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Abstract: The mode of action of Pt- and Pd-based anticancer agents (cisplatin and Pd2Spm) was
studied by characterising their impact on DNA. Changes in conformation and mobility at the molecular
level in hydrated DNA were analysed by quasi-elastic and inelastic neutron scattering techniques
(QENS and INS), coupled to Fourier transform infrared (FTIR) and microRaman spectroscopies.
Although INS, FTIR and Raman revealed drug-triggered changes in the phosphate groups and the
double helix base pairing, QENS allowed access to the nanosecond motions of the biomolecule’s
backbone and confined hydration water within the minor groove. Distinct effects were observed for
cisplatin and Pd2Spm, the former having a predominant effect on DNA’s spine of hydration, whereas
the latter had a higher influence on the backbone dynamics. This is an innovative way of tackling a
drug’s mode of action, mediated by the hydration waters within its pharmacological target (DNA).

Keywords: palladium anticancer drug; DNA; hydration water; neutron scattering techniques;
Raman; FTIR

1. Introduction

Cancer is a growing health problem, currently the second-leading cause of death worldwide
(9.6 million deaths in 2018). New and more efficient chemotherapeutic strategies are therefore an
urgent clinical need. Over the years numerous cytostatics have been developed, aiming at an improved
antineoplastic activity coupled to decreased deleterious side effects. Platinum drugs were introduced
in the late 1960s [1,2], upon the serendipitous discovery of cisplatin (cis-(NH3)2PtCl2). However,
there are serious limitations to the clinical use of these types of drugs, namely severe side effects
(e.g., nephrotoxicity, hepatotoxicity or myelosuppression) and acquired resistance [3–5]. Additionally,
they have shown poor efficacy against metastatic cancers, which are responsible for higher mortality
worldwide and therefore need improved oncology therapies. A promising alternative comes from
metal-based agents comprising more than one metal centre, such as Pt(II) and Pd(II) polynuclear chelates
with polyamines, that constitute a specific class of DNA-damaging anticancer compounds displaying a
non-conventional mechanism of action that may lead to an enhanced therapeutic effect. Cytotoxicity
arises from the selective covalent binding of the metal ions to DNA purine bases at more than one site
within the double helix, yielding long-range interstrand adducts. These agents have been synthesised
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and extensively investigated by the team, to provide a comprehensive set of data on (i) cytotoxicity
towards several human cancer cells [6–10], (ii) interactions with DNA and glutathione-mediated
resistance pathways [11,12] and (iii) impact on cellular metabolism and intracellular water [12–16].
Vibrational spectroscopy techniques were applied (including inelastic neutron scattering and synchrotron
radiation-Fourier transform infrared (FTIR)) coupled to theoretical simulations [4,17,18], as well as
synchrotron-based Extended X-ray Absorption Fine Structure (EXAFS) [11]. The dinuclear complex
Pd2Spm (Spm = spermine, H2N(CH2)3NH(CH2)4NH(CH2)3NH2), in particular, has yielded quite
promising results towards human triple negative (metastatic) breast cancer, coupled to lower toxicity in
non-tumorigenic cells [8,10].

As suggested in previous studies by the authors [12,15,16,19], apart from the conventional targets
of these type of metal-based agents (DNA and specific proteins), there may be other receptors that are
relevant for chemotherapeutic activity, namely water molecules—both within the cytoplasm and the
hydration layers of biomolecules. Intracellular water (cytoplasmic), which accounts for 70 to 80% of the
whole cell mass, has a particular structural and dynamical behaviour namely its ability to form highly
organised H-bond networks. It underlies vital biological activities, from the maintenance of the stable
and functional three-dimensional architecture of biopolymers to its direct role in essential biochemical
processes such as protein folding, enzyme catalysis and intracellular transport [20–27]. In turn, water in
the vicinity of biomolecules (hydration layers) has properties that are noticeably different from cytoplasmic
and bulk water, and can be viewed as a defect in the regular H-bond arrangement of the water molecules
within the cellular milieu, induced by the biopolymer’s surface which is chemically and topologically
inhomogeneous and prone to conformational rearrangements. Hydration water is crucial for bioactivity,
the first hydration shell being an essential part of a biomolecule’s structure that regulates its structural
preferences and physiological role [23,26,28,29]. Therefore, any disruption of a biopolymer’s hydration
sheath may affect its conformational and dynamical profiles, with consequences on biofunctionality which
are still misunderstood. Likewise, the influence of a drug on the water layer in the vicinity of biomolecules
(e.g., proteins, RNA or DNA) is an unexplored issue. These perturbations are not identical everywhere,
the effect on some sites being more significant than on others (e.g., hydrophobic groups, H-bond donors
or acceptors, outer hydration shell or inner hydration pockets).

