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Abstract: Additively produced Ti6Al4V implants display mechanical properties that are economically
infeasible to achieve with conventional subtractive methods. The aim of the present research work
was to characterize the tribocorrosion behaviour of the newly produced Ti6Al4V, also known as
titanium grade 5, by a selective laser melting (SLM) technique and compare it with another specimen
produced by a conventional method. It was found that the tribological properties were of the same
order, with the wear rate being k= 6.3 × 10−4 mm3/N·m and k = 8.3 × 10−4 mm3/N·m for respectively,
SLM and conventional method. Regarding the friction behaviour, both methods exhibited similar
COF in the order of 0.41–0.51. However, electrochemically, the potentiodynamic polarization curves
presented some differences mainly in the potential range of the passive films and passive current
density formed, with the passive current density being lower for the SLM method.

Keywords: tribocorrosion; additive manufacturing (AM), selective laser melting (SLM), Ti6Al4V;
dental implants

1. Introduction

The most widely used materials for the manufacture of dental implant fixtures are commercially
pure titanium, Ti grade 2 or grade 4 [1–4]. However, Ti grade 5 (Ti6Al4V) is the most commonly used to
produce abutment and prosthetic structures due to its excellent mechanical properties, biocompatibility
and suitable tribocorrosion behaviour. The addition of 6% Al allows higher mechanical strength and
the presence of 4% V stabilizes the (α + β) phase by maintaining the corrosion resistance of the titanium
alloy [1,5].

Ti6Al4V pieces have a passive film that is formed on their surface in the presence of oxygen. This
passive protective layer of about 3–10 nm in depth is composed of TiO2 and acts as a physical barrier
between the bulk material and the environment. During the mastication process, loads of the order of
hundreds of Newtons are frequently applied to dental implants and consequently, they are exposed to
degradation mechanisms that are a combination of wear and corrosion, particularly on surface regions
that are subject to a relative contact movement under the presence of human fluids that are considerably
aggressive (e.g., chloride ions, Cl−). Figure 1 presents a schematic picture showing the synergism
between wear and corrosion. When the passive film formed in the presence of oxygen on the surface
of the Ti6Al4V is destroyed and removed (depassivation) due to the mechanical loading, fresh material
is exposed to the electrolyte where corrosion reaction take place (wear-accelerated corrosion) [6]. The
wear rate for the synergism created is higher than the sum of each individual action [7–14].
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Figure 1. Schematic picture showing the synergy between wear and corrosion for Ti6Al4V during 
sliding wear [15]. 

Additive manufacturing (AM) methods are processes that fuse materials layer by layer, to 
produce items based on 3D model data [16] and allows rapid prototyping and direct fabrication of 
metallic implants. A particular example of the above mentioned AM methods is selective laser 
melting (SLM) that is considered the most popular and commercially-available powder bed fusion 
AM method [16]. In SLM, metallic powders are uniformly spread on the building platform by a rake. 
A focused laser beam, usually CO2 (10.6-µm wavelength) or Nd:YAG (1.06-µm wavelength) scans 
the surface according to the prescribed path and selectively melts the powders in this layer, after 
which a new layer of powders is spread after lowering the building platform to the distance of the 
layer thickness (in the scale of tens of microns) [16,17]. 

According to Dai et al. [18], the SLM method has been increasingly used to produce Ti6Al4V 
and other Ti alloys [19–25], such as Ti-24Nb-4Zr-8Sn, Ti-5Cu and Ti-TiB, due to the capability that 
SLM has to produce alloys with comparable or even better mechanical properties than those 
produced by conventional techniques. Related with the microstructure in conventional produced 
Ti6Al4V, a duplex structure exists as a mixture of α phase (hcp) and β phase (bcc). This microstructure 
can be modified with various heat treatments [26]. However, the microstructure of SLM produced 
samples shows acicular α’ martensitic with some prior β grains as shown in Figure 2. This difference 
in the microstructure could justify different mechanical properties and consequently different 
tribological behaviour. 
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Figure 1. Schematic picture showing the synergy between wear and corrosion for Ti6Al4V during
sliding wear [15].

