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Abstract: To allow the use of fibrous-like clays, as sepiolite, in different applications, their
disaggregation and the formation of stable suspensions are crucial steps to enhance their performance
significantly, e.g., in cellulose nanofibrils/clay composite formulations, enabling an adequate mixture
of the matrix and filler individual components. Three distinct physical treatments of dispersion
(magnetic stirring, high-speed shearing, and ultrasonication) and four different chemical dispersants
(polyacrylate, polyphosphate, carboxymethylcellulose, and alginate, all in the form of sodium salts)
were tested to improve the dispersibility and the formation of stable suspensions of sepiolite. Two
sepiolite samples from the same origin but with different pre-treatments were evaluated. The
particle size and suspension stability were evaluated by dynamic light scattering, zeta potential
measurements and optical microscopy. Additionally, the sepiolite samples were initially characterized
for their mineralogical, chemical, and morphologic properties. Of the three physical dispersion
treatments tested, the ultrasonicator typically produced more stable suspensions; on the other hand,
the biopolymer carboxymethylcellulose showed a higher ability to produce stable suspensions, being,
however, a smaller particle size obtained when polyphosphate was used. Remarkably, 47 out of 90
prepared suspensions of sepiolite stayed homogeneous for at least three months after their preparation.
In sum, the combination of a high energy dispersing equipment with an appropriate dispersing agent
led to stable suspensions with optimal properties to be used in different applications, like in the
composite production.

Keywords: fibrous clay; dispersion; organic-inorganic hybrid; bionanocomposite

1. Introduction

Sepiolite is a natural fibrous clay with the ideal formula Si12O30Mg8(OH)4(OH2)4·8H2O. The
structure of this magnesium silicate is based on structural blocks alternating with structural cavities,
called tunnels, which gives rise to a highly porous framework. The structural blocks comprise two
tetrahedral silica sheets, with the tetrahedra inverted from one sheet to the other, sandwiching a central
octahedral sheet of magnesium oxide-hydroxide. In the octahedral sheet, both hydroxyl ions and
water molecules are coordinated to magnesium centers, while the remaining water molecules occupy
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positions inside the tunnels. The presence of tunnels with cross-section dimensions of 1.06 × 0.37
nm2 [1] enables the retention of small organic molecules. Isomorphic substitutions of Si4+ by Al3+ in
the tetrahedral layer or Mg2+ by Al3+ in the octahedral layer promote the formation of charged sites
in the structure. An important characteristic of this mineral is the high density of silanol groups on
the particle surface, much higher than that of platelet-like clay minerals. These are formed from the
bonding between non-shared oxygens from the tetrahedral silica sheets located on channels (tunnels at
the surface of the particle) and hydrogen [2].

Galán (1996) collected classical applications (sorptive, catalytic, organo-mineral derivatives,
rheological, filler, animal nutrition, biomaterials, and environmental) for the use of sepiolite [3]. Other
uses of sepiolite, like foams, films, supported lipid membrane, hybrid bilayers, other types of supported
membranes, bioplastics and membranes, drug delivery, DNA non-viral transfection, vaccines, tissue
engineering and scaffolds, environmental applications, bionanocomposites as source of supported
carbonaceous materials and bionanocomposites as components of sensor devices and bioreactors, have
been developed [4].

As stated previously [5], a good dispersion of the clay mineral in a selected medium, preferentially
water-based, is essential to achieve superior properties in the final bionanocomposites. Acicular
individual particles of fibrous clays, such as sepiolite, easily aggregate in water by hydrogen bonding
and Van der Waals interactions to form bundles and aggregates, which limits the quality of the clay
dispersion [6]. Additionally, the characteristic crystalline structure of fibrous clays does not allow them
to be delaminated (or exfoliated) as in the case of the plate-like clays. To improve the dispersibility
of sepiolite, several strategies have been evaluated and the most common approaches are as follows:
mechanical treatment; addition of chemical dispersants to the suspension; chemical modification of the
mineral surface.

The mechanical treatment may consist of ultrasonication or high-speed shearing processes, among
others, able to disrupt the bulk bundles into smaller bundles or single rods, without damaging the
crystal structure and length of nanorods. Ultrasonication has been presented as a relatively simple
approach to disaggregate sepiolite fibers and enhance their characteristic properties, which is not
possible to be accomplished by magnetic stirring only. For instance, when a sepiolite suspension in
water was previously submitted to ultrasonication, under adjusted conditions, the specific surface area
was found to increase from 322 to 487 m2

·g−1, which improved its adsorption capacity of methylene
blue dye [7]. Ultrasonication has also been used as a method to generate homogeneous and stable
dispersions with other materials in water for the preparation of hybrid and composite structures [8,9].
It was claimed that high energy ultrasonication can also promote the formation of thixotropic gels
with highly dispersed fibrous clays, although with shorter fibers [3]. On the other hand, Viseras et al.
(1999) used high-speed homogenization to disperse colloidal particles of sepiolite [10]. Rotor speed of
8000 rpm for a period of 10 min was used to enhance the viscosity of the suspension and to produce a
stable dispersion. High-pressure homogenization can also be an interesting approach to disaggregate
sepiolite particles in water suspensions, as it was reported for palygorskite [11].

The addition of chemical dispersants is also used to stabilize the dispersions of fibrous clays.
By changing the surface characteristics of the individual particles (rods) of the fibrous clay, namely
their charge and surface chemistry, they may contribute to a better dispersion without damaging the
crystal structure. The choice of the dispersant is crucial for the target result. Takei et al. (2013) have
evaluated the effect of the addition of different types of dispersants (followed by ultrasonication) to
disperse sepiolite on the tensile strength of composites produced with nitrile butadiene rubber; they
found that ammonium polycarboxylate and amino alcohol polyphosphate, in particular, provided
valuable results, as evaluated by the increase in tensile strength of the sepiolite-rubber composite [12].
More recently, ionic liquids have also been used to disperse sepiolite [13]. The use of ionic liquids was
found to influence the arrangement of sepiolite particles, as well as the thermal properties but without
significant structural changes of it.
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The chemical modification of the surface has also been presented as a viable approach to improve
the dispersion of fibrous clays. It has been found that modification of sepiolite fibers by reaction with
methyltrimethoxysilane (MTMS) in water, at appropriate concentrations, enhanced the dispersion of
the aggregates or large bundles of fibers as almost individual nanorods forming aqueous gels. The
surface of the fibers becomes covered with nanometric MTMS condensed spheres, which, according to
the authors, reduces strongly the contact surface between fibers and precludes a strong reaggregation
of the material [14].