Neutron spectroscopic techniques, namely inelastic and quasielastic neutron scattering (INS and
QENS), are particularly suited for probing structure and dynamics of water in its various forms,
including interfacial water in biological matrices, at nano- to picosecond timescales and on atomic
lengthscales. INS allows the authors to define the local structure of water molecules within the
hydration shells of biomolecules [30–34] as well as to directly access the whole set of vibrational
modes, with high sensitivity to both the intra- and intermolecular modes, and yield complementary
information to that obtained by optical vibrational spectroscopy (infrared and Raman). Translational
modes of water are changed near the biopolymers and appear in a different energy transfer range
to the vibrations from the biomolecule itself, thus rendering INS a very useful tool to probe water.
QENS, in turn, is a method of choice for directly accessing different spatially resolved dynamical
processes of key biological components—from fast localised modes to slower global translations—and
the way they are changed by the presence of a drug, [12,15,16,19,26,35–43]. While QENS is a direct
probe of water’s dynamical behaviour, INS and the optical vibrational techniques Raman and FTIR
indirectly monitor water properties which affect the corresponding vibrational profile while detecting
conformational rearrangements of the biomolecule.

Following a successful QENS study that revealed changes induced by the drug to the dynamical
processes, occurring at the picosecond timescale, within DNA’s hydration shell [18], the current work
focuses on the effects on the slower nanosecond motions of the nucleic acid skeleton (backbone) and the
biopolymer’s constrained hydration waters. The use of a high resolution QENS instrument such as the
high flux backscattering spectrometer (HFBS) at the National Institute of Standards and Technology
Centre for Neutron Research (NCNR, Gaithersburg, MD, USA), enabled the detection of this type of
dynamical processes, thus allowing to build a complete dynamical picture of the drug’s impact on DNA.
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This study was carried out for both H2O- and D2O-hydrated DNA (B-DNA, r.h. >80%) with
and without the drug (Pd2Spm and cisplatin), as well as for lyophilised DNA. INS, QENS and
complementary optical vibrational spectroscopy techniques—FTIR in attenuated total reflectance
mode (FTIR-ATR) and Raman microspectroscopy (microRaman)—were applied, for gathering accurate
information on the drug’s impact on DNA’s structural and dynamical profiles.

2. Materials and Methods

The list of chemicals and the experimental description regarding the synthesis and characterisation
of the Pd2Spm complex are described in the Supporting Information, together with details of the INS,
QENS, FTIR-ATR and microRaman data acquisition and analysis.

2.1. Preparation of Drug-DNA Samples

Hydrated DNA samples were analysed, both untreated and drug-treated—with Pd2Spm and the
clinically used mononuclear Pt-drug cisplatin (as a reference). The drug concentration (8 µM) was
chosen according to the IC50 values (drug dosage leading to 50% cell death) previously measured
for cisplatin and Pd2Spm in distinct human cancer cell lines [8,14]. In addition, dry DNA samples,
in powder form and without drug, were also probed, lyophilised immediately before the measurements,
hereafter represented by DNAlyoph.

Fibrous commercial DNA (from calf-thymus) was used to prepare the samples without and with
drug, the latter made by solubilising 250 mg of DNA fibres in 125 mL of either cisplatin or Pd2Spm
solution at 8 µM with gentle shake for ~24 h (at 4 ◦C). Aqueous drug solutions were used (instead
of saline solutions) in order to ensure a prompt hydrolysis of the chlorides, which is essential for
drug activation prior to DNA binding. 1/10 volumes of 3 M-sodium acetate and 3 volumes of ethanol
(≥99.8%) were then added, followed by a 2 h incubation (at −20 ◦C). The solutions were centrifuged at
4075× g for 20 min (4 ◦C), the pellets were washed twice with ethanol (70%) and centrifuged again
(under the same conditions).

H2O- and D2O-hydrated DNA were prepared at a r.h. >80%, to ensure the stability of the native
B conformation, with a complete primary hydration shell, yielding the samples now denoted as
H2O-DNAhyd and D2O-DNAhyd, respectively. This was achieved following a previously reported
procedure [12]: the DNA was placed in a desiccator (closed environment) with a saturated KCl solution
(in either H2O or D2O) until attaining a stable weight (corresponding to a r.h. of 83.62–84.34%, at 25 ◦C).

2.2. FTIR-ATR

The FTIR-ATR spectra of H2O-DNAhyd, D2O-DNAhyd (with and without drug, either cisplatin or
Pd2Spm-8 µM) and DNAlyoph were recorded at the Unidade de I&D Química-Física Molecular of the
University of Coimbra (QFM-UC, Coimbra, Portugal), using a Bruker Optics Vertex 70 spectrometer
(see details in the Supporting Information).

2.3. MicroRaman

The Raman microspectroscopy data of H2O-DNAhyd, D2O-DNAhyd and DNAlyoph (with and
without drug) were acquired at QFM-UC (Portugal), in a WITec confocal Raman microscope system
alpha300 R coupled to an Ultra-High-Throughput-Spectrometer UHTS 300 VIS-NIR, using the 532 nm
line of a diode laser as the exciting radiation (see details in the Supporting Information).

2.4. INS

INS data were acquired at the ISIS Pulsed Neutron and Muon Source of the STFC Rutherford
Appleton Laboratory (Didcot, United Kingdom), using the time-of-flight, high-resolution broad range
spectrometer TOSCA [44–46] (see details in the Supporting Information). H2O-DNAhyd, D2O-DNAhyd

(with and without drug) and DNAlyoph were measured. All data were taken at low temperature < 10 K.
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The spectrum of the empty aluminium can was subtracted from the measured data for all DNA
samples, with a view to better identify the low frequency vibrational features of the nucleic acid (which
could be overlapped with the bands from the Al container).

