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Abstract: The aggregation of a polypeptide chain into amyloid fibrils and their accumulation and
deposition into insoluble plaques and intracellular inclusions is the hallmark of several misfolding
diseases known as amyloidoses. Alzheimer′s, Parkinson′s and Huntington’s diseases are some of
the approximately 50 amyloid diseases described to date. The identification and characterization of
the molecular species critical for amyloid formation and disease development have been the focus
of intense scrutiny. Methods such as X-ray and electron diffraction, solid-state nuclear magnetic
resonance spectroscopy (ssNMR) and cryo-electron microscopy (cryo-EM) have been extensively used
and they have contributed to shed a new light onto the structure of amyloid, revealing a multiplicity
of polymorphic structures that generally fit the cross-β amyloid motif. The development of rational
therapeutic approaches against these debilitating and increasingly frequent misfolding diseases
requires a thorough understanding of the molecular mechanisms underlying the amyloid cascade.
Here, we review the current knowledge on amyloid fibril formation for several proteins and peptides
from a kinetic and thermodynamic point of view, the structure of the molecular species involved in
the amyloidogenic process, and the origin of their cytotoxicity.

Keywords: misfolding diseases; amyloidosis; oligomers; aggregates; aggregation; aggregation
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1. Background

The conversion of normally soluble proteins into insoluble and highly stable amyloid deposits has
become the focus of attention by researchers from diverse scientific fields, from physics to chemistry,
from biology to medicine. This interest results from the recognition that many of the diseases related
with amyloid formation are amongst the most common and debilitating disorders of the modern
era [1,2]. Many of these disorders are strongly associated with ageing, such as Alzheimer’s disease
(AD) and wild-type TTR amyloidosis (ATTRwt), formerly known as senile systemic amyloidosis (SSA).
Alzheimer’s disease affects approximately 50 million people worldwide and it is estimated that this
number will exceed 150 million in 2050 [3]. Wild-type TTR amyloidosis affects more than 25% of people
over 80 years old, and the disease is becoming more common due to the fast growth of the average
age of world population and the increased awareness of medical doctors and positive diagnosis of
the disease [4,5]. Presently, there are approximately 50 known amyloid disorders generally referred
as protein conformational diseases, misfolding diseases or amyloidosis, with a multitude of distinct
symptoms, which are associated with the misfolding and aggregation of several peptides or normally
soluble and functional proteins. Table 1 lists some of the amyloid diseases and associated proteins that
have been identified to date [1,2]. In the case of local amyloidosis, the amyloid deposits are observed
in the organ/tissue where the precursor protein is synthesized; whereas in systemic amyloidosis, the
deposition of aggregates and fibrils occurs at locations different than the sites where the precursor
protein is expressed [6,7].
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Table 1. Human diseases associated with protein misfolding and amyloid aggregation [1,2].

Disease Precursor Protein Polypeptide Length (n◦ of Residues) Structural Organization of Precursor

Neurodegenerative Diseases

Alzheimer’s disease Amyloid-β variants 37–44 IDP

Spongiform encephalopathies Prion protein or its fragments 208 IDP and α-helical

Parkinson’s disease α-synuclein 140 IDP

Frontotemporal dementia with
Parkinsonism Tau 352–441 IDP

Amyotrophic lateral sclerosis Superoxide dismutase 1 153 β-sheet

Huntington’s disease Huntingtin with polyQ
expansion 3144 Mostly IDP

Neuroferritinopathy Ferritin 175 or 183 α-helical

Familial British dementia ABri 34 IDP

Familial Danish dementia ADan 34 IDP

Familial amyloid polyneuropathy Transthyretin variants 127 β-sheet

Non-Neuropathic Systemic Amyloidosis

Amyloid light chain amyloidosis Immunoglobulin light chains
or its fragments ~90 β-sheet

Amyloid heavy chain amyloidosis Immunoglobulin heavy chains
or its fragments ~220 β-sheet

Amyloid A amyloidosis Serum amyloid A protein
fragments 45–104 α-helical and unknown fold

Familial Mediterranean fever Serum amyloid A protein
fragments 45–104 α-helical and unknown fold

Apolipoprotein A1 amyloidosis Apo A-1 fragments 80–93 IDP

Senile systemic amyloidosis Wild-type transthyretin 127 β-sheet

Familial amyloid cardiomyopathy Transthyretin variants 127 β-sheet

Haemodialysis-related amyloidosis β2-microglobulin 99 β-sheet

Lysozyme amyloidosis Lysozyme variants 130 α-helical and β-sheet

Finnish hereditary amyloidosis Fragments of gelsolin variants 53 or 71 IDP

Non-Neuropathic Localized Amyloidosis

Type II diabetes Islet amyloid polypeptide 37 IDP

Injection-localized amyloidosis Insulin 21 and 30 α-helical

Gelatinous drop-like corneal dystrophy Lactoferrin 691 α-helical and β-sheet

Medullary carcinoma of the thyroid Calcitonin 32 IDP

Localized cutaneous amyloidosis Galectin 7 136 β-sheet

Atrial amyloidosis Atrial natriuretic factor 28 IDP

Cataracts γ-crystallins variable β-sheet

IDP: Intrinsically disordered protein.

As the name suggests, protein misfolding is associated with the formation of an altered protein
fold relative to the native structure of a protein. Misfolding can occur as a consequence of several
events [8–13]: (1) mutations in the gene sequence leading to the production of a protein unable
to adopt the native fold; (2) errors in the processes of transcription or translation leading to the
production of modified proteins unable to properly fold; (3) failure of the chaperone machinery;
(4) mistakes on post-translational modifications or intracellular trafficking of proteins; (5) structural
modifications produced by environmental changes; (6) seeding and cross-seeding by pre-formed
aggregates or surfaces. Additionally, protein misfolding generally leads to protein aggregation, with
specific interactions occurring between intermediate molecular species that tend to form large ordered
aggregates, which may evolve into amyloid fibrils which might deposit in the form of insoluble
extracellular plaques or intracellular inclusions.