The present work evaluates the influence of four dispersing agents (sodium polyphosphate,
hydrophobically modified poly(sodium acrylate) (HM-PAA), sodium carboxymethylcellulose (CMC),
and sodium alginate) and three distinct dispersion apparatus (magnetic stirring, ultrasonication,
and high-speed shearing) on the dispersion state of water-based suspensions of sepiolite, at low
concentration. The capacity of each dispersing agent and apparatus, as well as the effect of the
suspension pH, were studied aiming at improving the disaggregation and the formation of stable
suspensions, i.e., no phase separation (by visual inspection) for a period of at least 90 days, crucial to
significantly enhance the performance and extend the application of fibrous-like clays, for example, in
cellulose nanofibrils/clay composite formulations, allowing an adequate mixture of the matrix and
filler individual components [5]. Related with the chemical dispersants addressed in the present work,
and polysaccharides, in general, studies have been reported in literature dealing with the preparation
of composites of sepiolite with poly(sodium acrylate) [15], CMC and alginate (films) [16], alginate
and starch (foams) [17], and nanofibrillated cellulose (nanopapers) [18]. However, none of the works
reported a comprehensive and systematic study of the effect of the biopolymers and/or synthetic
polymers over the dispersion and stability of the fibrous clay suspensions.

2. Materials and Methods

2.1. Clays and Chemicals

In this study, two natural sepiolite samples, referred as sepiolite 1 and sepiolite 2, from the deposit
of Vallecas-Vicálvaro (Madrid, Spain), supplied by Tolsa, SA (Madrid, Spain) were used. Sepiolite 1
was processed by a dry micronization process using a jet mill to break the fiber bundles down into
micron-size particles. Sepiolite 2 was micronized using a wet process that produces an extensive
deagglomeration of the sepiolite fiber bundles without affecting their aspect ratio [19].

Hydrochloric acid (Puriss p.a., ACS reagent grade, fuming, 37%) was acquired from Fluka, Porto
Salvo, Portugal. Sodium hydroxide (reagent grade, ≥98%, pellets) was purchased from Sigma-Aldrich
(Merck), Algés, Portugal. The dispersing agents used were sodium polyphosphate (Emplura grade,
99%, catalogue number 106529) purchased from Sigma-Aldrich (Merck); hydrophobically modified
poly(sodium acrylate) (HM-PAA) (Acusol 820, 30% active emulsion polymer consisting of 40%
methacrylic acid, 50% ethyl acrylate, and 10% stearyl oxypoly ethyl methacrylate; the viscosity of
an aqueous solution containing 1% (w/w) polymer at pH 7 is ca. 12 Pa·s) acquired from Rohm and
Haas, Philadelphia, PA, USA; carboxymethylcellulose sodium salt (molecular weight of 250 kDa,
degree of substitution of 0.7) and alginic acid sodium salt from brown algae (Bioreagent, suitable for
immobilization of micro-organisms, catalogue number 71238) obtained from Sigma-Aldrich (Merck).
The estimated molecular weight of alginate was ca. 280 kDa (by rheometry) and ca. 210 kDa (by
capillary viscometry). All chemicals were used as received without any further purification.

2.2. Characterization of the Sepiolite Samples

The samples were analyzed according to mineralogical, physical, and chemical characterization,
using the following equipment and operational conditions.

The mineralogical characterization obtained by powder X-ray diffraction was carried out using a
Philips X’Pert MPD diffractometer (Amsterdam, The Netherlands), with CoKα radiation (λ = 1.7903
Å), at a current of 35 mA and a voltage of 40 kV. Diffractograms were collected by the counting
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method (step 0.025◦ and time 1.0 s) in the 2θ range of 5–60◦. Crystalline phases were discriminated by
comparison with reference diffractograms from the International Centre for Diffraction Data.

The chemical composition of the sepiolite samples was determined by X-ray fluorescence using a
PANalytical equipment PW 4400/40 Axios with CrKα radiation (Malvern Panalytical, Almelo, The
Netherlands). The Loss on Ignition (LOI) was determined gravimetrically, by treatment at 1000 ◦C for
2 h in a Nabertherm laboratory furnace.

FTIR-ATR spectra of the minerals were obtained on a JASCO FT/IR-4200 spectrometer (JASCO,
Tokyo, Japan) using a MKII Golden Gate accessory. The spectra were recorded in the 800–4000 cm−1

range with a resolution of 4 cm−1 and 64 scans.
Thermal analysis was done using a simultaneous DSC-TGA thermal analyzer (TA Instrument

SDT Q600, New Castle, DE, USA). The samples were heated from room temperature up to 1000 ◦C, at
a rate of 10 ◦C/min, under a nitrogen atmosphere.

Brunauer, Emmett, and Teller (BET) specific surface area was determined by nitrogen adsorption
at 77 K using a Micromeritics Gemini V analyzer (Micromeritics Instrument, Norcross, GA, USA). The
samples were previously degassed at 124 ◦C under nitrogen flow for 12 h.

Particle size distribution was determined in the 0.01–3500 µm range using a laser diffraction
particle size analyzer Malvern Mastersizer 3000 (Malvern Instruments, Malvern, UK). The samples
were previously dispersed in water in an automated dispersion unit Malvern Hydro LV, using 0.1 wt%
tetrasodium pyrophosphate as dispersant.

The morphology of the particles was evaluated by field emission scanning electron microscopy
(FE-SEM) in a Carl Zeiss Merlin–61–50 microscope ( Carl Zeiss, Oberkochen, Germany). Secondary
electron mode and acceleration voltage of 1 kV were the operational conditions. The samples were
previously sputter-coated with a thin film of Au/Pd.