2.5. QENS

The QENS experiments were performed on the High-Flux Backscattering spectrometer (HFBS) [47]
(see details in the Supporting Information) at the NCNR (Gaithersburg, Maryland, MD, USA).
Measurements were carried out for H2O-DNAhyd and D2O-DNAhyd (with and without drug) at low
temperature (<10K) and at 298 K. A constant hydration degree was used (r.h. > 80%) to ensure that the
measured variations in the QENS profiles were solely due to the effect of the drug and not to transitions
induced by differences in the macromolecule’s hydration.

Fitting of the QENS spectra was performed with the program DAVE (version 2.6, developed at
the National Institute of Standards and Technology (NIST) Center for Neutron Research (Gaithersburg,
Maryland, MD, USA) [48] (see details in the Supporting Information).

3. Results and Discussion

This study aims to achieve detailed information on the mode of action of the dinuclear
Pd(II)-spermine anticancer agent Pd2Spm, in particular, regarding its effect on DNA’s conformational
and dynamical preferences mediated by an impact on the nucleic acid’s hydration layer (leading to
cytotoxicity). This comes as a continuation of previous studies of Pd2Spm-DNA interplay, using QENS
coupled to synchrotron-based Fourier transform infrared spectroscopy (SR-FTIR) and extended X-ray
absorption fine structure (SR-EXAFS) [12], that provided structural information as well as dynamical
data at the picosecond timescale: from the drug-prompted changes in DNA’s conformation and the
local environment of the absorbing Pd(II) centre in the drug-DNA adducts, to the drug-triggered
variations in water mobility within DNA’s hydration shell. This complementary work probed the drug
effect on DNA in a twofold way (Scheme 1): (i) assessing the drug impact on the nucleic acid’s slow
dynamical processes (by QENS, in the nanosecond timeframe), such as motions from the phosphoribose
backbone and the restricted hydration waters that were not observable in the picosecond timescale
of the previous experiments; (ii) detecting (through Raman, FTIR and INS) DNA’s conformational
changes, expected to be triggered by drug binding.
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3.1. Drug Effect on DNA Conformation

The infrared fingerprint region of the DNA samples (both H2O- and D2O-hydrated) clearly
revealed drug-prompted spectral changes, namely regarding the bands from the nucleic acid’s
phosphates (specifically ν(OPO), at ca. 860 cm−1), and from the amine and carbonyl groups (between
1600 and 1750 cm−1) (Figure 1). In particular, the 1710/1660 cm−1 peak ratio (ν(C=O)/δ(NH2)), which is
known to increase with DNA’s hydration level [49], was found to be clearly affected by drug exposure
mainly for the Pd2Spm-treated sample: varying from 0.966 for H2O-DNA to 0.918 and 1.036 for
(H2O-DNA + cisplatin) and (H2O-DNA + Pd2Spm), respectively (Figure 1A). Comparison between
the FTIR spectra of H2O-DNAhyd and D2O-DNAhyd (Figure 1A,B) shows major differences in the 1600
to 1750 cm−1 interval upon deuteration of the amine labile groups, as well as in the 1350 to 1500 cm−1

range that comprises the ν(CC) signals from the purine and pyrimidine rings.
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Figure 1. FTIR-ATR spectra (500–1750 cm−1) of DNAlyoph, H2O-DNAhyd (A) and D2O-DNAhyd (B),
untreated and upon incubation (for 48 h) with cisplatin-8 µM or Pd2Spm-8 µM. (The main spectral
changes are marked by dotted lines).

The high wavenumber FTIR signature of lyophilised DNA, comprising the CH stretching bands
(2800–2950 cm−1) as well as the signals from the ν(NH) and ν(OH) modes (ca. 3200–3420 cm−1),
revealed a steady deviation of the ν(OH) band upon drug treatment: from 3400 cm−1 to 3406 and
3416 cm−1 for untreated and cisplatin- or Pd2Spm-exposed H2O-DNAhyd, respectively. This suggests
a drug impact on the degree of hydrogen bonding within DNA’s hydration layer and between this
and the biomolecule itself, which differs for each type of agent currently investigated—mononuclear
Pt-compound (cisplatin) versus dinuclear Pd-complex (Pd2Spm). This disruption of the H-bonding
network has been previously reported to have a significant effect on DNA’s vibrational profile [30].



Molecules 2020, 25, 246 6 of 19

The drug-prompted effects on DNA’s conformation and hydration layer organisation were also
reflected in the Raman spectra of drug-free versus drug-incubated DNAhyd, which showed variations
mainly associated with the features ascribed to υ(OPO) (at 830 cm−1) and ν(CC)/(CO)ring (namely,
at approximately 756, 970, 1450 and 1530 cm−1), more noticeable for the D2O-hydrated samples
(Figure 2).

Molecules 2020, 25, 246 6 of 20 

 

mainly associated with the features ascribed to υ(OPO) (at 830 cm−1) and ν(CC)/(CO)ring (namely, at 
approximately 756, 970, 1450 and 1530 cm−1), more noticeable for the D2O-hydrated samples (Figure 2). 