2. Protein Aggregation

In addition to their native structure that intimately correlates with function, proteins also coexist
in other states, including disordered, partially unfolded, or multiple aggregation assemblies. Figure 1
summarizes the most relevant protein states, from a mechanistic and biological point of view.
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Figure 1. Schematic representation of the variety of conformational states that can be adopted by
a polypeptide chain upon biosynthesis in the ribosome. The non-amyloidogenic pathway includes
the formation of native sates and functional amyloids. The amyloidogenic pathway associated with
pathological states can result from the formation of amorphous aggregates, amyloid aggregates and
fibrils, and native-like aggregates. Adapted from reference [1].

In a functional living system, the multiple conformational states adopted by proteins involve
an extremely complex series of thermodynamic equilibria and kinetic barriers, which ultimately are
defined by the protein amino acid sequence. Although their intrinsic amino acid sequences and
biological environments in which proteins function have co-evolved to preserve proteins in their native
and soluble states (non-amyloidogenic pathway), in some conditions, proteins can interconvert into
non-functional and cytotoxic protein aggregates (amyloidogenic pathway) (Figure 1) [13,14].

Protein aggregation has been shown to involve natively unfolded or intrinsically disordered
systems, such as in amyloid-β (Aβ) peptide in Alzheimer’s disease, or even folded or globular proteins,
such as in transthyretin (TTR) associated amyloidoses, where the misfolding process occurs through
the formation of partially unfolded states (Table 1 and Figure 1). In most cases, the oligomeric species
formed during the amyloidogenic pathway are assemblies of monomeric units. Such aggregates can
adopt highly disordered structures, well-defined fibrils with cross-β structure, or also native-like
conformations, when originated from unfolded, partially unfolded, or folded monomeric states,
respectively (Figure 1). All these types of aggregates have connections with amyloid disorders as they
accumulate in well-characterized pathological states and represent a significant manifestation of the
multiplicity of mechanisms, structures and morphologies observed during protein aggregation and
disease progression (Table 1) [15].

Although the term “amyloid” is often associated with amyloid diseases, the amyloid state can
also be present in functional biological processes and contribute to normal cell and tissue physiology
(Figure 1). Functional amyloids can be found in bacteria, unicellular eukaryotes, fungi, plants,
insects and vertebrates, playing roles as diverse as surface protection and modification, mediation of
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pathogen-host interactions, pigment biosynthesis, homeostasis control, hormone storage and release,
signal transduction, among others [16–19].

3. Amyloid Fibrils

In 1854, Rudolph Virchow found a macroscopic tissue abnormality that exhibited a positive iodine
staining reaction, suggesting the presence of starch or amylin like material (from amylum in Latin and
amylon in Greek). He then suggested that the abnormal deposits could be cellulose in origin and coined
the name “amyloid”. Friedrich and Kekule, in 1859, showed that the deposits were actually protein
aggregates, but the designation remained and is still used today [20]. Thus, abnormal accumulations of
insoluble highly ordered and fibrillar protein structures in tissues and organs, such as in “misfolding
diseases” (Table 1), are known as amyloid fibrils (Figure 1). No sequence, structural or functional
correlations are apparent between many of the proteins that display the ability to form amyloid fibrils.
The number of amino acids is diverse ranging, for example, from 37 to 44 in Aβ peptide to 691 in
lactoferrin (Table 1). Despite these dissimilarities, amyloid fibrils from different protein precursors
share many common structural features, namely, the formation of long, unbranched filaments with a
cross-β structural motif [21–23].

3.1. The Tinctorial Properties of Amyloid Fibrils

From the early days in amyloid research, molecular probes have been used in order to both
characterize the mechanisms of amyloid fibril formation, and detect the presence of amyloid in tissues
and samples, taking advantage of the distinctive structural features and tinctorial properties of the
amyloid material. These molecular probes display changes in spectroscopic properties upon binding
to amyloid fibrils. Usually, they are aromatic heterocyclic compounds, some of which toxic [24]. Congo
red (CR) and thioflavin-T (ThT), shown in Figure 2, are the most commonly used dyes to identify
amyloid material and study amyloid aggregation [25–27].

Since the beginning of the 1920s, Congo red has been used for detection of amyloid fibrils. Upon
binding to amyloid fibrils, CR displays green birefringence under polarized light, which is associated
with a characteristic red shift in the absorbance maximum (from 490 to 512 nm), and presence of a
characteristic shoulder peak at approximately 540 nm [28]. CR is the most commonly applied dye in the
identification of amyloid in ex vivo tissue slices, using mainly polarization microscopy, but also light
microscopy [29] and fluorescence microscopy [30]. However, compared to ThT, CR is less sensitive in
the detection of amyloid fibrils [31]. In addition, CR interferes with the aggregation mechanisms and is
not appropriate for in situ detection, since it is known to inhibit or to enhance amyloid fibril formation
depending on the protein [32–37].

More recently, thioflavin-T became a standard dye for amyloid detection showing fluorescence
enhancement upon interaction with amyloid deposits in tissue sections [38]. ThT fluorescence emission
increases upon binding to amyloid fibrils, with excitation at 450 nm and emission maxima at 482 nm,
as opposed to excitation at 385 nm and emission maxima at 445 nm for the free dye [31].

Besides ThT and CR, other compounds have been also used for the detection of amyloid
fibrils [39–42]. The search for novel, more sensitive and blood–brain barrier crossing dyes for detecting
the initial stages and more toxic oligomeric species involved in fibril formation in vitro, ex vivo
and in vivo is still under way [43–45]. Nevertheless, several related structures or derivatives of
both CR [46–49] and ThT [50–53] have been shown to be quite helpful for both in vitro and ex vivo
identification of amyloid fibrils (Figure 2).