2.3. Preparation of the Sepiolite Suspensions with Different Mechanical Dispersers and Chemical Dispersants

Suspensions with 1.0 wt% of sepiolite were prepared at room temperature from their respective dry
powders. The desired amount of clay powder was added into distilled water and the mixture stirred
using a magnetic stirrer at 200 rpm; right after, the dispersing agents were added at a concentration of
0.1 wt%, under constant mixing. Then, the suspensions were finished using different mixing systems:
magnetic stirrer at 300 rpm for 20 min; high-shear disperser (Dispermat CV3-PLUS-E, VMA-Getzman
GmbH, Reichshof, Germany) at 5000 rpm for 15 min; ultrasound probe (Vibra-cell VC 505, Sonics,
Newtown, CT, USA) working at 60% amplitude and 1 s pulse, for 10 min. The pH of the suspensions
was measured and for some cases adjusted to 3 (using HCl 1 M) or to 12 (using NaOH 1 M), after
which, the suspensions were allowed to continue the mixture until the above referred times. Then, the
suspensions were left stabilizing for particle size and zeta potential measurements, as well as before
the microscopic analysis. The suspension stability was evaluated for a period of 90 days.

2.4. Characterization of the Sepiolite Suspensions

Zeta potential measurements of aqueous suspensions of the two mineral samples, at different pH
values, were carried out in a Zetasizer NanoZS equipment (ZN 3500, Malvern Instruments, Malvern,
UK) by electrophoretic light scattering. For this characterization, previously to the measurements,
an aqueous suspension of the mineral sample (2%, w/v) was magnetically stirred for 30 min at 500
rpm. The zeta potential of this suspension with a pH of ca. 8.5 was measured. Then, the pH was
adjusted to lower values by the addition of HCl (acidic series) or to higher values by the addition
of NaOH (alkaline series). The suspension was always kept stirred between the measurements at
different pH values. Measurements were done by taking the average of six repetitions. Different series
of measurements were performed in order to check reproducibility of the results.

For the characterization of the mineral suspensions after the treatments referred in Section 2.3,
the sepiolite suspensions at 1 wt% were diluted to 0.1 wt% using MilliQ water and transferred to the
measurement cell before the measurements.
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To evaluate the size of the sepiolite particles in suspension, dynamic light scattering measurements
were performed in the Zetasizer NanoZS equipment (ZN 3500, Malvern Instruments, Malvern, UK),
with a 532 nm laser, using a backscatter angle detection of 173◦, at 25 ◦C. Stable sepiolite suspensions
with the concentration of 0.1 wt% were gently transferred to a glass cuvette and checked for the presence
of bubbles. The average particle size (equivalent diameter) was determined from the distributions
in intensity (Di) and based on six repetitions. The data optimized according to the non-negative
least-squares (NNLS) algorithm and the polydispersity index (PDI) values were obtained through the
Zetasizer Nano Software (version 7.11).

The dispersion/aggregation state of the sepiolite suspensions was evaluated using an Olympus
BH-2 KPA microscope (Olympus Optical Co., Ltd., Tokyo, Japan) equipped with a high-resolution
CCD color camera (Olympus ColorView III), at different pH values and using different dispersion
agents and methods. Samples were kept between cover slips and illuminated with linearly polarized
light and analyzed through a cross polarizer. Images were captured and analyzed using the analySIS
software (Soft Imaging System GmbH, Münster, Germany).

3. Results and Discussion

3.1. Characterization of the Sepiolite Samples

The X-ray diffractograms of the two sepiolite samples were similar and indicated the presence of
only sepiolite, pointing out to a clay with monomineralic composition (Figure 1).
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Figure 1. X-ray diffraction of the sepiolite samples with identification of the mineral phase.

Additionally, the chemical composition of the two sepiolite samples was also similar (Table 1).
The high content of Si and Mg evidenced the magnesium silicate nature of these raw materials. The
SiO2/MgO ratio was 2.41 for sepiolite 1 and 2.35 for sepiolite 2, which are common values for this type
of mineral [20]. Al and Fe were found, which are known to substitute Si and Mg in the crystalline
structure. The XRF data are in agreement with results provided by Sabah et al. (2007) for other sepiolite
samples from the same origin [20].
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Table 1. XRF data (in wt%) of the sepiolite samples.

Sepiolite 1 Sepiolite 2

SiO2 53.6 53.5
MgO 22.3 22.8
Al2O3 2.10 1.93
CaO 0.28 0.17

Fe2O3 0.56 0.58
Na2O 0.15 0.12
K2O 0.67 0.51
MnO 0.02 0.02
TiO2 0.11 0.07
P2O5 0.03 0.04
SO3 0.03 0.03
F- 0.78 0.97

LOI a 19.4 19.3
a LOI: loss on ignition.

The thermogravimetric analysis results of the two sepiolite samples were similar (Figure 2), in
agreement with the similar chemical composition. The first and major endothermic weight loss (≈11%)
can be seen by increasing temperature up to ca. 100 ◦C; this is mainly due to the release of zeolitic
water and hygroscopic water. A second endothermic weight loss (≈2.8–3.0%) is observed from ca.
100 to 280 ◦C, attributed to release of some Mg-coordinated water. The release of the remaining
Mg-coordinated water is completed in a third stage, extending up to about 600 ◦C (≈2.8–3.1%). A final
endothermic weight loss step from ca. 600 to 1000 ◦C (≈3.3–3.7%), occurs due to the dehydroxylation
of the octahedrally coordinated hydroxyl groups [21–24]. The total thermogravimetric weight losses
(≈20%) are in agreement with the loss on ignition values (Table 1) presented above.