 
Figure 2. Raman spectra (250–1750 cm−1) of DNAlyoph, H2O-DNAhyd (A) and D2O-DNAhyd (B), 
untreated and upon incubation (for 48 h) with cisplatin-8 μM or Pd2Spm-8 μM. (The main spectral 
changes are marked by dotted lines.) 

These results are in accordance with previous microRaman and synchrotron-based FTIR studies 
on several human cancer cell lines as well as on DNA [11–13,15], that unveiled specific spectral 
biomarkers of the drug interplay with the nucleic acid (e.g., ν(OPO) and δ(NH2)) both through direct 
coordination to the double helix and via interference with the surrounding water molecules. The 
present data thus supports the covalent binding of these type of metal-based agents to DNA 
(predominantly at the N7 atoms from adenine and guanine) leading to a disruption of the double 
helix base pairing (which involves the corresponding NH2 groups), and to concomitant changes in 
the biomolecule’s backbone (reflected in the phosphate vibrational bands). 

Drug-exposed DNA was probed by INS for the first time; this technique having been previously 
applied to hydrated DNA [30,32,50], but never for characterising the effect of a drug on the 
biopolymer. Following previous QENS experiments that revealed a clear effect of these anticancer 
compounds on the dynamical behaviour of DNA through an impact on its hydration layer, the 
present INS experiments aimed to monitor drug-elicited structural changes in the nucleic acid as well 
as within its hydration shell. 

The INS spectra of H2O-DNAhyd is represented in Figure 3: the low wavenumber, acoustic region 
(below 120 cm−1) comprises the lattice modes; the translational area (160–330 cm−1) contains the ring 
puckering and intermolecular H-bond vibrations (water-water and water-DNA); and the very intense 
water librational band lies between 400 and 950 cm−1, with a maximum at ~550 cm−1, in good 
accordance with the results previously obtained by the authors for intracellular water in human 
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untreated and upon incubation (for 48 h) with cisplatin-8 µM or Pd2Spm-8 µM. (The main spectral
changes are marked by dotted lines.)

These results are in accordance with previous microRaman and synchrotron-based FTIR studies on
several human cancer cell lines as well as on DNA [11–13,15], that unveiled specific spectral biomarkers
of the drug interplay with the nucleic acid (e.g., ν(OPO) and δ(NH2)) both through direct coordination
to the double helix and via interference with the surrounding water molecules. The present data
thus supports the covalent binding of these type of metal-based agents to DNA (predominantly at
the N7 atoms from adenine and guanine) leading to a disruption of the double helix base pairing
(which involves the corresponding NH2 groups), and to concomitant changes in the biomolecule’s
backbone (reflected in the phosphate vibrational bands).

Drug-exposed DNA was probed by INS for the first time; this technique having been previously
applied to hydrated DNA [30,32,50], but never for characterising the effect of a drug on the biopolymer.
Following previous QENS experiments that revealed a clear effect of these anticancer compounds
on the dynamical behaviour of DNA through an impact on its hydration layer, the present INS
experiments aimed to monitor drug-elicited structural changes in the nucleic acid as well as within its
hydration shell.
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The INS spectra of H2O-DNAhyd is represented in Figure 3: the low wavenumber, acoustic region
(below 120 cm−1) comprises the lattice modes; the translational area (160–330 cm−1) contains the
ring puckering and intermolecular H-bond vibrations (water-water and water-DNA); and the very
intense water librational band lies between 400 and 950 cm−1, with a maximum at ~550 cm−1, in good
accordance with the results previously obtained by the authors for intracellular water in human
breast cancer cells [15]. The lowest energy signal was reported to be associated to DNA’s hydration
level [30,34], the currently observed band at ~78 cm−1 being consistent with a highly hydrated sample
(>80%). The region between 1250 and 1500 cm−1 comprises a clear set of bands mainly due to CH2

deformations and ring stretching modes from the purine and pyrimidine bases, which have not been
reported before (and could be presently detected thanks to the extremely high sensitivity of the recently
upgraded TOSCA spectrometer [44,45,51]. In addition, a signal was detected at 880 cm−1 ascribed to
υ(CC) from the ribose rings, and the δ(H2O)sciss mode was distinctly observed at 1684 cm−1. The INS
profile of H2O-DNAhyd upon subtraction of lyophilised DNA is also depicted in Figure 3, allowing to
better discriminate the features from DNA’s hydration water, i.e., the bands from water molecules
directly interacting with the nucleic acid’s double helix: acoustic modes at ca. 78 cm−1, water–water
hydrogen bond vibrations at 197 cm−1, and the broad and intense water librational signal peaking
at 545 cm−1 (that does not display the left-edge characteristic of ice). In addition, the deformation
band from water is clearly detected at l684 cm−1. In turn, the vibrational profile of D2O-DNAhyd (with
a deuterated hydration layer) clearly reveals the characteristic bands of the nucleic acid molecule,
since the intense water librational mode is absent (Figure 3) and displays an expected resemblance to
the vibrational signature of the biomass depicted for DNAlyoph.