The binding mode of the molecular probes to amyloid fibrils is not fully understood. In the case
of ThT and CR, a large number of studies examined binding modes and suggested the existence of a
binding interface parallel to the long axis of the fibril [54,55].

Features as fibrillar morphology, cross-β structure, and characteristic tinctorial properties are
nowadays accepted as benchmarks for defining “amyloid materials”, and any given protein aggregates
need to display most of them to be classified as such. In a recent recommendation, the International
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Society of Amyloidosis (ISA) nomenclature committee suggests the following classification for
amyloids based on five main classes, in order to distinguish different natural and synthetic amyloid-like
materials: (1) in vivo and ex vivo disease-related fibrils; (2) in vivo and ex vivo functional fibrils; (3)
recombinant fibrils of disease-related proteins or functional amyloid proteins; (4) fibrils from synthetic
or non-disease-related peptides; and (5) fibrils from hydrogels that produce the cross-β diffraction
pattern [56].
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Figure 2. Chemical structures of Congo red, thioflavin-T, and some of their derivatives used in amyloid
fibril detection.

3.2. Structure of Amyloid Fibrils at the Subunit Level

Since the cross-β motif was identified [57], many studies have been performed to characterize
the structure of amyloid fibrils, using different experimental techniques. The combination of all these
data has contributed to reveal the structure of amyloid fibrils on a multi-scale basis and to show how
individual protein subunits can form cross-β structures.

The structural feature which all amyloid fibrils share is the cross-βmotif, characterized by extended
β-sheets with individual β-strands arranged in an orientation perpendicularly to the fibril main axis.
Amyloid fibrils are unbranched structures with diameters ranging from 2 to 20 nm and usually present
several micrometers in length [21,58,59]. The existence of a repeating cross-β structure was first
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demonstrated in the late 1960s by X-ray fiber diffraction studies [60,61], and later synchrotron X-ray
diffraction studies have shown that amyloid fibrils from different amyloid proteins exhibit the same
cross-β diffraction pattern [62]. Characteristic amyloid fibril diffraction patterns show a meridional
reflection at 4.7–4.8 Å corresponding to the hydrogen bonding distances found between paired carbonyl
and amide groups in adjacent β-strands, and an equatorial reflection at 6–11 Å corresponding to the
distance observed between stacked β-sheets [62].

Amyloid fibrils from different origins contain a common cross-β spine formed by a pair of β-sheets
with the facing side chains of the two sheets interdigitated in a steric zipper [63]. Steric zippers are
thus short peptide segments which provide the structural basis for the hierarchical assembly of an
amyloid fibril [63,64]. In this sense, stacks of steric zippers are needed to form the cross-β spine of the
amyloid protofilament (Figure 3) [65], which constitutes the basic unit of the mature fibril, whereas the
rest of the polypeptide chain assumes either native-like or random coil conformation in a peripheral
position to the spine [63,66].
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Nevertheless, significant variations may be found among the structural arrangement of steric
zippers. Assembly of the strands in a sheet produces four patterns of sheet symmetry (parallel
versus antiparallel, and antifacial versus equifacial). These four β-sheet patterns are each capable of
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self-pairing to form cross-β spines. Thus, in total, ten distinct symmetry classes of steric zippers can be
enumerated. These classes are distinguishable by the particular sheet pattern and by the symmetry
operation that relates the pair of sheets (Figure 3) [65].

Mature fibrils also reveal a periodic structure due to the twist of multiple protofilaments around
each other. The helical twist of the protofilaments can give rise to a discernible overall helicity of
the mature amyloid fibril. Although the basic structural arrangement of the cross-β structure is
conserved in different fibrils, there are different possibilities of how protofilaments can pack into the
three-dimensional fibril structure, giving rise to several distinct amyloid fibril morphologies. It is
possible to distinguish amyloid fibril polymorphism based on the degree of fibril twisting, the number
of protofilaments per fibril, and the diameter or weight per length of the fibrils [22,67,68]. In addition
to amino acid composition, the fibril morphology is determined by environmental factors, such as
pH, temperature, mechanic agitation, shear force, ionic strength or presence of other co-solutes and
co-solvents [22,69].

Amyloidogenic regions or short segments forming steric zipper spines in amyloid fibrils are
possible to identify/predict by submitting a protein sequence to specific algorithms and web services.
Table 2 summarizes the computational tools available online and reported in the literature to predict
propensities or incidence levels of a given amino acid sequence to form amyloid fibrils.

Table 2. Available online methods to predict amyloidogenic regions in amino acid sequences.

