therefore 
consider ρ̂ as the spectral function after subtracting the massless free ghost state.

Fig. 15a presents both ρ as obtained from a direct inversion of G(p), and ρ̂ as defined 
previously. Both reconstructions display the same minimum at p ≈ 200 MeV, but ρ̂ starts to 
be dominated by the 1/ω2 behaviour for smaller momenta whereas ρ shows a maximum at 
p ≈ 70 MeV before going down to zero. The vertical black line in Fig. 15a indicates the small-
est momentum value in the dataset, pmin = 0.15 GeV. The maximum of ρ is positioned below 
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Fig. 16. The inverse of g(p), σ(ω).

pmin, indicating that this peak could possibly be due to the attempt to reconstruct the Dirac-δ
peak at p = 0. The error in ρ̂ explodes below pmin, despite the fact that the error in σ(ω) stays 
reasonable, as can be seen from Fig. 16. This is a direct consequence of the 1/ω2 behaviour of 
ρ̂, however the typical solution does look like the average shown in Fig. 15a.

To test our approach, it has been verified that Ĝ(p) + g(0)/p2 is also a reconstruction of the 
original lattice data for the propagator, which is indistinguishable from a direct reconstruction 
of G(p). This can be seen in Fig. 15b, which shows the reconstructed propagator, and clearly 
demonstrates that Ĝ(p) + g(0)/p2 overlays the lattice data over the full p-range where data 
points have been provided. To reconstruct the ghost propagator in this manner, ρ̂ was integrated 
according to Eq. (36) to yield Ĝ(p), and g(0) was calculated using Eq. (34). The good agreement 
found is an indication that the infrared ghost propagator is given essentially by its tree level 
value.

5. Conclusion

In the current paper, we improved the Tikhonov reconstruction using the Morozov discrepancy 
principle when applied to Källén-Lehmann inverse lattice spectroscopy, as set out previously in 
[5]. Based on dedicated toy models, the current research defined statistical measures for the 
quality of the inversion, providing a region of validity for this method. While doing so, we also 
supplemented the Tikhonov functional with a relative error weighting of the data.

We considered two analytically equivalent versions of the Källén-Lehmann spectral repre-
sentation. However, despite this analytical equivalence, the numerical performance of the two 
formalisms is quite different. This difference is most notable in the IR, where the ip-formalism 
yields significant improvement over the previous p2-formalism [5]. The improvement was 
demonstrated most notably by a reduction in the condition number of the to-be-inverted ma-

trix 
(
1 + 1

α2 M�−1
)

by 2–3 orders of magnitude. Both methods are sensitive to an IR-cutoff 
below which the spectral density vanishes, if such a cutoff is present.

By applying the ip-methodology to lattice SU(3) gluon data, it was found that the gluon spec-
tral function seems to have an IR cutoff of a few hundred MeV. We also characterised a dominant 
peak, the location of which is fairly consistent with the findings reported in other studies like [5,
32,13]. Because IR oscillations are always present in the reconstructions, we have to be care-
ful with their interpretation. However, the dominant peak appears to be a stable prediction. For 
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ghost data it was found that no IR-cutoff is present, consistent with the massless pole present in 
the ghost propagator. However, the quality of the reconstruction was greatly improved by first 
removing the δ-peak in the spectral density. We stress once more that our results should always 
be considered under the assumption that the gluon and ghost degrees of freedom have a Källén-
Lehmann spectral representation to begin with. The existence of such a representation is not 
self-evident, since these particles are confined at zero temperature, and therefore they do not be-
long to the complete set of (positive norm) physical states that are usually employed to derive the 
spectral representation [19–21]. Other analytical continuations of the data are thus in principle 
possible. We recall that the Källén-Lehmann spectral integral allows only for branch cuts along 
the negative real axis, while certain analytical approaches, or fits to lattice data based thereon, 
entail the presence of e.g. complex conjugate poles, in se incompatible with the Källén-Lehmann 
spectral structure [32,49–51,47,52,53]. As a future improvement of our method, such complex 
conjugate poles could therefore be included in the inversion method. The inclusion of such poles 
could also lead to a reduction in the IR ringing, which would be an indication of their presence. 
This being said, it should also be noted that the ringing effect is also present in the presented toy 
model inversions, which definitely contain no complex conjugate poles’ contributions. More-
over, the IR ringing also plagues other inversion strategies, like MEM [33,24], again without 
such poles. In recent work, [54], yet another inversion method was proposed, based on rational 
function interpolation. More evidence was presented for a single set of complex conjugate poles, 
so it would be interesting to test whether this feature prevails also within our methodology. This 
is currently under investigation. Additionally, imposing adherence to the sum rule as a constraint 
seems compatible with the ip method and will be investigated further. Such a constraint could be 
extended to the generalised sum rule that includes the set of complex conjugate poles, see also 
the recent paper [55].

