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Abstract: This paper presents a numerical study on the influence of material parameters and
loading variability in the plastic crack tip opening displacement (CTOD) results. For this purpose,
AA7050-T6 was selected as reference material and a middle-cracked tension specimen geometry was
considered. The studied input parameters were the Young’s modulus, Poisson’s ratio, isotropic and
kinematic hardening parameters and the maximum and minimum applied loads. The variability
of the input parameters follows a Gaussian distribution. First, screening design-of-experiments
were performed to identify the most influential parameters. Two types of screening designs were
considered: one-factor-at-a-time and fractional factorial designs. Three analysis criteria were adopted,
based on: main effect, index of influence and analysis of variance. Afterwards, metamodels were
constructed to establish relationships between the most influential parameters and the plastic crack
tip opening displacement (CTOD) range, based on two types of designs: Face-Centered Central
Composite Design and Box-Behnken design. Finally, the metamodels were validated, enabling the
expeditious evaluation of the variability in the plastic CTOD range; in addition, the variability in the
fatigue crack growth rate was also evaluated.
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1. Introduction

Fatigue is the main failure mechanism in components submitted to cyclic loads. Design against
fatigue based on damage tolerance approach assumes the presence of intrinsic defects, such as cracks.
In fact, technological processes like casting, machining, welding and additive manufacturing are
known to produce small defects. Accurate assessments of fatigue crack growth (FCG) rates are needed
to define the time between inspections. Several models have been proposed in the literature to quantify
the FCG rate as a function of loading and/or material parameters (e.g., [1–3]). These models are
deterministic, i.e., assume that there is a well-defined relation between these parameters and FCG rate.
However, the variability of the material, loading, geometry, temperature, etc., introduces uncertainty
in the results. In this context, there are two main procedures to overcome the influence of sources
of uncertainties [4]: (i) the use of safety factors, which is the conservative solution usually adopted
to accommodate uncertainties, and (ii) performing stochastic analysis, which is often supported by
probabilistic fatigue models (e.g., [5,6]), metamodeling techniques (e.g., [7–13]) and more recently
by digital twin approaches (e.g., [14,15]). In the context of stochastic fatigue analysis, a probabilistic
fracture mechanics approach to predict the fatigue life of aircraft wing attachment bulkheads was
proposed by White [16]. A sensitivity analysis was performed to quantify the effect of parameters
that significantly influence crack growth in metallic airframes. The studied parameters included:
equivalent pre-crack size, crack growth rate, fracture toughness of the material and maximum load per
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flight. The variability in the total life is most sensitive to the variability in the equivalent pre-crack
size, and least sensitive to the variability in the fracture toughness. In other works, FCG tests were
performed on cracked specimens made of 2024-T3 aluminum alloy, illustrating the scatter in the FCG
rate due to material inhomogeneity [17,18]. A predictive procedure was developed by Bahloul et al. [19],
using the finite element method coupled with Monte Carlo, to evaluate the residual FCG life of a
7075-T6 aluminum alloy cracked lug component, considering the stochastic behaviour of the material
parameters and the crack tip stress field. The proposed procedure showed a good ability in improving
the deterministic FCG life evaluation. An uncertainty quantification methodology was proposed by
Sankararaman et al. [7], to predict the crack growth as a function of the number of load cycles in a
cylindrical structural component, with complex geometry and subjected to multi-axial loading with
variable amplitude. The proposed methodology, which is supported by a Gaussian process metamodel
trained via finite element analysis, takes into account sources of uncertainty such as loading conditions
and material variability. Wentao et al. [8] proposed an approach to assess the probabilistic life of mixed
mode FCG in mechanical components, by coupling finite element analysis and a Kriging-based Monte
Carlo metamodel. The use of a Kriging-based metamodel for the probabilistic FCG analysis is shown
to be more efficient than the Response Surface Methodology. A probabilistic fatigue life prediction
model for multiple site damage in structural components was developed by Kim et al. [9], which resort
to an extended finite element method coupled with a Gaussian Process metamodel for computational
efficiency. Metamodels were developed by Vélez et al. [10], to relate the crack tip opening displacement
(CTOD) with material properties in high-thickness offshore steel welded joints. The studied material
properties (hardness, chemical composition, toughness and microstructural morphology) were shown
to be significantly related with the CTOD, also being simpler and cheaper to measure and more
available than the CTOD.