Method Website References

AGGRESCAN http://bioinf.uab.es/aggrescan/ [70,71]
AGGRESCAN3D http://biocomp.chem.uw.edu.pl/A3D/ [72,73]
AmyLoad http://comprec-lin.iiar.pwr.edu.pl/amyload/ [74]
AmyloGram http://www.smorfland.uni.wroc.pl/shiny/AmyloGram/ [75]
AmyloidMutants http://amyloid.csail.mit.edu/ [76]
AMYLPRED http://biophysics.biol.uoa.gr/AMYLPRED [77]
AMYLPRED2 http://biophysics.biol.uoa.gr/AMYLPRED2 [78]
APPNN http://cran.r-project.org/web/packages/appnn/index.html [79]
BetaScan http://groups.csail.mit.edu/cb/betascan/betascan.html [80]
ClinVar https://www.ncbi.nlm.nih.gov/clinvar/ [81]
Fibpredictor http://nanohub.org/resources/fibpredictor [82]
FISH Amyloid http://www.comprec.pwr.wroc.pl/COMPREC_home_page.html [83]
FoldAmyloid http://bioinfo.protres.ru/fold-amyloid/oga.cgi [84]
GAP http://www.iitm.ac.in/bioinfo/GAP/ [85]
GOR V http://gor.bb.iastate.edu/ [86,87]
MetAmyl http://metamyl.genouest.org/ [88]
MILAMP http://faculty.pieas.edu.pk/fayyaz/software.html#MILAMP [89]
NetCSSP http://cssp2.sookmyung.ac.kr/index.html [90]
PASTA http://protein.cribi.unipd.it/pasta/ [91,92]
PASTA 2.0 http://protein.bio.unipd.it/pasta2/ [93]
RFAmyloid http://server.malab.cn/RFAmyloid/ [94]
SNPeffect 4.0 http://snpeffect.switchlab.org [95]
STITCHER http://stitcher.csail.mit.edu [96]
TANGO http://tango.crg.es/ [97]
Waltz-BD http://waltzdb.switchlab.org [98–100]
ZipperDB http://services.mbi.ucla.edu/zipperdb/submit [101]
Zyggregator http://www-vendruscolo.ch.cam.ac.uk/zyggregator.php [102]

3.3. The Cross-α Amyloid-Like Fibril

Cross-β motifs and amyloid fibrils can be formed both by β-sheet rich and α-helical proteins.
Alpha-helical conformations have also been associated to amyloid fibril formation. Certain peptides and
proteins that present well defined α-helical structures undergo conformational changes into β-pleated
structures that in turn aggregate into amyloid fibrils [103–107], while other peptides or proteins
maintain its α-helical conformation during the aggregation cascade, forming “cross-α” structures.
Cross-α structures are also formed by elongated unbranched fibrils, and display the ability to bind
thioflavin-T with the characteristic enhanced fluorescence emission. These fibrils result from the
stacking of α-helices perpendicular to the fibril axis [108]. The cross-α structure, although rare,
was found in the functional amyloid phenol soluble modulin α3 (PSMα3) [108], in the yeast prion

http://bioinf.uab.es/aggrescan/
http://biocomp.chem.uw.edu.pl/A3D/
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http://biophysics.biol.uoa.gr/AMYLPRED2
http://cran.r-project.org/web/packages/appnn/index.html
http://groups.csail.mit.edu/cb/betascan/betascan.html
https://www.ncbi.nlm.nih.gov/clinvar/
http://nanohub.org/resources/fibpredictor
http://www.comprec.pwr.wroc.pl/COMPREC_home_page.html
http://bioinfo.protres.ru/fold-amyloid/oga.cgi
http://www.iitm.ac.in/bioinfo/GAP/
http://gor.bb.iastate.edu/
http://metamyl.genouest.org/
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http://tango.crg.es/
http://waltzdb.switchlab.org
http://services.mbi.ucla.edu/zipperdb/submit
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Ure2p [109], in de novo-designed amphiphilic peptides [110–112], and among proteins of multiple
tandem copies of a helix–loop–helix unit [113].

3.4. Hetero-Amyloid Fibrils

The terms “hetero-amyloid” or “hetero-fibrils” relate to amyloid fibrils structures formed by two
different β-sheets along a compact hydrophobic interface, featuring an unusual ladder of sequential
stacking. The hetero-fibril is stabilized by hydrophobic packing and enriched with interactions along
the fibrillar axis, such as hydrogen bonds between neighboring β-strands, analogous to homo-amyloids.
This type of amyloid structure was found in the interaction between the M45 protein with other proteins,
namely the receptor-interacting protein kinase 1 and 3 (RIPK1 and RIPK3), and the Z-DNA binding
protein-1 (ZBP1) [114]; as well as in the RIPK1-RIPK3 necrosome human signaling complex [115].

In addition, it has also been observed that some amyloidogenic proteins may support cross-seeding
by amyloid aggregates of different proteins, building a link between different amyloid forms.
Heterologous cross-seeding has been reported between amyloid-β peptide (Aβ) and islet amyloid
polypeptide [116,117], Aβ and prion protein (PrP) [118], and Aβ and α-synuclein [119]. Furthermore,
Aβ fibrils also induce the formation of tau neurofibrillary tangles in vivo [120], and Aβ aggregates
promote tau aggregation in vitro [121]. Heterologous cross-seeding was also found when tau K18
interacts with the C-terminus of α-synuclein [122], when functional amyloids curli and Sup35 induce
amyloid protein A amyloidosis [123], when PrPs promote Sup35 aggregation [124], and when the
in vitro aggregation of CsgA is seeded by CsgB fibrils [125]. Moreover, the observation of heterologous
cross-seeding cases suggests that interactions between different amyloidogenic proteins might enhance
the onset of certain types of amyloidoses.

3.5. The Major Differences between the Techniques that Inform on Amyloid Structure

Recent progresses in instrumentation have improved quite significantly the ability to characterize
the structure of complex biological molecules and macromolecular complexes. The knowledge of the
three-dimensional structure of amyloid fibrils from different origins provides important insights into the
mechanisms of amyloid formation, and thereby helps in the rational design of novel therapeutic agents.
The combination of structural biology data from several approaches and experimental techniques
provides new insights on how individual protein subunits form fibrillar structures, at an atomic level of
resolution. In the past decades, many structural biology studies have been performed based on X-ray
fiber diffraction [126], X-ray crystallography [23], solid state NMR (ssNMR) [127], and cryo-electron
microscopy (cryo-EM) [128], to mention just a few. Table 3 reports the main differences between these
powerful techniques. However, is important to mention that no method is completely effective by
itself, since all of them offer unique advantages and limitations.
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Table 3. The pros and cons of the main methods that inform on amyloid structure at atomic level resolution.