Moreover, in this next phase of research we will further put our inversion strategy to the 
test by applying it to finite temperature lattice data for gluons, ghosts and quarks. An important 
question to be further addressed there is whether, and to what extent if so, the spectral functions 
are sensitive to the deconfinement (chiral) transition or which kind of quasi-particle behaviour 
can be identified [29,31,14]. This will be discussed in forthcoming work.
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Appendix A. UV asymptotics of the spectral function

A.1. Leading log resummation of the propagator

Consider a propagator G(p2) = 〈O(p)O(−p)〉, which we renormalise in a MOM (“mo-
mentum subtraction”) scheme at p2 = μ2, that is G(μ2) = 1

μ2 . Such a scheme can also be 
implemented on the lattice. As is well-known, we can resum the leading logs using the one-loop 
renormalisation group equation, which leads to

G(p2) = 1

p2

(
1 + β0g

2 ln
p2

μ2

) γ0
β0

. (38)

We used the conventions that

μ
∂

∂μ
g2 = β(g2) = −2β0g

4 + . . . , μ
∂

∂μ
O = γ (g2)O = γ0g

2O + . . . . (39)

In pure gauge theory with N colours, one has (see e.g. [58,59])

β0 = 11

3

N

16π2 , γ
gl
0 = −13

6

N

16π2 , γ
gh
0 = −3

4

N

16π2 . (40)

A.2. The UV spectral density after a leading log resummation

For sufficiently large p2, the RG resummed propagator (38) will give a decent description of 
the lattice data. We thus consider the expression (38) and wonder what the underlying spectral 
function would be, taking p2 sufficiently large w.r.t. μ. Since from a Källén-Lehmann represen-
tation in the form (2), we have (see for example (3.19) in [60]):

ρ̃(t) = 1

2πi
lim

ε→0+ [G(−t − iε) − G(−t + iε)] , (41)

we find for t sufficiently large, with γ = − γ
gl,gh
0
β0

,

ρ̃�(t) = 1

2πi

⎡
⎢⎣
(
β0g

2 ln −t−iε
μ2 + 1

)−γ

−t − iε
−
(
β0g

2 ln −t+iε
μ2 + 1

)−γ

−t + iε

⎤
⎥⎦

= 1

2πit

[
−
(

β0g
2 ln

t

μ2 − iβ0g
2π + 1

)−γ

+
(

β0g
2 ln

t

μ2 + iβ0g
2π + 1

)−γ
]

= 1

πt
Im

[(
β0g

2 ln
t

μ2 + iβ0g
2π + 1

)−γ
]

= 1

πt

((
β0g

2 ln
t

μ2 + 1

)2

+ β2
0g4π2

)−γ /2

sin

(
−γ arctan

β0g
2π

β0g2 ln t
μ2 + 1

)
.

(42)

Notice that the spectral integral of the foregoing expression will not be G(p2), given that the full 
ρ(t) is different from ρ̃�(t). Indeed, Eq. (38) also displays a cut for p2 > 0 sufficiently close to 
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zero in which case the ln will overtake the +1. Clearly, this will not contribute to ρ̃�(t) if t is 
sufficiently large. We also notice that ρ̃�(t) becomes negative for t large.5

At lowest order, we can write

ρ̃�(t)
t→∞∼ −(β0g

2)−γ γ

t

(
ln

t

μ2

)−γ−1

. (43)

We notice the foregoing result clearly dictates the spectral function of the gluon and ghost prop-
agator to become negative at sufficiently large values of t .