The aim of this paper is to carry out a numerical analysis on the influence of material parameters
and loading variability in the variability of the plastic CTOD results obtained from FCG tests on
middle-cracked tension (M(T)) specimens. Antunes et al. [20] developed a material law relating
FCG rate with the plastic CTOD (δp). The FCG rate was experimentally measured in standard M(T)
samples, while δp was numerically predicted in models that simulate the experimental work regarding
material properties, sample geometry and imposed loadings. It is required a certain amount of crack
propagation in the numerical models for each crack length studied, in order to stabilize the cyclic
plastic deformation and the crack closure level. The plastic CTOD is measured only at the end of
crack propagation, and is not expected to be affected by the crack growth rate imposed artificially in
the numerical model. This approach assumes that plastic deformation at the crack tip is the main
mechanism behind crack tip and that the plastic CTOD is the crack driving force. Other authors
proposed the use of total CTOD [21,22], but Vasco-Olmo et al. [23] proved that the plastic CTOD is
the crack driving force. The da/dN–δp model is supposed to be a material law, which can be used to
estimate da/dN in other situations. In this work, the numerical models were changed regarding the
material and loading parameters, and the da/dN–δp model was used to estimate the FCG rate.

Following this introduction, the paper is organized as follows: Section 2 describes the numerical
model of the FCG tests; Section 3 presents the results and discussion. Firstly, sensitivity analyses
are performed to identify the most influential parameters on the plastic CTOD results. Afterwards,
metamodels are constructed with the most influential parameters, to expeditiously evaluate the
variability of the plastic CTOD. Finally, the proposed metamodels are validated and compared.
Section 4 presents the conclusions.

2. Numerical Model

Numerical simulations of FCG tests were performed on a standard middle-cracked tension (M(T))
sample geometry, as shown in Figure 1. A straight crack was defined, with an initial size ao equal to
5 mm (ao/W = 0.083). Only 1/8 of the low cycle fatigue test was simulated, due to sample geometry
symmetries. Plane strain state was modeled as illustrated in Figure 1b.
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Figure 1. Schematic representation of the M(T) sample: (a) Geometry and dimensions (in mm); (b) 
Boundary conditions in the frontal view [20]. 
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the residual plastic wake may produce crack closure, which affects the crack tip fields. Again, the 
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obtained by dividing the imposed loads by the cross-section area A (= 30 × 0.1 mm2). 

The numerical simulations were performed with DD3IMP in-house FE solver [24]. The average 
simulation time for the FCG tests is about 18 h (Intel® Core™i9–7900X 10-Core processor @ 3.3 GHz). 
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Figure 1. Schematic representation of the M(T) sample: (a) Geometry and dimensions (in mm);
(b) Boundary conditions in the frontal view [20].

The finite element (FE) model of the M(T) sample is composed of 6639 trilinear solid elements,
with 13586 nodes. A mesh refinement was performed near the crack tip, using 8 × 8 µm2 elements.
Crack propagation was simulated by successive debonding of nodes at minimum imposed load.
Each crack increment corresponds to one FE and two load cycles were applied before each crack
propagation. In each cycle, the crack propagated uniformly over the thickness by releasing both current
crack front nodes. 200 load cycles (i.e., 100 crack propagations) were performed, which corresponds to
a total crack propagation of ∆a = (100 − 1) × 8 µm = 792 µm. The first two load cycles were applied
without crack increment, i.e., at a = 5 mm. The aim was the stabilization of crack opening values, since
a transient behavior is observed as the residual plastic wake is formed. Additionally, the residual
plastic wake may produce crack closure, which affects the crack tip fields. Again, the plastic CTOD
is measured at the end of crack propagation and is not expected to be affected by the artificial crack
growth rate imposed in the numerical model. The applied remote stresses σ were obtained by dividing
the imposed loads by the cross-section area A (= 30 × 0.1 mm2).

