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Abstract: Post-mortem characterisation is a pivotal tool to trace back to the origin of structural
failures in modern engineering analyses. This work compared both the crack propagation and rupture
roughness profiles based on areal parameters for total fracture area. Notched and smooth samples
made of weather-resistant structural steel (10HNAP), popular S355J2 structural steel and aluminium
alloy AW-2017A under bending, torsion and combined bending–torsion were investigated. After the
fatigue tests, fatigue fractures were measured with an optical profilometer, and the relevant surface
parameters were critically compared. The results showed a great impact of the loading scenario
on both the local profiles and total fracture areas. Both approaches (local and total fracture zones)
for specimens with different geometries were investigated. For all specimens, measured texture
parameters decreased in the following order: total area, rupture area and propagation area.

Keywords: surface metrology; surface topography; bending–torsion fatigue; fatigue fracture

1. Introduction

Post-mortem analysis is a fundamental engineering procedure to identify the damage accumulation
mechanisms associated with fatigue failure. This analysis may provide important clues to improve
a material’s performance, to evaluate both structural and mechanical properties and to mitigate the
damage mechanisms [1–3].

Much research connected with surface metrology has been focused on extensive investigations
in which 3D surface roughness parameters have been presented in light of the relationship
between surface properties and operation properties [4–8]. Although this analysis provides useful
information, post-failure fractographic surface examinations allow the cause of failure in materials
to be determined [9–12]. Researchers have studied the characteristics of fractured surfaces using
observational tools, from macro- to nanoscale [13–17]. Unfortunately, even though advanced methods
such as optical coherence tomography [18], scanning acoustic microscopy [19] or energy response
approach based on strain energy density histories during variable loading [20,21] are described in the
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literature, usually simple-fracture qualitative analysis conducted with scanning electron microscopy is
employed for the evaluation of surface fractures resulting from impact [22,23], tensile strength [24,25],
fatigue [5,19], ultra-high fatigue [26], adhesion testing [27] or even wear damage description [28,29].
However, few studies have investigated the use of profile and surface roughness as a tool for fatigue
fracture characterisation.

Moreover, there are few papers devoted to the quantitative analysis of fracture surfaces in elements
undergoing combined bending–torsion loading histories [30–33]. Therefore, the present study aimed to
investigate bending–torsion fatigue fractures in order to establish the dependence between the loading
scenario and the characteristic features of their surfaces. The literature describes the influence of
loading conditions on the topography of fracture surfaces via either local terms (i.e., crack propagation
and rupture) [34–38] or based on analysis of the total fracture area [39,40]. In this work, the results of
both approaches (local and total fracture zones) for specimens with different geometries were compared
for three materials. The local approach was defined as the application of linear measurement, and
therefore the Ra parameter. Two sections, Ra propagation and Ra rupture, were measured in the study.
The first was measured at a distance of about 1 mm from the crack initiation, while the second was
measured close to the splitting of the sample into two parts. The total approach was defined by the Sa
parameter. In this case, almost an entire fracture surface was analysed. For different loading scenarios
(which encompassed bending, torsion and bending–torsion), 2D and 3D surface texture measurement
methods were adopted, and the main results were critically compared.

2. Materials and Methods of Measurement

2.1. Materials and Specimens

The material grades studied in the present research were: (a) 10HNAP weather-resistant structural
steel [39]; (b) S355J2 structural steel [41] and (c) AW-2017A-T4 aluminium alloy [42]. Components
manufactured from the tested metal alloys are popular in the machine building industry, and therefore
can undergo fatigue. The nominal chemical composition and mechanical properties are summarized
in Tables 1 and 2, respectively.

Table 1. Chemical composition of the tested alloys (wt.%) [41–44].