Interestingly, while the water librational band formerly detected for intracellular water in human
cancer cells [15] was identical to the H-bonded tetrahedral network of ice Ih, the librational feature
presently observed for H2O-DNAhyd is similar to that detected for high density amorphous (HDA) ice
(Figure 4), which differs significantly from ordinary ice Ih: the two distinct peaks at 224 and 304 cm−1

characteristic of the H-bonded network of water in hexagonal ice are absent, and the librational lower
energy edge is red-shifted relative to ice Ih (483 cm−1 as compared to 552 cm−1, respectively) [52,53].
This clearly evidences the different organisation of water molecules within a biomolecule’s hydration
layer (forming a quite rigid H-bonded network) when compared with the water arrangement in the
cellular cytoplasm (intracellular medium), which is more similar to bulk water. In the hydration shell,
water molecules in contact with the nucleic acid are subject to stronger interactions, such as electrostatic
close-contacts with the hydrophilic groups at the surface of DNA’s double helix.
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Figure 4. INS spectra (at 10 K) of H2O-DNAhyd and human breast cancer cells (MDA-MB-231) [15].
The INS data for hexagonal ice (Ih) and high density amorphous ice (HDA) [52,53] are also shown
for comparison.

Upon incubation with the drugs (Pd2Spm and cisplatin at 8 µM, for 48 h), clear changes
were detected in the INS profile of D2O-DNAhyd (Figure 5 and Figure S1/Supplementary Material),
revealing both the drug effect on the nucleic acid and variations in the drug molecule prompted by
interaction with DNA, which takes place primarily via covalent binding to the nitrogen atoms of the
purine and pyrimidine bases. For Pd2Spm, in particular, the spectral profile of the drug-exposed DNA
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reveals a few characteristic bands from the Pd-complex, some of them shifted relative to the free complex
due to drug-binding to the double helix, namely δ(N-Pd-N) and ρ(NH2) which were observed at 264
and 716/730/749 cm−1 as compared to 286 and 707/725/745 cm−1 in unbound Pd2Spm [17], and δ(NH2)
that was detected at 1570 cm−1 in Pd2Spm–D2O-DNAhyd as opposed to 1600 cm−1 in free Pd2Spm.
Additionally, the modes involving the metal-to-chloride bonds within the drug, namely δ(N-Pd-Cl) and
ν(Pd-Cl) at 239 and 295/361 cm−1, respectively, were found to disappear upon interaction with DNA, as
expected upon intracellular Cl hydrolysis prior to DNA metallation. Variations were also evidenced in
DNA’s typical features, particularly those assigned to the phosphate groups: ν(OPO) shifted from 873
to 897 cm−1 upon drug exposure, νas(PO2) varied from 1191 to 1216 cm−1 and νs(PO2) (at 1092 cm−1)
was overruled by the drug’sω(NH2) band. The nucleic acid’s lattice modes and intrahelical vibrations
(DNA breathing), detected below 500 cm−1, also revealed changes upon drug treatment as expected
in the light of the known drug-elicited conformational rearrangement of the biomolecule: severe
damage of the native B-conformation, through disruption of the double helix H-bonded base-pairs
(DNA unzipping) and of the hydrophobic interactions between base rings (purines and pyrimidines).
Actually, the low frequency DNA modes, which are critical to biological function and cooperative in
nature, are very sensitive to structural reorientations, and therefore particularly prone to be affected
by drug interaction. On the other hand, the vibrational signature within the 1220–1500 cm−1 interval
(ν(CC), δ(NH2) and δ(CH2) DNA modes) was not significantly disturbed by drug-binding.
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Figure 5. INS spectra (at 10 K) of D2O-DNAhyd untreated and upon incubation (for 48 h) with
Pd2Spm-8 µM. The spectrum of the free drug is also shown [17]. (The main drug-triggered vibrational
changes are shown by red and black dashed lines and wavenumbers for DNA’s and Pd2Spm vibrational
modes, respectively).
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3.2. Drug Effect on DNA Dynamics

Apart from the conventional interaction of metal-based agents with DNA through covalent
binding (leading to conformational rearrangements), these types of drugs have been previously shown
to cause a significant reorganisation of the water molecules surrounding the biomolecule, prompting
an increased mobility within its hydration layer [12,15,16,19]. Upon these drug-elicited perturbations,
DNA is rendered less-functional or fully nonfunctional, which leads to cell growth inhibition and
cell death. The dynamical behaviour of water is, therefore, a sensitive and reliable probe of changes
induced by an external agent. It was formerly shown that deuteration of DNA’s hydration shell
or the absence of a hydration layer (in lyophilised DNA samples) hinder the drug impact on the
macromolecule [12], evidencing the key role of mobile hydrogens and hydration water molecules as
key mediators in drug interaction with the biopolymer leading to cytotoxicity. Actually, hydration shell
dynamics and conformational reorganisation of the biomolecule have been reported to be intertwined,
the characteristic DNA dynamic transition (at 222 ± 2 K [54]) being driven by mobility changes within
its hydration shell [38,54,55]. Furthermore, the dynamical processes within DNA’s hydration shell,
containing a significant population of rapidly diffusing water molecules, are modified by the boundary
conditions set by the biomolecule. It spans a broad range of timescales (from the ns to the ps) due
to the high heterogeneity of DNA’s topography and chemical nature of its exposed sites, and to the
diversity of water-biopolymer interactions (e.g., electrostatics, hydrophobic and H-bonding) [56,57].