The numerical simulations were performed with DD3IMP in-house FE solver [24]. The average
simulation time for the FCG tests is about 18 h (Intel®Core™i9–7900X 10-Core processor @ 3.3 GHz).
The material elastic behavior is considered isotropic and is described by the generalized Hooke’s law,
where the Young’s modulus (E) and the Poisson’s ratio (ν) are the elastic parameters. The plastic
behavior is described by the von Mises yield criterion, coupled with the Armstrong-Frederick kinematic
hardening law. The von Mises yield criterion is:√

3
2
(σ′ −X′) : (σ′ −X′) −Y0 = 0 (1)

where σ′ is the deviatoric Cauchy stress tensor, X′ is the deviatoric backstress tensor and Y0 is the
initial yield stress. The Armstrong-Frederick kinematic hardening law is described as follows [25]:
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material parameters CX and XSat represent, respectively, the saturation rate and saturation value of the
kinematic hardening (exponential) law.

The material used in this study is a 7050-T6 aluminum alloy, whose elastoplastic cyclic behavior
was modeled in a previous work [20]; the values of the material parameters E, ν, Y0, CX, XSat that
describe the elastoplastic behavior of AA7050-T6 were used as reference. In this context, a Gaussian
distribution is used for describing the variability of the material parameters and the maximum and
minimum imposed loads per cycle, Fmax and Fmin. The mean (µ) and standard deviation (SD) values of
each parameter are detailed in Table 1, where the mean values of the material parameters correspond
to the reference ones (see [20]); a coefficient of variation CV = 5% was assumed for each parameter,
where CV = SD/µ.

Table 1. Mean (µ) and standard deviation (SD) values of the studied input parameters; percentiles 2.5th
(P2.5) and 97th (P97.5) are also shown.

AA7050-T6 E (GPa) ν Y0 (MPa) CX XSat (MPa) Fmax (N) Fmin (N)

µ 71.70 0.3300 420.50 228.91 198.35 385.29 19.26
SD 3.59 0.0165 21.03 11.45 9.92 19.26 0.96

P2.5 64.67 0.2977 379.29 206.48 178.91 347.53 17.37
P97.5 78.73 0.3623 461.71 251.34 217.79 423.05 21.15

Figure 2a presents the reference numerical simulation results of CTOD vs. applied stress, obtained
from the mean values of the input parameters in Table 1 during the 200th load cycle. The CTOD
is obtained at the first node at the left of the crack tip (8 µm from the crack tip, as schematized in
Figure 2a). At minimum applied stress (point A) the crack is closed, and therefore the CTOD is equal
to zero. The increase in the stress value opens the crack at point B. Afterwards, there is a linear region
(point B to point C) associated with the material elastic behavior. Plastic deformation initiates after
point C, and increases up to the maximum stress at point D. The dashed line shows the elastic CTOD
(CTODe); the plastic CTOD (CTODp), is obtained by subtracting the elastic CTOD from the total
CTOD. Figure 2b presents the evolution of plastic CTOD with applied stress during the 200th load
cycle. Between points C and D, there is a progressive increase of CTODp up to the maximum stress.
The range of CTODp, δp, shown in Figure 2b, is assumed to control FCG; accordingly, the variability
analysis presented in the subsequent sections will focus on δp.
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Figure 2. Reference numerical simulation results of AA7050-T6: (a) Total crack tip opening displacement
(CTOD) vs. applied stress, with schematic representation of CTOD measurement; (b) Plastic CTOD vs.
applied stress, with indication of δp.
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3. Results and Discussion

3.1. Sensitivity Analysis

The sensitivity analysis enables excluding the least influential input parameters on the δp

results, to reduce computational effort in the subsequent metamodeling step. For this purpose,
numerical simulations were carried out from two types of screening design of experiments (DOE):
One-factor-at-a-time (OFAT) and fractional factorial design (FFD) approaches [26]. Three levels were
assumed for the input parameters: the mean value (µ), the 2.5th (P2.5) and the 97.5th (P97.5) percentiles,
which correspond to a 95% confidence interval. Tables 2 and 3 show the δp results obtained from the
numerical simulations under the OFAT and FFD screening approaches, respectively.