Element 10HNAP S355J2 AW-2017A-T4

C 0.115 0.21 -
Si 0.41 0.42 0.45

Mn 0.71 1.46 0.65
P 0.082 0.019 -
S 0.028 0.046 -

Cr 0.81 0.09 0.10
Ni 0.50 0.04 -
Cu 0.30 0.17 4.15
Zn - - 0.50
Mg - - 0.69
Ti - - 0.20
Al - - Balance
Fe Balance Balance 0.70

Specimens used in the experimental fatigue experiment are depicted in Figure 1, and comprised:
(a) cylindrical 10HNAP steel specimens with a circumferential V-notch (Figure 1a); specimens with a
circular cross section (Figure 1b) and AW-2017A-T4 aluminium rectangular cross section specimens
with a V-notch (Figure 1c). Both V-shaped configurations had external, unilateral, sharp and blunt
one-sided notches, with radii r = 0.2 mm, 5 mm, 10 mm and 22.5 mm and notch angles of 60◦.
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Table 2. Main mechanical properties of the tested alloys.

Material Properties 10HNAP [44] S355J2 [41] AW-2017A-T4 [42]

Ultimate tensile stress, σu (MPa) 566 533 480
Yield stress, σy (MPa) 418 358 382

Elongation A10 (%) A10 = 30.1 A5 = 21 A5 = 15
Reduction of area RA (%) 36.5 50 50
Young’s modulus E (GPa) 215 210 72

Poisson’s ratio ν 0.29 0.30 0.32
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Figure 1. Specimen geometries: (a) V-notched circular cross section specimen made of 10HNAP steel;
(b) smooth circular cross section specimen made of S355J2 steel; and (c) V-notched rectangular cross
section specimen made of AW-2017A-T4 aluminium alloy (dimensions in millimetres).

2.2. Loading Histories

All specimen geometries were tested under combined bending–torsion, bending and torsion
(except geometry b). The fatigue test of 10HNAP steel samples was tested by Achtelik [44]. Stationary
and ergodic random loadings had a normal probability distribution and wide-band frequency spectra
from 0 to 60 Hz. In the case of mixed loading, nominal normal stress amplitudes were equal to
nominal shear stress amplitudes (i.e., σa = τa). Fatigue tests of S355J2 steel specimens carried out
by Marciniak [41] encompassed non-proportional bending–torsion histories with different ratios of
the maximum shear stress to the maximum normal stress (i.e., λ = τmax/σmax). In the case of the
AW-2017A-T4 aluminium alloy specimens, tests were conducted by Faszynka [42] under different
bending-to-torsion amplitude ratios. The stress ratios (R) used in this experimental campaign were
R = −1, −0.5 and 0 (Table 3) [32]. All tests were carried out using the MZGS fatigue test stand
type machine. However, loads were caused by different methods. The main idea is presented in
Figure 2, where the unbalanced disk (7) during rotations caused vibrations on the flat spring (9) and
then transmitted them through the rods and the lever (5) on a specimen (3). Figure 3 presents the
configuration of the specimen loads. Other tests and fatigue stands are described in [41,43].
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Table 3. The loading parameters.

Material
Specimen

λ R Ref.

10HNAP 0; 0.5;∞ −1 [44]
S355J2 0; 0.16−0.6 −1 [41]

AW-2017A 0; 0.18−0.44;∞ −1; −0.5; 0; 1 [35,42]
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Alicona Imaging GmbH, Graz, Austria), while the measurement of surface features was conducted 
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Figure 2. MZGS-100 fatigue test stand where: 1—bed, 2—rotational head with a holder, 3—specimen,
4—holder, 5—lever (effective length = 0.2 m), 6—motor, 7—rotating disk, 8—unbalanced mass, 9—flat
springs, 10—driving belt, 11—spring actuator, 12—spring, 13—hydraulic connector.
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2.3. Surface Parameter Measurement and Calculation