FTIR spectroscopy was also used to characterize the mineral (Figure 3). The spectra of the two
sepiolite samples were quite similar. The bands at 3688 and 3616 cm−1 for sepiolite 1 and at 3685 and
3625 cm−1 for sepiolite 2 are associated to the stretching of the OH coordinated with Mg [25]. At 3557
and 3564 cm−1 for sepiolite 1 and sepiolite 2, respectively, a band occurs related with the OH-stretching
for water coordinated with Mg [25]. For both samples, the diffuse region between 3400 and 3200 cm−1

may include bands attributed to adsorbed, zeolitic, and coordinated water. In the 2370–2330 cm−1

region, bands corresponding to ambient CO2 are present. A group of bands related to OH bending are
observed at 1660 (for sepiolite 1) and 1666 cm−1 (for sepiolite 2) assigned to water strongly bonded to
Mg [25]; 1649 (sepiolite 1) and 1652 cm−1 (sepiolite 2) related to zeolitic water [26]; 1636 (sepiolite 1)
and 1634 cm−1 (sepiolite 2) attributed to adsorbed water [26]. Bands at 1210, 1070 (shoulder), and 1000
cm−1 in the case of sepiolite 1 and at 1209, 1078 (shoulder), and 1003 cm−1 in the case of sepiolite 2
were assigned to Si–O stretching modes, whereas those at 969 (sepiolite 1) and 973 cm−1 (sepiolite 2)
were attributed to OH deformation in the Mg–OH or Al–OH bonds [25].



Minerals 2020, 10, 779 7 of 20
Minerals 2020, 10, x FOR PEER REVIEW 7 of 20 

 

 

 

Figure 2. Thermogravimetry (solid) and derivative (dashed) curves of the sepiolite samples: (a) 

sepiolite 1; (b) sepiolite 2. 

 

Figure 3. FTIR spectra of the sepiolite samples. 

Figure 2. Thermogravimetry (solid) and derivative (dashed) curves of the sepiolite samples: (a)
sepiolite 1; (b) sepiolite 2.

Minerals 2020, 10, x FOR PEER REVIEW 7 of 20 

 

 

 

Figure 2. Thermogravimetry (solid) and derivative (dashed) curves of the sepiolite samples: (a) 

sepiolite 1; (b) sepiolite 2. 

 

Figure 3. FTIR spectra of the sepiolite samples. 
Figure 3. FTIR spectra of the sepiolite samples.



Minerals 2020, 10, 779 8 of 20

Some physical parameters of the sepiolite samples were also determined, namely particle sizes
and specific surface area. The results are summarized in Table 2. Considering the results supplied by
the manufacturing company, similar Dv10 and Dv50 size values are obtained for the two sepiolites; the
apparent larger Dv90 of sepiolite 2 compared to sepiolite 1 is due to the presence of a few agglomerates
with bigger dimensions in sepiolite 2 dispersion. The original materials, as supplied by Tolsa, did not
undergo any optimized dispersion procedure for these measurements, being the starting point for
the developed work discussed in Section 3.2. Thus, the size values shown in Table 2 correspond for
sure to aggregated particles, and this state of the initial materials is, in our opinion, the reason for the
formation of suspensions of poor stability. The more extensive disentanglement of the fiber bundles in
sepiolite 2 compared to sepiolite 1 makes the surface more available and it results in a higher specific
surface area.

Table 2. Physical data of the sepiolite samples.

Particle Size Distribution a (µm)
SSA b (m2/g)

Dv (4,3) Dv10 Dv50 Dv90

Sepiolite 1 12.3 3.3 9.4 24.7 288
Sepiolite 2 17.0 3.0 9.6 31.1 337

a Dv10, Dv50, and Dv90 are the equivalent diameters corresponding to 10%, 50%, and 90%, respectively, of the
cumulative undersize particle size distribution (volume-weighted); Dv (4,3) is the weighted mean value of particle
size by volume. b SSA—specific surface area.

The SEM microphotographs clearly showed the fibrous nature of the studied samples, composed
by bundles, and individual long rods with thin diameter. No contaminants were detected in the
samples (Figure 4).
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(b) sepiolite 2. The scale bars correspond to 200 nm.

Zeta potential results for aqueous suspensions of clay are shown in Figure 5. For sepiolite 1, zeta
potential at the initial pH (≈8.5) is negative (ca. −12 mV) and tended to increase (in absolute value)
with the increase of pH. Increasing pH until 12 highly increased the zeta potential to around −45 mV.
On the other hand, zeta potential varied less in the region of pH 8.5 down to pH 3.0. At pH 3.7, the zeta
potential was −3 mV. The isoelectric point was found at a pH value of 3.2–3.3. Under this condition,
there was an equilibrium between positive and negative charges on the surface of sepiolite particles.
The isoelectric point found for this sample is similar to that determined for a sample of similar origin,
for which the authors determined an isoelectric point pH of ca. 3.4, at the same mineral content [20].
For pH 2.6, the zeta potential achieved a relatively high positive value (+9 mV). The variation of zeta
potential with pH is the expected for this type of mineral and can be rationalized in terms of the
acid-base behavior of the surface hydroxyl groups (M–OH) of sepiolite. At pH values superior to the
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isoelectric point, the hydroxyl groups deprotonate releasing protons and forming negatively charged
M–O− species, providing a negative zeta potential. At pH values lower than the isoelectric point, they
protonate to form M–OH2

+ species, providing positive zeta potential. In the isoelectric point, the
concentration of M–O− and M–OH2

+ is the same. Different isoelectric point values can be obtained
depending on the sepiolite origin [27,28]. The presence of contaminants and defects in the crystalline
structure of the sepiolite (e.g., isomorphic tetrahedral and octahedral substitutions) highly influence
the pH value for the isoelectric point.

For sepiolite 2, the zeta potential results evidenced a trend similar to that found for sepiolite 1
(Figure 5). However, the values achieved at each pH are somewhat different. At pH 8.5, the zeta
potential was ca. −20 mV and increasing the pH till 12 increased it (in absolute value) to −56 mV. At
pH 3.0, zeta potential was −4 mV. The isoelectric point was found to be at a pH near 2.5. At pH 1.6,
zeta potential was +5 mV. Thus, in comparison to sepiolite 1, sepiolite 2 showed more negative values
of zeta potential for the same pH and lower pH value for the isoelectric point. Since sepiolite 1 and 2
have similar mineralogical, chemical, and thermal properties, as demonstrated above, the different zeta
potential values can be related to slightly different surface characteristics. The higher specific surface
area of sepiolite 2 (Table 2) affords a higher exposure of silanol groups on the external surface of the
particles which generates more negative values of zeta potential.
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Figure 5. Zeta potential as a function of pH for the sepiolite 1 and sepiolite 2 samples (different series
of measurements were performed, each one shown by a different color).