Table 2. Numerical simulation results of δp for the one-factor-at-a-time (OFAT) screening design.

Simulation E (GPa) ν Y0 (MPa) CX XSat (MPa) Fmax (N) Fmin (N) δp (µm)

1 µ µ µ µ µ µ µ 0.334
2 P2.5 µ µ µ µ µ µ 0.364
3 P97.5 µ µ µ µ µ µ 0.304
4 µ P2.5 µ µ µ µ µ 0.340
5 µ P97.5 µ µ µ µ µ 0.326
6 µ µ P2.5 µ µ µ µ 0.379
7 µ µ P97.5 µ µ µ µ 0.303
8 µ µ µ P2.5 µ µ µ 0.337
9 µ µ µ P97.5 µ µ µ 0.326

10 µ µ µ µ P2.5 µ µ 0.341
11 µ µ µ µ P97.5 µ µ 0.322
12 µ µ µ µ µ P2.5 µ 0.264
13 µ µ µ µ µ P97.5 µ 0.421
14 µ µ µ µ µ µ P2.5 0.335
15 µ µ µ µ µ µ P97.5 0.333

Table 3. Numerical simulation results of δp for the fractional factorial design (FFD) screening design.

Simulation E (GPa) ν Y0 (MPa) CX XSat (MPa) Fmax (N) Fmin (N) δp (µm)

1 P2.5 P2.5 P2.5 P2.5 P2.5 P2.5 P2.5 0.346
2 P97.5 P2.5 P2.5 P2.5 P97.5 P2.5 P97.5 0.273
3 P2.5 P97.5 P2.5 P2.5 P97.5 P97.5 P2.5 0.529
4 P97.5 P97.5 P2.5 P2.5 P2.5 P97.5 P97.5 0.499
5 P2.5 P2.5 P97.5 P2.5 P97.5 P97.5 P97.5 0.418
6 P97.5 P2.5 P97.5 P2.5 P2.5 P97.5 P2.5 0.366
7 P2.5 P97.5 P97.5 P2.5 P2.5 P2.5 P97.5 0.269
8 P97.5 P97.5 P97.5 P2.5 P97.5 P2.5 P2.5 0.220
9 P2.5 P2.5 P2.5 P97.5 P2.5 P97.5 P97.5 0.561

10 P97.5 P2.5 P2.5 P97.5 P97.5 P97.5 P2.5 0.425
11 P2.5 P97.5 P2.5 P97.5 P97.5 P2.5 P97.5 0.492
12 P97.5 P97.5 P2.5 P97.5 P2.5 P2.5 P2.5 0.270
13 P2.5 P2.5 P97.5 P97.5 P97.5 P2.5 P2.5 0.273
14 P97.5 P2.5 P97.5 P97.5 P2.5 P2.5 P97.5 0.232
15 P2.5 P97.5 P97.5 P97.5 P2.5 P97.5 P2.5 0.421
16 P97.5 P97.5 P97.5 P97.5 P97.5 P97.5 P97.5 0.324

The influence of each input parameter on the plastic CTOD range was quantified using three
analysis criteria [26]: (i) Main Effect, (ii) Index of Influence and (iii) Analysis of Variance (ANOVA).
This enables assessing the influence of the analysis criterion and screening DOE on the input
parameters sensitivity.
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The Main Effect of a given input parameter is given by:

Main Effect =

∑
δP97.5

p −
∑

δP2.5
p

0.5× s
(3)

where s is the total amount of numerical simulations of the screening DOE under analysis, having
input parameter values at levels P2.5 and/or P97.5 (i.e., (s = 14 for OFAT and s = 16 for FFD);

∑
δP97.5

p

and
∑

δP2.5
p are the sum of plastic CTOD range values obtained at the 97.5th and the 2.5th percentiles,

respectively. According to the Main Effect criterion, the input parameters are assumed influential if the
absolute value of their main effect is higher than the average main effect of the seven input parameters,
for each DOE.