A.3. Corollary: a sum rule

From the asymptotic behaviour (38), we infer that both gluon and ghost propagator fall off 
faster than 1

p2 , from which it follows from Eq. (1) in the p2
4 → ∞ limit that

∞∫
ω0

ρ(ω)ω dω = 0. (44)

This relation is also known as a superconvergence relation [26]. From this relation, it is also 
evident that ρ(ω) cannot be positive-definite.

Appendix B. Gluon propagator rotational invariance breaking

In Fig. 17 we illustrate the effects associated with the breaking of rotational invariance in lat-
tice simulations by comparing the gluon propagator lattice data for different types of momenta. In 
order to do so Fig. 17 displays the gluon propagator G(p2) at all momenta, the on-axis momenta, 
and the momentum cuts which are close to pμ = (1, 1, 1, 1). These momentum cuts [45,46] were 
devised to suppress rotational breaking effects on the propagator lattice data, and as an additional 
advantage they also provide access to a larger range of momenta when compared to the on-axis 
momenta. This is clear from Fig. 17, where the momentum cuts can be seen to represent the full 
range of available momenta. It can also be seen from the figure that although the cuts and on-axis 
momenta agree in the IR region, they start to diverge slightly in the UV. Since the UV behaviour 
of the spectral function can already be accessed perturbatively, the most interesting physics of 
the spectral function for our current research is given by the IR region. Using the momentum cuts 
therefore gives identical information to the on-axis momenta on the IR region while providing a 
better connection with the UV.

Appendix C. From dressing function to propagator

This Appendix will detail the relationship between the spectral density functions of the dress-
ing function and the propagator. The dressing function is defined as

g(p) = p2G(p). (45)

Since ghost particles are massless, the spectral density function is expected to contain a δ function 
at zero momentum. Because such a δ peak complicates the numerical inversion, it is beneficial 
to remove it first by inverting the dressing function instead. Let

5 This is known, see e.g. [26].
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Fig. 17. Gluon propagator for different types of momenta: all momentum values (black), momentum values obtained by 
performing cuts i.e. close to the diagonal pμ = (1, 1, 1, 1) (red), and the on-axis values (green).

g(p) =
∞∫

−∞

σ(ω)

ω − ip
dω and G(p) =

∞∫
−∞

ρ(ω)

ω − ip
dω , (46)

where both ρ and σ are odd functions. We then define

ρ̂ = −σ(ω)

ω2 . (47)

Note that the appearance of ω2 is motivated by the fact that both ρ and σ have to be odd functions. 
Integrating over ρ̂ gives

∞∫
−∞

ρ̂(ω)

ω − ip
dω = −

∞∫
−∞

σ(ω)

ω2(ω − ip)
dω

= − i

p
�

�
�

�
��∞∫

−∞

σ(ω)

ω2 dω − 1

p2

∞∫
−∞

σ(ω)

ω
dω + 1

p2

∞∫
−∞

σ(ω)

ω − ip
dω

= −g(0)

p2 + g(p)

p2 = −g(0)

p2 + G(p),

where the first term on the second line could be dropped due to the oddness of the integrand. 
We see that ρ̂ nicely produces G(p) but also an extra term. This extra term can be cancelled by 
identifying ρ as

ρ(ω) = −g(0)δ′(ω) + ρ̂(ω). (48)
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Fig. 18. Reconstructions with a linear G(p)-axis.

We are forced to use the partial derivative operator δ′(ω) instead of δ(ω) due to the demand 
that ρ(ω) should be an odd function. Integrating over Eq. (48), we find that his indeed gives 
G(p).

Fig. 18 shows this process numerically. As can be seen from the figure, Ĝ(p) can hardly be 
called a reconstruction of the data. However, upon adding g(0)/p2 the result describes the data 
equally well as the direct reconstruction Gre(p).
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