3.2. Characterization of the Sepiolite Suspensions: Effects of Dispersing Equipment and Dispersant

Images of the formed suspensions of sepiolite 1 and sepiolite 2 (at the natural pH of the suspensions),
in the presence of sodium polyphosphate and without addition of dispersing agent, using different
dispersing equipment, are presented in Figure 6.

As can be macroscopically observed, the use of sepiolite 2 resulted, overall, in suspensions of better
stability, being only observed phase separation for the samples produced using the magnetic stirrer and
a slight sedimentation of clay particles for the sample produced with the high-speed disperser. All the
other three samples appeared stable for a long period of time, 90 days. Less stable suspensions were
formed when sepiolite 1 was used, being only observed macroscopically uniform samples with the use
of the sonicator as dispersion equipment. This is certainly related with the different pre-treatments
used to prepare the two samples of sepiolite; the pre-treatment used to produce sepiolite 2 allows a
better and slightly easier dispersion of the clay individual fibers, even if these have a longer length
compared to sepiolite 1.
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Figure 6. Sepiolite 1 (top) and sepiolite 2 (bottom) 1.0 wt% aqueous suspensions (pH ca. 8). (a)
Magnetically stirred; (b) magnetically stirred with 0.1 wt% polyphosphate; (c) high-shear dispersed;
(d) high-shear dispersed with 0.1 wt% polyphosphate; (e) sonicated; (f) sonicated with 0.1 wt%
polyphosphate. (i) Top phase of suspension (a); (ii) bottom phase of suspension (a); (iii) top phase
of suspension (b); (iv) bottom phase of suspension (b); (v) suspension (d); (vi) suspension (c); (vii)
suspension (f); (viii) suspension (e). The images (photographs and micrographs) were taken 90 days
after sample preparation. The scale bar in the insets (i)–(viii) represent 100 µm.

Additionally, in the insets, which correspond to microscopic observations of the samples it is
also possible to observe clear differences. For the case of sepiolite 1 suspensions prepared using the
magnetic stirrer and high-shear disperser, the top phase microscopic image shows a clear image,
being the mineral-rich phase concentrated in the bottom of the flask, even when the dispersing
agent, polyphosphate, was used (Figure 6, images (i), (iii), (v), and (vi)). On the other hand, for the
suspension of sepiolite 2 prepared with the high-shear disperser, the top phase of suspension (c)
shows some dispersed particles, and the bottom phase is smaller than the observed for sepiolite 1.
When polyphosphate was added to the suspension of sepiolite 2, using the high-shear disperser, a
homogeneous suspension was formed, some particles of relatively large dimensions being observed in
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suspension. Comparing the macroscopic aspect and the microscopic observation of suspensions of
sepiolite 2 prepared with the high-speed disperser (Figure 6, samples c and d), it is reasonable to say
that part of the mineral was disaggregated into small particles, not visible in the optical microscope,
only a small sediment of mineral particles being observed in the absence of polyphosphate.

With ultrasonication, stable suspensions with solely sepiolite in water and also with the addition
of polyphosphate (Figure 6, samples e and f) were prepared. However, the sample containing only
sepiolite 1 (no dispersant) showed some large particles in suspension, contrary to the samples prepared
with sepiolite 1 or sepiolite 2 with dispersing agent, which presented a clear image in the optical
microscope. The presence of the dispersing agent can introduce extra charges on the surface of the
particles, resulting in an improved disaggregation and stability of the suspensions. Sepiolite 2, without
added dispersing agent, already showed a clear image in the microscope, confirming that it is easier to
disperse than sepiolite 1.

3.2.1. Effect of Mechanical Treatment

In order to have a better elucidation of the state of the sepiolite aqueous suspensions, dynamic
light scattering and zeta potential measurements were performed. The results obtained for the size
and zeta potential of the prepared suspensions are shown in Tables 3, 4, A1 and A2 (Appendix A).

As shown in Tables 3 and 4, typically the disaggregation and dispersion stability increase as the
power of the dispersion equipment is increased. In the case of sepiolite 1, for the samples where
the magnetic stirrer was employed, only one stable dispersion was obtained (at pH 12 with CMC),
contrary to the suspensions prepared using the ultrasonicator where all preparations (excluding the
sample with alginate at the initial pH) showed stability for a long period of time. The same trend was
observed for the sepiolite 2, only three stable suspensions being prepared (at pH 12) using the magnetic
stirrer, whereas using the ultrasonicator almost all the prepared suspensions (excluding with alginate
at pH 3 and 8) were stable. With the high-speed disperser equipment, the results were, in general,
intermediate between those above mentioned, being not very effective, as ultrasonication, to generate
stable colloidal dispersions of sepiolite. These results are in agreement with previous conclusions from
other authors [9].

This factor can be rationalized in the following way: the increase in the power of the dispersing
equipment results in higher disaggregation of the clay micro and nanoparticles (aggregates and
bundles), leading to particles of smaller size and thus the formation of more stable suspensions.

3.2.2. Effect of the pH

An increase in the suspension pH is expected to improve the dispersibility and colloidal stability
of the sepiolite particles, due to an increase in the negative charge of the clay particles (Figure 5).
Tables 3, 4, A1 and A2 evidence that the disaggregation and dispersion stability increased with the
rise of the suspension pH from 3 to 12: an increment in the number of stable suspensions, i.e., six
suspensions over the 15 investigated at pH 3, to nine suspensions over the 15 investigated at pH 12,
was observed when working with sepiolite 1 and from 7 to 12, over the 15 investigated, in the case of
sepiolite 2.