The Index of Influence of a given parameter is given by:

Index of Influence =

∣∣∣∣∣∑δP2.5
p

0.5×s − δ
N
p

∣∣∣∣∣+ ∣∣∣∣∣∑δP97.5
p

0.5×s − δ
N
p

∣∣∣∣∣
2× δN

p
(4)

where δN
p is the nominal value of the plastic CTOD range, and depends on the type of DOE: In case of

OFAT, it is obtained from the Simulation 1 in Table 2 (i.e., when considering the mean values of the
input parameters shown in Table 1); in case of FFD, it is equal to the average of the δp values from
Table 3. According to the Index of Influence criterion, the input parameters are considered influential
when the value of their Index of Influence is higher than the average Index of Influence of the seven
input parameters, for each DOE.

ANOVA is used to check the significance of each input parameter, by determining the p-value for
the F-test at a 95% confidence interval. ANOVA starts with the main effect of each input parameter
(Equation (4)), for determining the corresponding sum of squares, SS:

SS = s
(Main Effect

2

)2
(5)

In the next step, the mean of squares, MS, is calculated for each input parameter:

MS =
SS
DF

(6)

where DF is the number of degrees of freedom per input parameter, DF = l − 1, where l is the number
of levels of variation considered for each input parameter (excluding the mean, µ). Since the number
of levels considered is l = 2 (i.e., P2.5 and P97.5), then DF = 1. The sum of squares for error, SSE, is:

SSE =
∑s

i=1

(
δpi − δ̂pi

)2
(7)

where δpi is the plastic CTOD range obtained from DOE simulation i and δ̂pi is the corresponding
predicted plastic CTOD range value, obtained by the following linear relationship:

δ̂pi = α0 + α1Ei + α2νi + α3Y0i + α4CXi + α5XSati + α6Fmaxi + α7Fmini, (8)

where αj are coefficients, with j = 0, . . . , 7. The values of the coefficients were obtained by minimization
of Equation (7) resorting to the Generalized Reduced Gradient non-linear optimization algorithm [27].
The mean squared error MSE is given by:

MSE =
SSE

s− k− 1
(9)

where k is the number of input parameters under analysis (k = 7). The F-ratio is given by:
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F−Ratio =
MS

MSE
(10)

The F-ratio enables obtaining the p-value at a 95% confidence interval. For the 95% confidence
interval, the input parameters are assumed influential if the p-value is less than 0.05.

The sensitivity analysis results for OFAT and FFD are respectively indicated in Tables 4 and 5.
Whatever the analysis (Main Effect, Index of Influence and ANOVA) and type of screening DOE (OFAT
and FFD), the input parameters E, Y0 and Fmax are consistently shown to be the most influential in the
δp results.

Table 4. Main Effect, Index of Influence and ANOVA results obtained from the OFAT simulations
(see Table 2). The values in bold indicate that the respective parameters are assumed influential.

OFAT E (GPa) ν Y0 (MPa) CX XSat (MPa) Fmax (N) Fmin (N)

Main Effect 0.0598 0.0133 0.0752 0.0109 0.0192 0.1561 0.0016
Index of Influence 0.0895 0.0199 0.1125 0.0164 0.0287 0.2335 0.0024
ANOVA p-value 0.0010 0.2309 0.0003 0.3144 0.1020 0.0000 0.8778

Table 5. Main Effect, Index of Influence and ANOVA results obtained from the FFD simulations
(see Table 3). The values in bold indicate that the respective parameters are assumed influential.