Technique Advances Advantages Disadvantages References

X-ray and electron diffraction

1. Discovery of short protein segments that can
themselves form amyloid fibrils and closely
related crystals;
2. Development of synchrotron X-ray microbeams
sufficiently focused and intense to determine a
structure from a single crystal.

1. May yield atomic resolution;
2. Is not limited by the molecular weight of the specimen.

1. Well-ordered microcrystals needed;
2. The fibrils formed by some segments may represent the spines of
polymorphs of full fibrils, but others may not;
3. The crystallized segment is only a few residues in length, thus
nothing is revealed about the fibril structure outside the spine;
4. The steric zippers structures only show homo-steric zippers.

[23,60,62,126]

ssNMR

1. Innovations in high-field magnets, pulse
sequences, high-resolution multi-channel
magic-angle spinning (MAS) probes, ultrafast
MAS, isotopic labeling schemes, use of
quadrupolar nuclei as spectroscopic probes and
solid-state dynamic nuclear polarization (DNP).

1. No need for crystals;
2. Structural information obtained on: identity of residues,
recognition of parallel versus antiparallel β-sheets, register
of strands within a sheet, and inter-residue contacts of
amino acid side chains;
3. ssNMR-determined models show the overall
conformation of the well-ordered portion of the chain
around the protofilament spine;
4. Can be used to determine dihedral angles and inter-atom
distances in the fibril subunits.

1. Amyloid-forming proteins are expressed recombinantly from
media containing isotopically labeled amino acids;
2. Reliability of molecular models is highly dependent on the number
of experimental constraints that have been collected;
3. The relative positions of atoms are not as accurately determined as
in an atomic-resolution crystal structure;
4. The sensitivity of the experiments and spectral resolution decrease
with the increase in molecular weight.

[127,129,130]

cryo-EM

1. Introduction of high-field microscopes;
2. New generation of direct detectors record the
incident electrons in a thin, sensitive layer so that
the signal is not scattered into surrounding pixels
resulting in an improvement in image processing.

1. Near atomic-resolution structures of large molecular
complexes without the need for crystals;
2. May yield the overall fibril structure: the number of
protofilaments; the degree of twist; and, depending on the
number of well-ordered specimens, information on the
atomic structure of the fibril.

1. Due to a lack of contrast, images often have a very low
signal-to-noise ratio, requiring highly advanced detection hardware
and image processing;
2. Sample preparation can be difficult, not only to optimize thickness,
but also to optimize particle distribution;
3. The most advanced cryo-EM equipment is very expensive.

[131–133]
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4. Toxic Species in Amyloid Diseases

The pathogenic or the most toxic species in amyloidosis can result from extracellular amyloid
fibrillar deposits affecting organ integrity [134–137], as in the case of cardiac amyloid in transthyretin
amyloidosis, and/or soluble protein oligomers that can either populate during the process of amyloid
fibril formation or be released by mature deposits causing direct cellular dysfunction [137], as in the
case of several neurodegenerative amyloid diseases.

Although the β-sheet structure present in amyloid oligomers is a favorable structural component, it
is not an important prerequisite for toxicity [138]. The structural determinants by which these misfolded
oligomers cause cellular damage may be related with the exposure of hydrophobic groups on the oligomer
surface [139,140] and with the small size of the oligomers with high diffusion coefficient [140,141]. Thus,
the toxicity of amyloidogenic oligomers is likely to be a result of their intrinsic misfolded nature and
aggregation propensity [137,142]. Such structural properties will cause them to engage in a multitude of
abnormal interactions with a range of cellular components, such as phospholipid bilayers, soluble peptides
and proteins, protein receptors, RNAs, and cellular metabolites [139,143–147] where some or all of them
have the potential to cause cell damage and ultimately cell death. In fact, it is known that several amyloid
neurodegenerative diseases have an important inflammatory component which may be the result of the
natural response against the “unknown” molecular species formed during the amyloidogenic cascade or
against by-products of their action.

5. Kinetics and Thermodynamics of Amyloid Fibril Formation

The aggregation mechanisms in amyloid systems are prone to multiple pathways, depending on the
ensemble of co-existing amyloidogenic conformations and environmental factors. Thus, several aggregation
mechanisms and multiple pathways have been described depending on protein sequence, conformational
states adopted by the amyloidogenic monomer and experimental conditions (for instance, temperature,
pH, protein concentration, and solvent effects). The aggregation processes take place over a wide time
range, spanning several orders of magnitude, with conformational changes occurring in the milliseconds
and formation of particles observable with the naked eye in days, weeks or months. Elucidation of the
mechanisms of amyloid formation and characterization of the most relevant molecular species involved
are crucial to devise new rational therapeutic strategies against amyloid diseases. A brief overview of the
most common amyloid formation mechanisms is presented in Figure 4, and a summary of the events and
conditions that may trigger protein aggregation is shown in Table 4.

Molecules 2020, 25, x FOR PEER REVIEW                                                                10 of 29 

 

4. Toxic Species in Amyloid Diseases 

The pathogenic or the most toxic species in amyloidosis can result from extracellular amyloid 
fibrillar deposits affecting organ integrity [134–137], as in the case of cardiac amyloid in transthyretin 
amyloidosis, and/or soluble protein oligomers that can either populate during the process of amyloid 
fibril formation or be released by mature deposits causing direct cellular dysfunction [137], as in the 
case of several neurodegenerative amyloid diseases. 

Although the β-sheet structure present in amyloid oligomers is a favorable structural 
component, it is not an important prerequisite for toxicity [138]. The structural determinants by which 
these misfolded oligomers cause cellular damage may be related with the exposure of hydrophobic 
groups on the oligomer surface [139,140] and with the small size of the oligomers with high diffusion 
coefficient [140,141]. Thus, the toxicity of amyloidogenic oligomers is likely to be a result of their 
intrinsic misfolded nature and aggregation propensity [137,142]. Such structural properties will cause 
them to engage in a multitude of abnormal interactions with a range of cellular components, such as 
phospholipid bilayers, soluble peptides and proteins, protein receptors, RNAs, and cellular 
metabolites [139,143–147] where some or all of them have the potential to cause cell damage and 
ultimately cell death. In fact, it is known that several amyloid neurodegenerative diseases have an 
important inflammatory component which may be the result of the natural response against the 
“unknown” molecular species formed during the amyloidogenic cascade or against by-products of 
their action. 