The increase in the negative surface charge of the clay particles is derived from the presence of
hydroxyl groups or breakage of M–O–M (M = Si or Mg) at highly alkaline pH [29]. This increase in the
surface charge helps the disaggregation and the stabilization of the particles, avoiding also the particle
re-aggregation that introduces instability on the systems. Even though no strict defined relationship
between zeta potential values and colloidal stability of systems can be assumed, it is known that a very
small absolute zeta potential value, lower than ±5.0 mV, is a driving force for flocculation and instability
of the particles in solution, and only above a value of ±30 mV the systems tend to be stable [30]. Thus,
an increase in the absolute value obtained by pH increment will be favorable to enhance the stability of
the suspensions.
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The combination of high pH (pH 12) and ultrasonication led to 100% stable suspensions either
for the sepiolite 1 or sepiolite 2. At pH 12 and with the high-shear disperser most of the prepared
suspensions were also stable. Even with only magnetic stirring at pH 12, it was possible to obtain a few
stable suspensions if an appropriate chemical dispersant (e.g., CMC for both sepiolite samples) was
used. These suspensions stayed stable for more than three months, contrary to most of the suspensions
at pH 3. Additionally, the particle size of the suspensions tendentiously decreased with pH rise and the
polydispersity index decreased, indicating a suspension with a narrower distribution of the particle
size (Tables 3 and 4). Besides the increase in the surface charge of the clay particles, the dispersing
agents used also suffer changes as the pH is increased, as discussed in the next section.

3.2.3. Effect of the Dispersants

The dispersing agents are species able to interact with the clay particles and change some
surface properties, leading to an improvement in dispersibility and colloidal stability. In the
present work, four different dispersing/stabilizing agents were studied: two synthetic ones, sodium
polyphosphate and hydrophobically modified poly(sodium acrylate), and two bio-based ones, sodium
carboxymethylcellulose and sodium alginate. It was observed that among all the studied dispersing
agents the CMC is the one that provided a higher number of stable dispersions of all the preparations
performed, enabling the preparation of stable dispersions in a wide range of conditions. Polyphosphate
as chemical dispersant also provided good results in terms of stability of the sepiolite suspensions.
However, the particle size of the clay in the CMC stabilized suspensions was tendentiously higher
than that obtained when polyphosphate was used, in the cases where it was possible to compare the
particle size. On the other hand, poorer results were obtained with alginate, for which the obtained
data indicate that this biopolymer is less effective to stabilize sepiolite suspensions in water (under the
tested conditions).

The difference in the results obtained with CMC and alginate can be attributed to a better
interaction of the CMC polymer with the clay particles, derived from the relatively low degree of
substitution of the cellulose derivative (less charged). The reported values of the pKa for CMC (degree
of substitution of 1.2) and alginate are quite similar, ca. 4.6 and 4.5, respectively [31]. It has also
been reported that the degree of substitution of CMC affects slightly the pKa value, with a higher
substitution by carboxymethyl groups leading to a higher pKa. Thus, being the degree of substitution
low (0.7), it is expected that the pKa value of the CMC used in the present work is slightly lower but
not significantly different of that of alginate. Additionally, alginate possesses in its structure blocks of
guluronate monomers (besides mannuronate) that due to their axial-axial conformation reduce the
flexibility of the polymer chain; the mannuronate blocks are more flexible and with a structure similar
to CMC structure in its conformation [32]. The lower degree of substitution of CMC (less electrostatic
repulsion with the sepiolite fibers), in the one hand, and, on the other hand, its semi-flexible chain
leading to a more extended conformation of the polymer chain at low pH values, can explain the better
results obtained when CMC was used. Moreover, the aggregation and gelation of alginate polymer
chains has been reported at pH values of ca. 3 [33], thus the polymer-polymer interaction being favored
instead of polymer–clay interaction, resulting in poor dispersion and stabilization of clay suspension
when alginate was used. Finally, it can be hypothesized that CMC is more apt to interact with sepiolite
particles, via Van der Waals forces and hydrogen bonds, to produce stable suspensions [34].
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Table 3. Particle sizes of sepiolite 1 as a function of the different conditions used for preparation of the suspensions.

Mechanical Treatment
pH 3 pH 8 pH 12

Di50 (nm) PDI Di50 (nm) PDI Di50 (nm) PDI

Without dispersing agent
Magnetic stirring 2ϕ - 2ϕ - 2ϕ -

High-speed homogenization 2ϕ - 2ϕ - 770 0.48
Ultrasonication 574 0.91 782 0.29 305 0.32

With 0.1% polyphosphate
Magnetic stirring 2ϕ - 2ϕ - 2ϕ -

High-speed homogenization 2ϕ - 2ϕ - 2ϕ -
Ultrasonication 350 0.24 287 0.23 274 0.27

With 0.1% polyacrylate
Magnetic stirring 2ϕ - 2ϕ - 2ϕ -

High-speed homogenization 2ϕ - 2ϕ - 1470 0.62
Ultrasonication 395 1.00 232 0.33 485 0.36

With 0.1% CMC
Magnetic stirring 2ϕ - 2ϕ - 1060 0.47

High-speed homogenization 1170 0.27 1440 0.43 791 0.42
Ultrasonication 691 0.29 445 0.31 487 0.37

With 0.1% alginate
Magnetic stirring 2ϕ - 2ϕ - 2ϕ -

High-speed homogenization 2ϕ - 2ϕ - 2ϕ -
Ultrasonication 552 0.34 2ϕ - 412 0.36

2ϕ—refers to two separate phases.
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Table 4. Particle sizes of sepiolite 2 as a function of the different conditions used for preparation of the suspensions.

Mechanical Treatment
pH 3 pH 8 pH 12

Di50 (nm) PDI Di50 (nm) PDI Di50 (nm) PDI

Without dispersing agent
Magnetic stirring 2ϕ - 2ϕ - 2ϕ -

High-speed homogenization 389 0.75 1030 0.31 757 0.32
Ultrasonication 508 0.91 773 0.26 344 0.25

With 0.1% polyphosphate
Magnetic stirring 2ϕ - 2ϕ - 350 0.28

High-speed homogenization 794 0.28 385 0.27 418 0.25
Ultrasonication 379 0.26 253 0.25 257 0.25

With 0.1% polyacrylate
Magnetic stirring 2ϕ - 2ϕ - 320 0.46

High-speed homogenization 2500 0.49 372 0.42 2ϕ -
Ultrasonication 1760 0.42 578 0.62 499 0.29