FFD E (GPa) ν Y0 (MPa) CX XSat (MPa) Fmax (N) Fmin (N)

Main Effect 0.0874 0.0162 0.1087 0.0101 0.0014 0.1460 0.0270
Index of Influence 0.1182 0.0219 0.1469 0.0136 0.0020 0.1974 0.0365
ANOVA p-value 0.0087 0.5039 0.0031 0.6751 0.9516 0.0007 0.2815

3.2. Metamodeling

The variability in the δp results was evaluated resorting to Response Surface Methodology (RSM)
metamodels, constructed with the most influential input parameters, E, Y0 and Fmax, to reduce the
computational effort. In this context, a quadratic polynomial model is adopted to establish the following
relationship between E, Y0, Fmax and δp:

δp
RSM
i = β0 + β1Ei + β2Y0i + β3Fmaxi + β4EiY0i + β5EiFmaxi + β6Y0iFmaxi + β7E2

i + β8Y0
2
i + β9Fmax

2
i (11)

where δp
RSM
i is the value of plastic CTOD range predicted by the RSM model for RSM simulation i and

βj are fitting RSM coefficients, with j = 0, . . . , 9. Equation (11) can be also written as a system of linear
equations, as follows:

δpi = Hi jβ j + εi (12)

where δpi (i = 1, . . . , n) is the vector of plastic CTOD range measurements obtained from n RSM
simulations, εi is an error term and Hi j is the linear system matrix,

Hi j =


1 E1 Y01 Fmax1 EY01 EFmax1 Y0Fmax1 E2

1 Y0
2
1 Fmax

2
1

...
...

...
...

...
...

...
...

...
...

1 En Y0n Fmaxn EY0n EFmaxn Y0Fmaxn E2
n Y0

2
n Fmax

2
n

 (13)

RSM simulations were performed based on two types of designs: Face-Centered Central Composite
Design (FCCCD) and Box-Behnken design (BBD); the aim is to assess the influence of the choice of
RSM metamodel on predicting the variability in the δp results. Figure 3 shows the map of points (i.e.,
sets of input parameters) considered in the FCCCD and BBD design space, each point corresponding
to one numerical simulation. Three levels of variation are considered for each input parameter: P2.5,
µ and P97.5 (see Table 1); these levels are referred in Figure 3 as −1, 0, 1, respectively. The FCCCD
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design uses vertex points to assess the plastic CTOD range under extreme combinations between the
three input parameters; as such, the resulting response surface is expected to describe extreme (and
highly unlikely) behavior more accurately than that obtained using Box-Behnken (which lacks vertex
points, having edge points instead). On the other hand, the Box-Behnken design is a computationally
cheaper alternative to FCCCD, requiring fewer numerical simulations. The RSM numerical simulations
assumed the mean values (µ) concerning the least influential parameters (ν, CX, XSat and Fmin—see
Table 1).
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Figure 3. Face-Centered Central Composite Design (FCCCD) and Box-Behnken design (BBD) design
points for constructing Response Surface Methodology (RSM) metamodels.

Table 6 presents the least-squares solution for the RSM coefficients associated with the FCCCD
and BBD designs. Whatever the design, FCCCD or BBD, the number of numerical simulations n is
greater than the number of RSM coefficients β (i.e., n > j); in this case, the least-squares solution is the

one that minimizes the sum of squared error at the design points, εi =
√
(δpi
−Hi jβ j)

2, given by [28]:

β j =
(
H jiHi j

)−1
H jiδpi (14)

Table 6. Least-squares solutions of RSM coefficients obtained from the FCCCD and BBD designs.

RSM Coefficients Face-Centered
Central Composite Design

Box-Behnken
Design

β0 3.061 × 100 1.814 × 10−1

β1 −3.124 × 10−2 −6.938 × 10−2

β2 −6.633 × 10−3 −7.472 × 10−4

β3 −1.783 × 10−3 2.630 × 10−3

β4 3.220 × 10−5 9.827 × 10−6

β5 −7.202 × 10−6 −3.067 × 10−5

β6 −6.909 × 10−6 −1.082 × 10−5

β7 1.158 × 10−4 7.009 × 10−5

β8 7.281 × 10−6 3.872 × 10−6

β9 9.765 × 10−6 8.157 × 10−6

Tables 7 and 8 compare the δp responses obtained from the FCCCD or BBD simulations with those
predicted by the corresponding RSM metamodels; the metrics R2 and relative root mean squared error
(RRMSE) were chosen to quantify the fitting performance of the design points. In general, the obtained
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metamodels are able to adequately describe the AA7050-T6 plastic CTOD range measurements at
the design points; also, the metamodel accuracy is best when considering the Box-Behnken design
(R2 = 0.9996, RRMSE = 0.4%) than FCCCD (R2 = 0.9927, RRMSE = 2.0%).