Fracture surface analysis was performed by Macek [34,35,39] using an optical 3D test stand that
facilitated the acquisition of data sets at a high depth of focus [45,46]. The failed specimens were
observed under 10×magnification using an Alicona G4 InfiniteFocus (Alicona Imaging GmbH, Graz,
Austria) as described previously [47]. Due to the restricted field of view, nine rows by seven columns
were stitched together to map the entire fracture area. Each individual micrograph had a vertical
resolution of 79.3 nm with a lateral resolution of 3.91 µm. The abovementioned measurement device,
exhibited in the upper part of Figure 4, was operated via IF-MeasureSuite software (version 5.1, Alicona
Imaging GmbH, Graz, Austria), while the measurement of surface features was conducted using
MountainsMap software (version 7.4, Digital Surf, Besançon, France). Alicona (*.al3d) files were
imported into the surface metrology software MountainsMap and resampled into height maps at a
resolution automatically determined by the software. Surfaces were analysed in relative coordinates
(X, Y, and Z axes) with the Z axis in heights from the lowest point by default. No additional filters
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were used. Fatigue fracture surfaces were measured for local (propagation and rupture) profiles and
for total areas. Figure 5 shows examples of the propagation areas and main surface parameters as
well as rupture areas and main texture parameters observed in the experiments for the three metal
alloys studied.
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Figure 4. InfiniteFocus IF G4 measurement device used in surface metrology and The Abbott-Firestone
curves (middle bottom picture).

To check the fracture surface dependency on the fatigue loading history, selected parameters,
reported among others in Figure 5, were measured and calculated. Table 4 defines the used parameters
according to the ISO 25178 standard.

It is known that the microrelief of fatigue fracture surface is determined by the material properties
and the stress intensity factor in the tip of the initial crack; therefore, the parameters of the microrelief
depend on the stress amplitude and the fatigue crack length. When testing ductile materials, the
height of the fracture profile usually increases with increasing crack length, and at the stage of the
fatigue crack propagation, three zones with different roughness are found: the initial zone with a
predominant shear microrelief; the zone with striation microrelief; and the zone of accelerated crack
growth, in which striations and dimples are observed. With an increase in the stress amplitude, the size
of the zones changes, the zone with striations decreases and the zone of rupture grows. When testing
brittle or quasi-brittle materials, the height of the fracture profile often decreases with increasing crack
length as a result of the formation of facets of cleavage or intergranular fracture [48–51]. Overall,
there were obvious differences in topography for propagation or rupture, particularly the coarser
areas. Ra (Equation (1)) averages all peaks and valleys of the roughness profile and then neutralizes
the few outlying points, so that the extreme points have no significant impact on the final results.
Sa, as expressed in Equation (2), represents the mean height of the surface, according to the ISO 25178
standard. Their functionality was analysed later in the study.
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The Abbott–Firestone curves (see centre of Figure 4) provide important information on the surface
properties in a systematic and quantitative approach. In the example chart, the Abbott–Firestone curve
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shows the cumulative height distribution histogram. The horizontal axis represents the measured
scale in depth of the surface, and the vertical axis depicts percentage of the whole population
of data. The shape of the curve is distilled into several of the surface roughness parameters [52].
The distributions of the surface highlights that the crack initiation region had a smoother surface
without asperities.

Ra =
1
lr

∫ lr

0

∣∣∣z(x)∣∣∣dx (1)

Sa =
1
A

x

A

∣∣∣z(x, y)
∣∣∣dxdy (2)

Table 4. Selected parameters for the fatigue fracture surface description according to ISO 25178.

Height Parameters

Sq µm Root-mean-square height Sq =
√

1
A

s
A z2(x, y)dxdy

Ssk - Skewness Ssk = 1
Sq3 (

1
A

s

A
z3(x, y)dxdy)

Sku - Kurtosis Sku = 1
Sq4 (

1
A

s

A
z4(x, y)dxdy)

Sp µm Maximum peak height Sp = Sz − Sv

Sv µm Maximum pit height Absolute value of the height of the largest pit within the
defined area

Sz µm Maximum height Height between the highest peak and the deepest valley

Sa µm Arithmetical mean
height Mean surface roughness SaM = M 1

A

s
A

∣∣∣z(x, y)
∣∣∣dxdy

Functional Parameters (Volume)