5. Kinetics and Thermodynamics of Amyloid Fibril Formation 

The aggregation mechanisms in amyloid systems are prone to multiple pathways, depending 
on the ensemble of co-existing amyloidogenic conformations and environmental factors. Thus, 
several aggregation mechanisms and multiple pathways have been described depending on protein 
sequence, conformational states adopted by the amyloidogenic monomer and experimental 
conditions (for instance, temperature, pH, protein concentration, and solvent effects). The 
aggregation processes take place over a wide time range, spanning several orders of magnitude, with 
conformational changes occurring in the milliseconds and formation of particles observable with the 
naked eye in days, weeks or months. Elucidation of the mechanisms of amyloid formation and 
characterization of the most relevant molecular species involved are crucial to devise new rational 
therapeutic strategies against amyloid diseases. A brief overview of the most common amyloid 
formation mechanisms is presented in Figure 4, and a summary of the events and conditions that 
may trigger protein aggregation is shown in Table 4. 

 
Figure 4. Representative general model for amyloid fibril formation by nucleation-dependent 
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(absence of nucleation). kn1, kn2, k−, kon, koff, and k+ represent rate constants. The stationary phase involves 
the assembly of protofibrils into mature amyloid fibrils with different morphological structures and 
a high level of polymorphism. Adapted from reference [148]. 

Figure 4. Representative general model for amyloid fibril formation by nucleation-dependent
mechanisms (including primary and secondary nucleation) and nucleation-independent mechanisms
(absence of nucleation). kn1, kn2, k−, kon, koff, and k+ represent rate constants. The stationary phase
involves the assembly of protofibrils into mature amyloid fibrils with different morphological structures
and a high level of polymorphism. Adapted from reference [148].

The aggregation kinetics of amyloidogenic proteins is highly dependent on protein concentration,
and may reflect a nucleation-dependent or a nucleation-independent process (Figure 4) [149–152].
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Table 4. Early events that may lead to amyloid fibril formation.

Nature of Monomeric Species Description References

Native
monomer

Normally folded proteins may retain a substantial tendency to aggregate through direct assembly of monomers in their native state when the native state exposes
complementary surfaces. [153–156]

Conformationally altered monomer The native monomer has very low propensity to associate. Partial unfolding or conformational changes of the native monomer are required, resulting in a non-native species
prone to aggregate. [157–162]

Chemically modified monomer Chemical modifications (deamidation, isomerization, hydrolysis, oxidation, photolysis, etc.) may cause conformational changes in native monomers, leading to species with
high propensity to aggregate. [163–174]

Nature of Aggregation Interfaces Description References

Gas-liquid
interface

Hydrophobic–hydrophilic interfaces may induce aggregation reactions. [175–181]
Mechanical stress (agitation, stirring, pumping, or shaking) has been associated with cavitation which generates air bubbles and, consequently, the formation of an air-water
interface which facilitates protein denaturation and aggregation. [176,182–189]

The use of beads during agitation accelerates the aggregation process by enhancing cavitation. [190]

Solid-liquid
interface

Solid-liquid interfaces may facilitate monomer encounters and initial monomer to monomer association and later further aggregation.
In vitro, interaction with glass, silicone, graphite, polypropylene, Teflon, mica, gold, etc. might lead to protein partial unfolding and aggregation. [181,191–194]
In vitro and in vivo, flow through tubes and vessels produce shear forces that may lead to protein partial unfolding and aggregation. [195]
Freeze-thaw cycles create new ice-water interfaces which may induce protein partial unfolding and aggregation. [189,191,196]
Presence of metal ions, in particular, Cu2+ and Zn2+, may promote aggregation of protein monomers bearing metal-ion binding sites or binding residues (e.g., histidines). [197–201]
Monomer association at the surface of biomembranes or biomolecules may also enhance aggregation. [202–210]
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5.1. Aggregation Via a Nucleation-Dependent Mechanism

The nucleation-dependent mechanism of amyloid formation (Figure 4), also known as
nucleation–elongation polymerization, displays a typical sigmoidal shape curve as a function of
time and consists of three consecutive steps: (1) initial lag or nucleation phase; (2) elongation, growth,
polymerization, or fibrillation phase; (3) equilibrium, stationary, or saturation phase [211,212].

The nucleation phase corresponds to the assembly of transient, critical nuclei that next will act as
seeding intermediates where additional monomeric subunits can latch on, driving the assembly of
oligomers with cross-β structure. At this stage, the rate constants for monomer addition and dissociation
are similar, making the global process of nucleation slow and the rate limiting step in fibril formation.
The nucleation phase can be shortened or eliminated by the addition of pre-formed aggregates or
fibrillar species, a process known as seeding [213–215]. In the elongation phase, monomers, nucleus and
oligomers continue to interact, assembling into prefibrillar structures that rapidly grow to form ordered
fibrillar structures known as protofibrils. Because this phase gives rise to more stable protofibrils, this
is a faster and thermodynamically favorable process. Lastly, the saturation phase, where monomer
concentration is low and approximately constant, involves the assembly of protofibrils into mature
amyloid fibrils with different morphological structures and different levels of polymorphism.