Table 7. Comparison between δp results obtained from the FCCCD simulations with those predicted
by the RSM metamodel; the respective R2 value is also shown.

Simulation E (GPa) Y0 (MPa) Fmax (N) δp (µm) δp
RSM (µm)

1 P2.5 P2.5 P2.5 0.323 0.334

R2 = 0.9927
RRMSE = 2.0%

2 P97.5 P2.5 P2.5 0.270 0.264
3 P2.5 P97.5 P2.5 0.271 0.265
4 P97.5 P97.5 P2.5 0.225 0.233
5 P2.5 P2.5 P97.5 0.543 0.534
6 P97.5 P2.5 P97.5 0.452 0.457
7 P2.5 P97.5 P97.5 0.418 0.423
8 P97.5 P97.5 P97.5 0.395 0.383
9 P2.5 µ µ 0.364 0.363

10 P97.5 µ µ 0.304 0.308
11 µ P2.5 µ 0.379 0.378
12 µ P97.5 µ 0.303 0.307
13 µ µ P2.5 0.264 0.256
14 µ µ P97.5 0.421 0.431
15 µ µ µ 0.334 0.330

Table 8. Comparison between δp results obtained from the Box-Behnken simulations with those
predicted by the RSM metamodel; the respective R2 value is also shown.

Simulation E (GPa) Y0 (MPa) Fmax (N) δp (µm) δp
RSM (µm)

1 P2.5 P2.5 µ 0.417 0.419

R2 = 0.9996
RRMSE = 0.4%

2 P97.5 P2.5 µ 0.348 0.349
3 P2.5 P97.5 µ 0.335 0.334
4 P97.5 P97.5 µ 0.277 0.276
5 P2.5 µ P2.5 0.293 0.292
6 P97.5 µ P2.5 0.244 0.244
7 P2.5 µ P97.5 0.471 0.471
8 P97.5 µ P97.5 0.389 0.391
9 µ P2.5 P2.5 0.294 0.293

10 µ P97.5 P2.5 0.246 0.248
11 µ P2.5 P97.5 0.493 0.490
12 µ P97.5 P97.5 0.378 0.378
13 µ µ µ 0.334 0.334

3.3. Metamodel Validation

The R2 analysis shown in Tables 7 and 8 enabled a first assessment of the predictive ability of
the RSM metamodels. At this stage, 60 random numerical simulations are performed to check if the
response surfaces still represent a proper approximation of the plastic CTOD range within the range
of variation of the main input parameters. Figure 4 presents the correspondence between numerical
simulation and response surface δp results, for the FCCCD and BBD based metamodels. In this
figure, each point corresponds to one numerical simulation. The scatter of the random points around
the straight line is assessed with R2; the straight line indicates the ideal metamodel, in which the
predicted response is equal to that obtained by numerical simulation. In general, both FCCCD and BBD
metamodeling approaches provide accurate predictions of δp, with RRMSE equal to 1.7% (FCCCD)
and 0.9% (BBD), although dispersion is more evident for FCCCD (with R2 = 0.9844—see Figure 4a)
than for BBD (with R2 = 0.9963—see Figure 4b). This corroborates the adequacy of the proposed RSM
metamodels for establishing the relationship between the most influential inputs and δp.
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Figure 4. Correlation between the δp values obtained by random numerical simulations and those
predicted by the response surfaces constructed with (a) FCCCD and (b) BBD simulations.