In hydrated DNA there are several dynamical components to consider in the pico-nanosecond
timescales: (i) reorientation of water molecules in the primary hydration layer (fast translations
according to a non-diffusive jump reorientation model [55,58,59]); (ii) fast localised motions, namely
rotations ascribed to CH3 and NH2 groups of the molecule (not involved in hydrogen-bonds);
(iii) diffusive-like motions of the hydration water molecules confined within DNA’s “spine of
hydration”—highly ordered water molecules that penetrate deeply into the minor groove of B-DNA
duplexes, mainly in the narrow AT-rich region, with a relatively long residence time [29,60–63]
(the analogous to the internal hydration pockets of globular proteins); and (iv) global relaxation of the
nucleic acid’s backbone—slow cooperative motions of the base-pairs and phosphoribose segments.
Whereas components (i) and (ii) occur in the picosecond timescale and have been previously studied [12],
(iii) and (iv) are slower motions that take place mostly in the nanosecond timescale. These will be
discussed below.

Although the incoherent scattering signal measured for the H2O-DNAhyd samples is due to
both the water hydrogens from the spine of hydration and to the molecule’s backbone (non-labile
hydrogens), the QENS spectrum obtained for D2O-DNAhyd reflects only the latter (all the waters in
the external hydration sheath being deuterated). Thus, as expected, D2O-DNAhyd displays slower
dynamics than H2O-DNAhyd (Figure 6A), the difference in the QENS profiles being ascribed to the
motions from the water molecules within DNA’s minor groove. Therefore, the drug’s effect on the
nucleic acid’s inner hydration (constrained water molecules within the minor groove) was probed in
H2O-DNAhyd while the impact on the backbone dynamics was monitored in D2O-DNAhyd.
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Figure 6. QENS profiles (298 K, averaged over the entire Q range, logarithmic scale) for: (A) H2O-DNAhyd

vs D2O-DNAhyd; (B,C) untreated and drug-exposed (8 µM) D2O-DNAhyd and H2O-DNAhyd,
respectively.The spectra were normalised to maximum peak intensity. The black dashed line represents
the instrument resolution.

The QENS profiles of drug-free and drug-exposed D2O- and H2O-DNAhyd are represented in
Figure 6B,C, whereas Figure 7A–D comprises the corresponding elastic scan plots. In elastic scan
mode, only the elastically scattered neutrons are recorded and any drop in intensity with temperature
indicates an onset of dynamical modes that can be resolved by the instrument. These results
evidence clear distinct effects of the two tested drugs (cisplatin and Pd2Spm) on both DNA and
water, at the nanosecond timescale. Regarding the impact on DNA’s backbone, the Pd-agent has a
much larger effect (D2O-DNAhyd, Figures 6B and 7A,C) prompting a significantly increased mobility,
as compared with cisplatin that has a very weak impact (as also evidenced from the mean square
displacements, determined from the elastic fixed window scans of the incoherent neutron scattering,
Figure S2/Supplementary Material). This is hypothesised to be due to the predominant effect of
the Pd2Spm on DNA’s backbone—these types of dinuclear complexes are capable of establishing
two covalent bonds between their metal centres and DNA bases [11], whereas cisplatin and similar
mononuclear agents can only interact with the nucleic acid via one covalent bond per drug molecule.
Thus, the distinct mode of action of the mononuclear (Pt) versus dinuclear (Pd) drugs currently probed
is clearly reflected in these experimental results: while cisplatin binds preferentially to the N7 atoms of
adenine and guanine, yielding short-range intrastrand adducts [64], Pd2Spm’s interaction with DNA
(at the same coordination sites) gives rise to dinuclear long-range intra- and interstrand interactions,
therefore prompting a greater conformational disruption in the nucleic acid (in agreement with the
higher cytotoxicity formerly measured for this compound against several types of human cancer cells,
as compared to cisplatin [8,9]).
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Figure 7C,D also indicates that the secondary macromolecular relaxations of DNA, not very
closely linked to water, activate quite early (at ~125 K) and are not affected by exposure to the drugs.
The main dynamical transition (as referred to in the literature, highly correlated to the water dynamics
and the fragile-to-strong crossover at 222 ± 2 K [28,54,65]) is also not strongly influenced by the drugs,
however the temperature at which it occurs changes slightly. In the untreated samples this transition
takes place at ~222 K and is similar in the Pd2Spm-treated samples. However, cisplatin lowers the
transition temperature to ~200 K (Figure 7B). These observations agree with the stronger impact of the
Pt-drug on DNA’s hydration shell (as compared to Pd2Spm), and corroborate the recognised influence
of the hydration layer on a biomolecule’s dynamical profile—variations in the mobility of the hydration
water driving the dynamic transition of the biopolymer [38,54,55].