With 0.1% CMC
Magnetic stirring 2ϕ - 2ϕ - 1030 0.52

High-speed homogenization 2ϕ - 1370 0.50 1120 0.53
Ultrasonication 620 0.38 551 0.34 485 0.32

With 0.1% alginate
Magnetic stirring 2ϕ - 2ϕ - 2ϕ -

High-speed homogenization 2ϕ - 2ϕ - 558 0.41
Ultrasonication 2ϕ - 2ϕ - 401 0.31

2ϕ—refers to two separate phases.
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From the synthetic options studied, polyphosphate demonstrated to be the more effective,
presenting better results than CMC in the case of sepiolite 2, but worse results in the case of sepiolite 1.
Polyphosphate has a very low pKa value, being ionized and negatively charged in the entire range of
studied pH [35]. It was expected that this compound could act as a good dispersing/stabilizing agent
in the studied range. It is important to highlight that phosphates are traditionally used as dispersing
agents for clay suspensions [36]. However, for sepiolite 1, it seems that the highly negative charge
density of the polyphoshate did not favor the interaction with the clay, unless ultrasonication is applied
in the system. For sepiolite 2, particularly at low pH, the results with polyphosphate were even better
than the obtained when CMC was used. This observation reveals a better interaction of phosphate
anions with the low charged clay particles at low pH.

The results obtained for polyacrylate (HM-PAA) as dispersant and stabilizer were quite unexpected.
It was found that this polymer can have a good performance acting as disperser of sepiolite, being less
effective as stabilizer of the suspensions. These results can be explained by two factors: the pKa of
the polymer is higher than that of the other three dispersing agents studied, ca. 5.8 [31]; secondly, the
polymer possesses hydrophobic modification, which leads to a shift in the expansion of the polymer
chain [37]. These two factors can explain the poor stabilization effect observed for low pH values,
having been typically observed suspension gelation with time, and a slightly better performance
at pH 12, where the polymer is fully ionized and extended, being able to interact and stabilize the
clay particles. It is important however to note that the lowest particle size obtained for the sonicated
sepiolite 1 suspensions was obtained using HM-PAA at pH 8, with a particle size value of ca. 230
nm. This can be attributed to the excellent affinity of this kind of polymer, amphiphilic polymers,
to interact for instance with surfactants [38] and other compounds containing both hydrophilic and
hydrophobic domains, as is the case of the sepiolite clays [6,39,40]. In summary, the combination of an
adequate dispersing agent with suitable dispersing equipment and suspension pH led to a significant
improvement in disaggregation, dispersion, and stability of sepiolite suspensions in aqueous medium.

4. Conclusions

The present work explored the effect of different dispersing equipment and chemical dispersing
agents on the dispersion state and stability of sepiolite suspensions. Two different samples of sepiolite,
obtained from different physical pre-treatments, were studied. The characterization results of the
sepiolite samples in the solid state revealed the characteristic magnesium silicate nature and high purity
of the raw materials and clearly confirmed their fibrous-like structure. Additionally, the isoelectric
point, ca. 3.2 for sepiolite 1 and ca. 2.5 for sepiolite 2, determined by zeta potential measurements,
was in good agreement with other values reported in literature. Our results put in evidence the
importance of the dispersing conditions used in order to prepare stable dispersions of sepiolite. It was
observed that the use of high-energy dispersing apparatus, as the ultrasonicator, produced more stable
suspensions compared to low-energy equipment, like the magnetic stirrer. On the other hand, it was
observed that the biopolymer CMC showed a higher ability to produce stable suspensions; however,
tendentiously, the smaller particle size was obtained when polyphosphate was used. Amphiphilic
polymers, such as HM-PAA, also demonstrated good ability to disperse sepiolite particles, due to their
good ability to interact with species containing hydrophobic moieties and reduce the Van der Waals
forces among the clay rods. Nevertheless, most of the prepared suspensions with HM-PAA at low
pH, tended to form viscous gels with time, ruling out the possibility of using this synthetic polymer
to stabilize sepiolite, at least under the tested conditions. In sum, the combination of a high energy
dispersing equipment with an appropriate dispersing agent led to stable suspensions with optimal
properties to be used in different applications, like composites.
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Appendix A

Table A1. Zeta potential values for sepiolite 1 suspensions as a function of the different conditions used.

Mechanical Treatment
pH 3 pH 8 pH 12

Zeta Potential
(mV)

Zeta
Deviation

Zeta Potential
(mV)

Zeta
Deviation

Zeta Potential
(mV)

Zeta
Deviation

Without
dispersing agent

Magnetic stirring 2ϕ - 2ϕ - 2ϕ -
High-speed

homogenization 2ϕ - 2ϕ - −30 3.4

Ultrasonication −19 4.3 −19 4.0 −48 9.6

With 0.1%
polyphosphate

Magnetic stirring 2ϕ - 2ϕ - 2ϕ -
High-speed

homogenization 2ϕ - 2ϕ - 2ϕ -

Ultrasonication −43 6.8 −57 8.9 −52 10.4

With 0.1%
polyacrylate

Magnetic stirring 2ϕ - 2ϕ - 2ϕ -
High-speed

homogenization 2ϕ - 2ϕ - −49 4.9

Ultrasonication −22 3.1 −26 5.6 −52 5.0

With 0.1% CMC

Magnetic stirring 2ϕ - 2ϕ - −56 3.9
High-speed

homogenization −38 3.1 −62 4.5 −50 3.8

Ultrasonication −36 3.3 −54 4.4 −51 5.5

With 0.1% alginate

Magnetic stirring 2ϕ - 2ϕ - 2ϕ -
High-speed

homogenization 2ϕ - 2ϕ - 2ϕ -

Ultrasonication −41 3.8 2ϕ - −56 8.7

2ϕ—refers to two separate phases. Zeta deviation is the uncertainty of the zeta potential determination.
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Table A2. Zeta potential values for sepiolite 2 suspensions as a function of the different conditions used.