3.4. Variability Analysis Based on Metamodels

The RSM metamodels are now used to expeditiously predict the variability in the δp results.
Accordingly, 100,000 random sets of input parameters E, Y0 and Fmax were generated. The values
of each set of input parameters were used as input for the RSM models (i.e., see Equation (11), with
the values of the RSM coefficients shown in Table 6), to predict the δp variability. Figure 5 presents
the δp variability results predicted by the RSM metamodels based on FCCCD and BBD designs.
Both histograms present the predicted mean δp values as well as percentiles P2.5 and P97.5, enabling
the definition of a 95% confidence interval. According to the figure, the RSM metamodels predict the
variability in the plastic CTOD range in a similar way, both presenting right-skewed distributions.
Such skewed distributions contrast with the normal distribution, which was assumed for describing
the variability of the input parameters.Materials 2020, 13, x FOR PEER REVIEW 11 of 13 
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Figure 5. Plastic CTOD range histograms generated from 100,000 random sets of input parameters
using (a) FCCCD and (b) BBD metamodels. The mean δp values and the 2.5th and 97.5th percentiles
are also represented.
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Table 9 presents descriptive statistics of the δp histograms shown in Figure 5. The predicted mean
δp value (approx. 0.340 µm) is close to the δp value obtained from the reference simulation (=0.334 µm,
see Simulation 1 in Table 1), which is assumed to be the exact solution under a deterministic analysis.
However, from the perspective of the current stochastic analysis, it is possible to estimate not only the
mean δp value, but also the associated variance; accordingly, the predicted variability in the δp results
follows a coefficient of variation close to 15% (note that the variability in the input parameters follows
σ/µ = 5%). This emphasizes the advantage and the importance of stochastic analysis, in detriment of
deterministic analysis, which is key in the robust design and optimization for fatigue life of critical
components subjected to time-varying loading.

Table 9. Descriptive statistics of the δp histograms shown in Figure 5.

δp FCCCD-Based Model BBD-Based Model

Mean value, µ 0.338 µm 0.340 µm
Standard deviation, SD 0.050 µm 0.049 µm

Coefficient of variation, CV 14.9% 14.5%
2.5th percentile, P2.5 0.252 µm 0.257 µm

97.5th percentile, P97.5 0.448 µm 0.448 µm

Additionally, the following linear relationship between plastic CTOD range (δp, in µm) and FCG
rate (da/dN, in µm/cycle) from a previous work by Antunes et al. [20] allows predicting the variability
in terms of da/dN:

da/dN = 0.5246× δp (15)

According to Equation (15), the predicted mean value for da/dN is close to 0.178 µm/cycle, with a
coefficient of variation close to 15%. It should be highlighted that the variability analysis results may
depend on the assumptions considered in the numerical model, such as the specimen geometry, number
of loading cycles between crack propagations, boundary conditions, type of material, among others.
This motivates further numerical studies on plastic CTOD range variability. However, linear elastic
fracture parameters are commonly adopted to predict da/dN, although fatigue crack propagation is
closely linked with plastic deformation occurring at the crack tip. This motivates conducting variability
studies focused on the stress intensity factor range ∆K, for comparison purposes with δp.

4. Conclusions

This paper concerns a numerical study on the influence of material parameters and loading
variability in the plastic CTOD range of AA7050-T6 on M(T) specimens. First, the most influential input
parameters were identified based on the analysis of two types of screening DOE approaches (OFAT and
FFD), according to three analysis criteria (Main Effect, Index of Influence and ANOVA). Afterwards,
RSM metamodels were established to predict the variability in the δp results in an expeditious way,
based on two types of designs (FCCCD and BBD). Additionally, the variability in the FCG rate, da/dN,
was also predicted, based on da/dN–δp relationships previously established in a previous work by the
authors. The following remarks can be drawn:

• The type of screening DOE and analysis does not interfere with the identification of the relevant
parameters influencing the plastic CTOD range: the parameters E, Y0 and Fmax are consistently
shown to be the most influential;

• Both FCCCD and BBD metamodeling approaches provide similar and accurate predictions of the
plastic CTOD range, with RRMSE = 1.7% (FCCCD) and RRMSE = 0.9% (BBD);

• The predicted variability in the plastic CTOD range results presents right-skewed distributions
that follow a coefficient of variation close to 15%.
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