The Finke–Watzky aggregation model (Scheme 1) is one of the numerous models proposed for
nucleation–elongation polymerization and has been applied to more than 40 different aggregating
proteins [216,217]. As shown in Scheme 1, the Finke–Watzky model consists of two simple steps:
(1) nucleation and (2) growth. Due to its simplicity, this model does have some limitations, including:
(1) a vast number of aggregation steps is condensed into two elementary steps; (2) the rate constants,
knucleation and kgrowth, are average rate constants and independent of the size of aggregating species;
(3) a higher kinetic order in [M] may be kinetically hidden in the nucleation step in particular; (4) all
growing polydisperse aggregates are hidden behind the descriptor “An”; (5) the descriptor “An” can
also hide processes such as fragmentation. However, the simplicity and quality of the fits obtained in
many practical examples suggest that the Finke–Watzky two-step mechanism encompasses the main
characteristics and it is a good general kinetic model for nucleation-growth aggregation.
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5.1.1. Primary Nucleation Mechanisms

In the amyloidogenesis cascade, primary nucleation is a critical step in a variety of oligomerization
mechanisms and includes the initial formation of amyloidogenic nuclei without contributions
from pre-formed oligomers. Two types of primary nucleation mechanisms have been described:
homogeneous and heterogeneous. Homogeneous primary nucleation comprises monomers aggregation
in bulk solution, while heterogeneous primary nucleation involves association of monomeric subunits
on the surface of a different object, such as the wall of a reaction container [191–194], other proteins [202],
phospholipid bilayers [203–210], or the air–water interface [175–180].

From a structural point of view, the simplest manifestation of a primary nucleation mechanism is
the nucleated polymerization (NP) mechanism. In this case, amyloidogenic monomers aggregate and
originate the nucleus, which further grows into amyloid protofilaments and protofibrils through an
elongation process involving mostly monomer addition [219–221]. This is the preferential mechanism
at relatively low protein concentrations favoring the presence of monomeric species in solution.

However, in several instances, it has been observed the presence of multiple conformational
heterogeneous oligomers and transient intermediate species during fibril formation which NP
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mechanisms cannot explain. In these cases, a nucleated conformational conversion (NCC) mechanism
has been proposed. NCC comprises structurally organized oligomers as intermediates which are able
to subsequently conformationally transition into cross-β dominated fibrillar species. The formation of
these conformationally dynamic oligomers may be favored at higher protein concentrations and they
undergo a rate-limiting conformational change to form protofibrils and then amyloid fibrils [222]. This
type of nucleation was observed, in particular, in the yeast prion protein (Sup35) [223], among variants
of the amyloid-β peptide [224–226], SH3 domain [227–229], Ure2p yeast prion [230], polyglutamine
(polyGln) peptides [231], and lysozyme [232,233].

5.1.2. Secondary Nucleation Mechanisms

Although conceptually appealing and observed in several instances, a simple homogeneous
primary nucleation mechanism is not always observed [149,223,234]. Several studies have pointed
out that simple homogeneous nucleation could not fit certain experimental aggregation kinetics
data [235,236]. Simple homogeneous primary nucleation does not take into account other nucleation
mechanisms and events, such as fibril-catalyzed secondary nucleation (a monomer-dependent process)
and fibril fragmentation (a monomer-independent process) (Figure 4), both contributing to the formation
of new aggregation nuclei [237–241]. In fibril-catalyzed secondary nucleation nucleus formation occurs
on the surface of an already existing oligomer (Figure 4). No foreign surface is involved in this type of
nucleation as in the case of heterogeneous primary nucleation. This nucleation mechanism appears to
be highly dependent on the structural compatibility of the amyloid precursor protein [241].

Secondary nucleation has been inferred for several proteins, including amyloid-β
peptides [235,242], tau protein [243], α-synuclein [244,245], islet amyloid polypeptide (IAPP) [246],
insulin [247], and bovine carbonic anhydrase [248].

Amyloid fibril formation may also be seeded by the presence of pre-formed aggregates. In this
case, the primary nucleation event is negligible, leading directly to the growth phase, the absence of
secondary mechanisms, and the polymerization process is expected to follow a single exponential
function [249]. This is a consequence of the slower rate of primary nucleation when compared with the
rate of addition of monomers onto an existing fibril (growth). This seeding process has been proposed to
be an important factor in the propagation of the pathogenesis in most, if not all, amyloidoses [250–256].

5.2. Aggregation Via a Nucleation-Independent Mechanism

The nucleation-independent mechanism of protein aggregation (Figure 4 and Scheme 2) is an
isodesmic or linear polymerization mechanism and may be exemplified by the simplest possible model
for the formation of spherical oligomers or linear multimers [152]. This model is characterized by
an infinite number of steps with identical rate constants (k) independent of the size of the aggregate
(Scheme 2), resulting in an exponential polymerization curve with the absence of a lag phase. Once
aggregation starts, the process undergoes downhill-polymerization. In this case, aggregation proceeds
through a sequence of multiple energetically favorable steps, where the successive addition of
amyloidogenic monomers to the growing aggregate is energetically favorable without the need of a
multimeric nucleus.
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Generally, seeding does not increase the aggregation rate in a downhill-polymerization process.
However, this model disregards other aggregation processes that can change the number, size and shape
of oligomeric species. For these reasons, this model sometimes predicts incorrect length distributions
of amyloid fibrils at equilibrium. Nevertheless, this kinetic model has been used to investigate the
effect of mutations on the rate of amyloid fibril formation [259–261].

This aggregation mechanism was observed in transthyretin [262,263], among variants of
the amyloid-β peptide [219,264,265], and also in the four-repeat domain of tau (Tau4RD) [266],
β2-microglobulin [152], human and bovine serum albumins [267,268], HypF-N [269], FF domain [270],
human muscle acylphosphatase [271], apolipoprotein C-II [272,273], and several SH3
domains [228,259,274–276].