Vm mm3/mm2 Material volume

Parameters describing the characteristics of the volume
of the appropriate size to the surface area of the surface

being examined

Vv mm3/mm2 Void volume

Vmp mm3/mm2 Peak material volume

Vmc mm3/mm2 Core material volume

Vvc mm3/mm2 Core void volume

Vvv mm3/mm2 Pit void volume

3. Results and Discussion

The fracture plane analysis revealed that, in S355J2 steel samples, the cracks initiated in the plane
of maximum shear stresses and then propagated in the plane of maximum normal stresses (Figure 6a).
In contrast, in notched samples, due to the significant predominance of normal stresses, initiation and
propagation of cracks took place in the plane of maximum normal stresses (Figure 6b).

Figure 7 shows representative surface texture measurement results for both total areas and for
local profiles (in terms of propagation and rupture). In Figure 7, the blue frames represent total fracture
areas, the propagation profile is shown in green, and the rupture profile is shown in red. In contrast,
in the black frame and without the frame, the whole views of fatigue fractures are presented with the
measurement areas and profiles marked. In fact, as anticipated in Figure 5, comparison of the different
evaluated parameters for the three materials showed important differences, like greater roughness—for
both areas and profiles—in the rupture zone than in the propagation zone.
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Thanks to the 3D parameters (S-), surface shape and direction can be assessed. The fracture surface
presented large disorderly peaks. Therefore, in the case of the 2D parameters (R-), the randomness and
the fortuitousness of the measurement profile direction and location on the surface are important.

Some generic features of the tested specimens (e.g., the dependence of roughness parameters in
individual areas on the bending, torsion or combined loading type) that were initially noticed in the
measurement results were analysed in this part of the study. For further analysis, Ra and Sa were
selected from R- and S-parameters. These parameters demonstrated the best fit, evident dependence
on the loading condition and widespread use, regardless of the measuring technique, which was also
presented for other studies of fracture surface topography (e.g., in [8]).
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Figure 8 presents an extract of all analysed results for Ra and Sa, by type of loading. Without
qualifying the method and place of measuring the fractured surface, it can be seen that, generally, the
highest values occurred for a mixed-mode loading and the lowest for torsion.
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Figure 8. Results for Ra and Sa by type of loading.

Figure 9a–c presents the results of all specimens divided into three analysed ways of identifying
the fracture (i.e., total area, propagation profile and rupture profile, respectively). For the results of
measurements of the total fracture surface Sa parameter (likewise Ra for the propagation profile),
the highest values and the greatest dispersion were obtained for bending–torsion. The 10HNAP
specimens were the exception. For this case, the torsion Ra parameter had the highest values (Table 5).
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In the case of torsion, for which only measurements of samples (a) and (c) were taken, the latter took
the lowest values.
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Table 5. List of maximum and minimum values of surface parameters for individual reference area.

Method
Specimen

10HNAP S355J2 AW-2017A

Total area max. BT BT BT
Propagation profile max. BT BT BT

Rupture profile max. T BT BT
Total area min. B B T

Propagation profile min. B B T
Rupture profile min. B B T

BT: bending–torsion; T: torsion; B: bending.

In statistical terms, the dependence of surface parameters on the type of loading was presented
using box plots with, among other things, percentiles. On each box (Figure 10), the central mark
indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles,
respectively. The whiskers extend to the most extreme data points not considered outliers, and the
outliers are plotted individually using the “+” symbol.
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As shown in Figure 10a, the median Sa for all bending specimens was approximately 100 µm.
The minimum value was about 10 µm, and the maximum value was about 550 µm. For bending–torsion
and torsion, respectively, these values were median Sa 340 µm and 150 µm, minimum values 110 µm
and 100 µm, and maximum values 750 µm and 270 µm. Next, taking into account only the medians for
propagation area (Figure 10b), Ra was about 5 µm for bending, 10 µm for bending–torsion and 28 µm for
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torsion loadings. For rupture area, the measurements were 7 µm, 14 µm and 21 µm. Table 6 summarises
the medians extremum of measurement results for all specimens broken down into reference area and
loading scenario. Clear relationships between the size of surface parameters for individual analysed
fracture zones are shown in Figures 4–10.