Mechanical Treatment
pH 3 pH 8 pH 12

Zeta Potential
(mV)

Zeta
Deviation

Zeta Potential
(mV)

Zeta
Deviation

Zeta Potential
(mV)

Zeta
Deviation

Without
dispersing agent

Magnetic stirring 2ϕ - 2ϕ - 2ϕ -
High-speed

homogenization −19 3.1 −22 4.9 −38 6.0

Ultrasonication −19 2.7 −25 8.4 −47 8.4

With 0.1%
polyphosphate

Magnetic stirring 2ϕ - 2ϕ - −54 8.8
High-speed

homogenization −38 5.3 −60 10.3 −55 10.0

Ultrasonication −38 5.5 −58 11.6 −54 11.4

With 0.1%
polyacrylate

Magnetic stirring 2ϕ - 2ϕ - −53 4.7
High-speed

homogenization −21 2.8 −24 4.7 2ϕ -

Ultrasonication −24 5.2 −29 3.5 −56 5.1

With 0.1% CMC

Magnetic stirring 2ϕ - 2ϕ - −65 4.6
High-speed

homogenization 2ϕ - −60 4.4 −54 4.3

Ultrasonication −50 4.5 −66 5.4 −57 5.0

With 0.1% alginate

Magnetic stirring 2ϕ - 2ϕ - 2ϕ -
High-speed

homogenization 2ϕ - 2ϕ - −55 4.9

Ultrasonication 2ϕ - 2ϕ - −52 9.1

2ϕ—refers to two separate phases. Zeta deviation is the uncertainty of the zeta potential determination.
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30. Salopek, B.; Krasić, D.; Filipović, S. Measurement and application of zeta-potential. Rud. Geol. Naft. Zb. 1992,
4, 147–151.

31. Vleugels, L.F.W.; Ricois, S.; Voets, I.K.; Tuinier, R. Determination of the ‘apparent pKa’ of selected food
hydrocolloids using ortho-toluidine blue. Food Hydrocoll. 2018, 81, 273–283. [CrossRef]

32. Kakita, H.; Kamishima, H. Some properties of alginate gels derived from algal sodium alginate. J. Appl. Phycol.
2008, 20, 543–549. [CrossRef]

33. Andriamanantoanina, H.; Rinaudo, M. Relationship between the molecular structure of alginates and their
gelation in acidic conditions. Polym. Int. 2010, 59, 1531–1541. [CrossRef]

34. Alves, L.; Medronho, B.F.; Antunes, F.E.; Romano, A.; Miguel, M.G.; Lindman, B. On the role of hydrophobic
interactions in cellulose dissolution and regeneration: Colloidal aggregates and molecular solutions.
Colloids Surf. A: Physicochem. Eng. Asp. 2015, 483, 257–263. [CrossRef]

35. Younes, M.; Aquilina, G.; Castle, L.; Engel, K.-H.; Fowler, P.; Frutos Fernandez, M.J.; Fürst, P.; Gürtler, R.;
Husøy, T.; Mennes, W.; et al. Re-evaluation of phosphoric acid–phosphates—di-, tri- and polyphosphates (E
338–341, E 343, E 450–452) as food additives and the safety of proposed extension of use. EFSA J. 2019, 17,
5674. [CrossRef]

36. Suman, K.; Mittal, M.; Joshi, Y.M. Effect of sodium pyrophosphate and understanding microstructure
of aqueous LAPONITE® dispersion using dissolution study. J. Phys. Condens. Matter 2020, 32, 224002.
[CrossRef] [PubMed]

37. Alves, L.; Lindman, B.; Klotz, B.; Böttcher, A.; Haake, H.-M.; Antunes, F.E. Rheology of polyacrylate systems
depends strongly on architecture. Colloid Polym. Sci. 2015, 293, 3285–3293. [CrossRef]

38. Alves, L.; Lindman, B.; Klotz, B.; Böttcher, A.; Haake, H.-M.; Antunes, F.E. On the rheology of mixed systems
of hydrophobically modified polyacrylate microgels and surfactants: Role of the surfactant architecture.
J. Colloid Interface Sci. 2018, 513, 489–496. [CrossRef] [PubMed]

39. Alvarado, M.; Chianelli, R.C.; Arrowood, R.M. Computational Study of the Structure of a Sepiolite/Thioindigo
Mayan Pigment. Bioinorg. Chem. Appl. 2012, 2012, 672562. [CrossRef]

40. Benli, B.; Du, H.; Celik, M.S. The anisotropic characteristics of natural fibrous sepiolite as revealed by contact
angle, surface free energy, AFM and molecular dynamics simulation. Colloids Surf. A: Physicochem. Eng. Asp.
2012, 408, 22–31. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1346/CCMN.1974.0220310
http://dx.doi.org/10.2138/am.2007.2134
http://dx.doi.org/10.1016/S0924-2031(01)00110-2
http://dx.doi.org/10.1002/cjce.20573
http://dx.doi.org/10.1016/j.jcis.2004.08.036
http://dx.doi.org/10.1016/j.clay.2015.06.030
http://dx.doi.org/10.1016/j.foodhyd.2018.02.049
http://dx.doi.org/10.1007/s10811-008-9317-5
http://dx.doi.org/10.1002/pi.2943
http://dx.doi.org/10.1016/j.colsurfa.2015.03.011
http://dx.doi.org/10.2903/j.efsa.2019.5674
http://dx.doi.org/10.1088/1361-648X/ab724d
http://www.ncbi.nlm.nih.gov/pubmed/32015220
http://dx.doi.org/10.1007/s00396-015-3715-4
http://dx.doi.org/10.1016/j.jcis.2017.11.047
http://www.ncbi.nlm.nih.gov/pubmed/29179089
http://dx.doi.org/10.1155/2012/672562
http://dx.doi.org/10.1016/j.colsurfa.2012.04.018
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Clays and Chemicals 
	Characterization of the Sepiolite Samples 
	Preparation of the Sepiolite Suspensions with Different Mechanical Dispersers and Chemical Dispersants 
	Characterization of the Sepiolite Suspensions 

	Results and Discussion 
	Characterization of the Sepiolite Samples 
	Characterization of the Sepiolite Suspensions: Effects of Dispersing Equipment and Dispersant 
	Effect of Mechanical Treatment 
	Effect of the pH 
	Effect of the Dispersants 


	Conclusions 
	
	References