We now discuss the influence of these drugs on the water dynamics. The response is in fact
opposite to that for DNA, Pt-based cisplatin showing a much more significant effect on the hydration
water dynamics than Pd2Spm (H2O-DNAhyd, Figures 6C and 7B,D). These results suggest that cisplatin
acts on the nucleic acid mainly via its hydration waters (in the minor groove) while Pd2Spm has an
effect mostly mediated by dynamical changes in the biomolecule’s backbone as explained previously.
The current results, at the nanosecond timescale, are in accordance with former measurements
performed by the authors on the dynamics of water at the picosecond time window that revealed a
stronger impact of cisplatin on DNA’s hydration layer relative to Pd2Spm [12]. Therefore, cisplatin has
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a strong disruptive effect on the organised water shell (inducing a higher flexibility as compared to
drug-free DNA).

Furthermore, at temperatures below 200 K, the data for H2O-DNAhyd with both drugs (elastic
scan plots in Figure 7B and corresponding mean square displacements in Figure S2/Supplementary
Material) reflect a dynamical behaviour that is even slower than the one corresponding to drug-free
DNA. This suggests that the drugs inhibit the mobility of the supercooled/confined water, probably the
hydration water molecules that are more strongly associated with the biomolecule.

The experimental QENS data was fit using one δ-function (elastic component) convoluted with
the line shape of the instrument and Lorentzian functions to represent the quasielastic contributions
(as well as a sloping background): while D2O-DNA was fitted with one narrow Lorentzian (Γglobal)
ascribed to the slow hydrogen motions of the biomolecule’s backbone, a second, broader, Lorentzian
(Γlocal) was added in H2O-DNA to represent the faster dynamics of the water molecules within
DNA’s spine of hydration (Figure S3/Supplementary Material). The very slow global motions of the
macromolecule were defined by a Delta function (slower than the longest observable time determined
by the instrument resolution).

The Q-dependence of the full width at half-maximum (FWHM = Γ) of the Lorentzian functions
representing the dynamical components from DNA’s backbone and water molecules constrained
within the minor groove are represented in Figure 8. Although the former displays a Q-dependent
behaviour, being described appropriately by a translational jump reorientation model (according
to Equation (7), Supplementary Material), the spine of hydration waters exhibit a Q-independent
diffusive dynamics in accordance with their restricted mobility (i.e., they are localised in space) [66].
Actually, while for unconstrained hydration water molecules, binding almost exclusively to the outer
surface of the double helix, a non-diffusive jump reorientation model accurately describes the water
translational dynamics as previously shown [12]; this model fails to represent the motions of the H2O
molecules confined within DNA’s spine of hydration. In a biological matrix, these water molecules
can exchange with the external medium (cellular cytoplasm) and the kinetics of this water exchange
should influence the binding of drugs to the nucleic acid.
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Figure 8. Variation of the full widths at half-maximum (FWHM) with Q2 for untreated, and Pd2Spm- and
cisplatin-treated H2O-DNAhyd (at 8µM and 298 K): Lorentzian functions representing the slow backbone
dynamics (Q-dependent) (A) and the water motions within the spine of hydration (Q-independent) (B).
Error bars throughout the text represent one standard deviation unless defined otherwise.

Table 1 comprises the values of the diffusion coefficients (DT) and residence times (τT) for the
slow dynamics of DNA’s backbone and the motions of the water molecules within DNA’s spine of
hydration, for the two drugs tested (at 8 µM and 298 K). These results quantitatively reflect the effect of
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the metal-based agents on DNA’s dynamical behaviour in the nanosecond timeframe. The flexibility of
the molecule’s backbone is significantly increased by Pd2Spm binding, as opposed to cisplatin—DT

and τT values equal to 1.0621 ± 0.0291 × 10−5 cm2 s−1/0.6607 ± 0.0221 ns, 1.2267 ± 0.0962 × 10−5 cm2

s−1/0.4796 ± 0.0594 ns and 0.5532 ± 0.03217 × 10−5 cm2 s−1/0.8557 ± 0.0784 ns, respectively, for drug-free,
Pd2Spm-D2O-DNAhyd and cisplatin-D2O-DNAhyd. An opposite trend was found for the faster water
motions within DNA’s spine of hydration, which are rendered faster by cisplatin while they are only
slightly less mobile in the presence of Pd2Spm: τT equal to 0.1995 ± 0.0223, 0.2067 ± 0.0112 and
0.1550 ± 0.0173 ns for drug-free, Pd2Spm- and cisplatin-exposed H2O-DNAhyd, respectively. This is
in accordance with the distinct predominant effect of each drug either on DNA’s backbone or on its
minor groove hydration, as reflected in the respective QENS profiles (Figure 7A,B). Interestingly, the
significant Pd2Spm-prompted perturbations of the biomolecule’s backbone were found to have a small
effect on the water dynamics within the confined hydration pockets (minor groove).

Table 1. Translational diffusion coefficients (DT) and relaxation times (τT) of water for untreated
and Pd2Spm- and cisplatin-treated (at 8 µM) D2O-DNAhyd and H2O-DNAhyd (at 298 K) for the
dynamics of DNA’s backbone (Q-dependent) and the water motions within the spine of hydration
(Q-independent). The translational diffusion coefficients and relaxation times of hydration water and
fast localised motions in the picosecond timescale, formerly obtained for these systems, are also shown
(shaded columns).