5.3. The Energy Landscape View of Protein Aggregation

The protein folding energy landscape available to each polypeptide chain includes a wide range
of different conformational states and a multitude of pathways en route to the folded state. The energy
landscape in the case of short polypeptide sequences tends to be a smooth funnel-shaped surface
where the polypeptide chain folds quickly towards a single folded state [277]. On the other hand,
larger proteins have rougher energy landscapes, with local minima and a population of intermediate
states that eventually interconvert to the low energy folded state (Figure 5) [278,279].

At the top of the funnel, as depicted in Figure 5, the unfolded state of the polypeptide chain
has high Gibbs free energy and high conformational entropy. Upon polypeptide chain folding, the
number of conformational states and thus the conformational entropy decreases. Concurrently, the
hydrophobic collapse and the increase in the number of intramolecular contacts leads to a decrease in
free energy toward the native state occupying the global free energy minimum, yielding the necessary
conformational stability of the folded state. However, changes in amino acid sequence, and/or chemical
or biological environment, including changes in pH, temperature, ionic strength, pressure, agitation,
shear forces, interaction with surfaces and many other factors, may tip the energetic balance towards a
different free energy minimum. This is highlighted in Figure 5, where in parallel with the common
folding funnel for a protein it is also depicted an aggregation funnel [280–282]. Regarding the protein
aggregation process, the funnel-shaped free energy surface is potentially rougher and more complex,
since the energy landscape encodes not only the relative stability of unfolded states, partially unfolded
states, and folded states, but also the relative stability of amorphous aggregates, β-sheet-rich amyloid
fibrils, and native-like aggregates (Figures 1 and 5).

Protein aggregation involves several processes that are interconnected, such as folding, unfolding
and partial folding/unfolding, conformational changes, formation of intermolecular interactions, and
fibril nucleation, elongation and stationary phases (Figures 1 and 4) [237,238,283–285]. There is well
documented evidence that protein aggregation states may be formed not only by amyloidogenic
intermediates but also by denatured and native states, with polypeptide chains establishing critical
contacts with neighboring molecules through intermolecular interactions. Aggregated states are in
general thermodynamically and kinetically favorable and it is a fine balance of forces that tip the
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processes towards a native soluble state or any type of aggregated state. It seems that most polypeptide
chains under the right “stress” conditions tend to form extended β-sheet structures and thus amyloid
aggregates [14,284,286,287]. The energy landscape of protein systems forming large aggregates is
described by numerous peaks corresponding to different conformational states, which is the case
of amyloids due to the heterogeneity of fibrillar morphology. Even under the same experimental
conditions, a large number of polymorphic fibrils with distinct morphologies might be formed at
the same time, emphasizing the complexity and multiplicity of the aggregation pathways [67,288].
The energy minimum of mature fibrils is deeper and sharper than the native state of a given protein
(Figure 5), as suggested by the high stability of the fibrillar state [286,289,290].
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Figure 5. Schematic representation of funnel-shaped energy landscapes for protein folding
(non-amyloidogenic pathway, green) and aggregation (amyloidogenic pathway, red). The surface
exhibits the roughness of the protein energy landscape showing the possible conformational states
adopted by the polypeptide chain. Unfolded, partially unfolded and folded species may be implicated
in the aggregation landscape, as long as they are prone to establish intermolecular interactions and
aggregate, thereby resulting in the formation of amorphous aggregates, amyloid fibrils, and native-like
aggregates, respectively. Adapted from references [1,279,280].

Under specified conditions, a given polypeptide chain has its own folding and aggregation
surface funnel. Each point on this surface expresses a specific and unique conformation of the protein.
The profile of the energy landscape is affected by enthalpic contributions due to interactions between
amino acids residues, and enthalpic and entropic contributions due to the interaction with the aqueous
environment, as well as entropic contributions due to changes in conformational freedom of the
polypeptide chain. The driving forces towards the low free energy state for both protein folding
and aggregation are mainly hydrophobic in nature, with additional contributions from electrostatic
and polar interactions, as well as hydrogen bonds [14,280,281,287]. In the case of amyloid fibrils,
the cross-β motif conformation is stabilized essentially by polar interactions due to intermolecular
hydrogen bonds, and intermediate aggregated species are formed by intermolecular hydrophobic and
electrostatic interactions [284,291].

In the late 1990s [292] amyloid-like aggregates or fibrils were found to be formed in vitro
under specific experimental conditions by proteins entirely unrelated to well-established amyloid
diseases [293]. As we previously mentioned, under the right conditions, many if not most polypeptide
chains may form amyloid. The term “amylome” was thus coined to describe all the proteins that
can form amyloid-like fibrils [294]. There are authors that consider that the fibrillar amyloid state
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represents a standard state that every polypeptide chain can adopt under appropriate conditions, and
that this state is the thermodynamic ground state. In this sense, the amyloid fibrillar conformation
would be the universal global free-energy minimum of any polypeptide chain [295].

6. Conclusions

With the progresses being made in medical research and drug discovery, there is an optimistic
view that protein misfolding diseases will become successfully diagnosed, prevented and treated. At
the moment, the research into the “amyloid problem” is reaching a turning point, since the structures
and properties of different amyloidogenic species involved in the amyloid cascade are finally being
identified and, in some cases, structurally characterized. The improvement in resolution of molecular
structures, with the contribution from X-ray, ssNMR and cryo-electron microscopy, has allowed a better
understanding of how amyloid polymorphism may relate with different manifestations of amyloid
diseases, and how different amyloid structures influence cellular function and may be influenced
by tissue environment. This seems to be the perfect time to finally correlate protein aggregation
mechanisms, structure of amyloid species, and how they impact the onset, severity and progression of
different misfolding diseases. In turn, this is also the opportunity to set up therapeutic solutions based
on rational approaches, and thus provide new hope to those many affected by amyloid diseases.
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