Table 6. Median extremum for individual reference areas.

Reference Area/Median Extremum Bending Bending–Torsion Torsion

Total area MIN. MAX. -
Propagation profile MIN. - MAX.

Rupture profile MIN. - MAX.

The value of the Ra parameter depends on the place and direction of orientation of the measuring
section, and the values for individual measured zones differ. For example, the influence of the
asymmetry factor is ambiguous because, for bending, the Ra values increase with the stress ratio R,
and for the combination of bending with torsion, this relationship is reversed. Therefore, the results
may be ambiguous. However, the influence of the stress ratio R on the value of the Sa parameter
showed an increase of this parameter along with an increase in the cycle asymmetry factor from
−1 to 0, which is consistent with previously obtained results [53]. The magnitude of the load also
affected all roughness parameters. The values of the roughness parameters Sa and Ra changed with
the load; however, this relationship did not change proportionally. For example, for the aluminium
alloy, a double increase in the load for the coefficient R = 0 caused the Sa parameter to increase by
10%, while the Ra propagation parameters decreased by 14% and Ra rupture by 25%. In the case of the
tested steels, when analysing the influence of load on roughness, one should also pay attention to the
influence of the ratio of shear stresses to normal stresses. When the samples were subjected to loads
with a predominance of bending stresses, the parameters Sa and Ra decreased, while if the influence of
shear stresses increased, the roughness parameters increased. Similar conclusions - linear functions
between topography parameters and fatigue variables were found by authors in [54]. It is worth
noting that the notch, which was the initiator of fatigue cracks and which increased the effect of normal
stresses, had a significant influence on the parameter values. Among the examined materials, the
smallest differences in the variability of Ra parameters were presented by the aluminium alloy, while
in the case of steel, the spans were greater. The Sa parameter, as the surface parameter, is independent
of the orientation of the measurement direction, making it a more universal value.

4. Conclusions

This study presents methods for the metrological characterisation and comparison of fatigued
fractures using post-failure measurements. Combining various techniques and fields of science
ensures a more complete analysis of the issue. The investigation of the entire fracture surface taking
various factors into account gives greater opportunities to find the causes of failures. The proposed
methodologies were tested under different loading histories, namely, bending, torsion and combined
bending–torsion; in different materials (structural steels and aluminium alloy); and with different
specimen geometries (smooth and notched samples). Internal microstructural defects can be related
to the formation of crack initiation and propagation, influencing the surface shaping and therefore
the roughness parameters. However, based on our analyses and comparisons, the following general
conclusions can be drawn:

• The entire total area method is more universal and burdened with less error than the
subjective method of measurement in individual fracture zones for various shape-types of
fatigue-tested samples.

• This method is suitable for assessment, and supplements the testing of materials damaged as a
result of fatigue loads, for various shapes of the tested detail.
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• Both profile and areal surface parameters are essential for fatigue fracture mechanism
characterisation. However, if we compare profiles of R-roughness and areal S-roughness
parameters, the latter give complete information, because a single line cannot identify pits
or valleys, and shows the relationship between surface functions. 3D measurements give far more
comprehensive information than 2D profiles or sections.

• For both zones (propagation and rupture), the median Ra increases along with the increase in the
proportion of torsional loadings. Otherwise, for total area, the mixed mode causes the highest
average Sa value, and this conclusion can be considered appropriate given the greater accuracy of
this method. This is also confirmed by the results for the individual types of specimens.

• The Sa parameter is more universal, independent of measurement orientation.

Further research should focus on the suitability of the entire total area method for a wider range
of metallic and composite materials, and types of loadings.
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