Sample Backbone H2O/Spine
Hydration H2O/Hydration Shell a Fast Localised

Motions a

DT (×10−5 cm2 s−1) τT (ns) τT (ns) DT (×10−5 cm2 s−1) τT (ps) τT (ps)
D2O-DNAhyd 1.0621 ± 0.0291 0.6607 ± 0.0221 _ _ _ _

D2O-DNAhyd + cisplatin 0.5532 ± 0.0322 0.8557 ± 0.0784 _ _ _ _
D2O-DNAhyd + Pd2Spm 1.2267 ± 0.0962 0.4796 ± 0.0594 _ _ _ _

H2O-DNAhyd 1.0621 ± 0.0291 0.6607 ± 0.0221 0.1995 ± 0.0223 0.723 ± 0.002 10.13 ± 0.32 3.591 ± 0.006
H2O-DNAhyd + cisplatin 0.5532 ± 0.0322 0.8557 ± 0.0784 0.1550 ± 0.0173 0.901 ± 0.004 7.40 ± 0.36 3.270 ± 0.003
H2O-DNAhyd + Pd2Spm 1.2267 ± 0.0962 0.4796 ± 0.0594 0.2067 ± 0.0112 0.744 ± 0.004 8.38 ± 0.86 3.387 ± 0.002

a From ref. [12].

The results from this work are in line with previous nuclear magnetic relaxation dispersion
studies on hydrated DNA, that report residence times shorter than 1 ns for the water molecules within
the minor groove spine of hydration—approximately 0.2 ns at 27 ◦C and ca. 0.6 ns at 10 ◦C [62].
These values are much longer than those from DNA’s external hydration shell—10 ps [12,32] and
between 7.4 and 8.4 ps for drug-exposed DNA [12], which, in turn, are one order of magnitude higher
than the correlation time for bulk water (1.25 ps [67]) reflecting the greatly reduced mobility of water
molecules adsorbed to DNA’s surface.

4. Conclusions

The impact of a new metal-based anticancer agent (Pd2Spm) on DNA was studied, in both H2O-
and D2O-hydrated samples, and compared with the clinically used Pt-drug cisplatin. Conventional
and unconventional drug-target interactions were probed, respectively, through covalent binding and
via interference with the hydration waters. The combined use of QENS and complementary vibrational
spectroscopy techniques (FTIR-ATR, microRaman and INS) allowed us to obtain detailed data on the
drug-triggered changes in DNA at the conformational and dynamic levels.

Drug-induced spectral changes were clearly detected by both FTIR and Raman (in H2O- and
D2O-DNAhyd), mainly in the features assigned to the phosphates, and the amine and carbonyl groups
from the nitrogenous bases. In addition, the FTIR data revealed a different drug impact on the degree
of hydrogen bonding within DNA’s hydration layer, as well as between this and the biomolecule itself.
The INS data obtained for untreated and drug treated-DNA allowed to unveil changes in both the drug
and the target: regarding the former, the vibrational modes associated to the metal-to-chloride bonds were
found to disappear upon DNA binding; for the latter, the most significant variations were seen in the
bands from the phosphate group and the low frequency DNA vibrations (lattice and breathing modes).
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In the light of previous studies by the authors that showed a drug impact on the picosecond
dynamics of the water molecules at the surface of hydrated DNA, the current QENS measurements in
the nanosecond timescale probed the slower motions of the nucleic acid’s backbone and of the water
molecules constrained within its “spine of hydration”, expected to be affected by these DNA-targeting
compounds. Clearly distinct effects were observed for cisplatin and Pd2Spm, the former having
a predominant impact on DNA’s spine of hydration while the latter had a higher influence on the
backbone dynamics.

This innovative assessment of the impact of a chemotherapeutic agent on the dynamics of vital
biomolecules (such as DNA) through an effect on their hydration layers, as well as on their native
structure, is key for a thorough understanding of the particular mechanism of action of dinuclear metal
agents such as Pd2Spm. This will improve the understanding of the molecular basis of cytotoxicity of
these kinds of antitumour drugs, thus contributing to the design of chemotherapeutic agents with
optimised efficacy, that may act on more than one target: (i) directly binding to DNA, causing disruption
of its native conformation and prompting biofunctional disability; (ii) interacting with its hydration
waters (both at the surface and within inner pockets) eliciting changes in the biopolymer’s dynamical
profile. Thus, apart from the generally accepted DNA drug-binding sites (purine and pyrimidine
bases), water in the biopolymer’s hydration layers may constitute an important and non-negligible
therapeutic target. Both effects should be responsible for a disruption of DNA’s functional conformation,
thus triggering cell growth inhibition and death.

Supplementary Materials: The following are available online at, Figure S1: INS spectra (at 10 K) of D2O-DNAhyd
untreated and upon incubation (for 48 h) with cisplatin-8 µM. (The main drug-triggered vibrational changes in DNA
are shown by dashed lines). Figure S2: Temperature variation of the mean-squared displacements for untreated and
drug-exposed (8 µM) D2O- and H2O-DNAhyd. Figure S3: QENS spectra (298 K) for H2O-DNAhyd—untreated (A)
and Pd2Spm-treated (8 µM) (B)—fitted using two Lorentzians and one Delta functions, at some typical Q values.
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