Additive manufacturing (AM) methods are processes that fuse materials layer by layer, to produce
items based on 3D model data [16] and allows rapid prototyping and direct fabrication of metallic
implants. A particular example of the above mentioned AM methods is selective laser melting (SLM)
that is considered the most popular and commercially-available powder bed fusion AM method [16]. In
SLM, metallic powders are uniformly spread on the building platform by a rake. A focused laser beam,
usually CO2 (10.6-µm wavelength) or Nd:YAG (1.06-µm wavelength) scans the surface according to
the prescribed path and selectively melts the powders in this layer, after which a new layer of powders
is spread after lowering the building platform to the distance of the layer thickness (in the scale of tens
of microns) [16,17].

According to Dai et al. [18], the SLM method has been increasingly used to produce Ti6Al4V and
other Ti alloys [19–25], such as Ti-24Nb-4Zr-8Sn, Ti-5Cu and Ti-TiB, due to the capability that SLM
has to produce alloys with comparable or even better mechanical properties than those produced by
conventional techniques. Related with the microstructure in conventional produced Ti6Al4V, a duplex
structure exists as a mixture ofαphase (hcp) andβphase (bcc). This microstructure can be modified with
various heat treatments [26]. However, the microstructure of SLM produced samples shows acicular α’
martensitic with some prior β grains as shown in Figure 2. This difference in the microstructure could
justify different mechanical properties and consequently different tribological behaviour.
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Figure 2. Typical microstructure of Ti6Al4V produced by SLM showing the acicularα’ [18].
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The aim of the present research work is to understand the tribocorrosion behaviour of the pair
Ti6Al4V/ZrO2 under reciprocating sliding conditions lubricated with artificial saliva for Ti6Al4V
obtained by selective laser melting and by a conventional method. To accomplish this, potentiodynamic
polarization curves and open circuit potential (OCP) technique were performed.

2. Materials and Methods

Two specimens of titanium grade 5 (Ti6Al4V) were prepared. One produced by the
traditional/conventional powder metallurgy process that consists in the following steps: mixing,
compaction and sintering; and the other obtained from SLM method with the chemical composition
and mechanical properties shown in Tables 1 and 2, respectively.

Table 1. Chemical composition in Weight (%) of titanium alloy Ti6Al4V specimens produced by SLM
and conventional method.

Chemical Element Al V Fe C O N H Ti

Ti6Al4V SLM 6.2 4.1 0.17 0.06 0.14 0.03 0.009 Remainder
Ti6Al4V Conventional 6 4 0.2 0.1 0.2 0.03 0.015 89.45

Table 2. Mechanical Properties of the Ti6Al4V specimens produced by SLM [27] and conventional
method (ASTM F136) [28].

Hardness [HV]
Kgf/mm2 Young’s Modulus [GPa] Yield Strength [MPa] Tensile Strength [MPa]

358 120 1000 1147
349 115 939 1027

The specimen produced by additive manufacturing was obtained using laser powder-bed
fusion technology, with the different successive layers (XY-plane) growing towards the Z direction
(Z-axis)—direction of the loading application. The samples were formed using a ProX DMP 320
high-performance metal additive manufacturing system (3D systems), incorporating a 500 W fiber
laser. Layers of 30 mm thickness were used to produce the samples using Ti6Al4V alloy powder with
an average particle size of 40 µm.

Both specimens were polished using SiC abrasive papers to an average surface roughness of
approximately 0.1 µm. The roughness measurements were performed using a Mitutoyo Surftest—500
profilometer (Mitutoyo, IL, USA) in accordance with ISO standard 4287.

Figure 3 shows the microstructure of Ti6Al4V produced by SLM where it is possible to see the
laser path (Figure 3a). The black zones correspond to the α-phase while the white zones correspond to
the vanadium-rich β-phase. The microstructure, with grains of acicular geometry, has prevalence of α
blades surrounded by small percentages of β blades. The grain geometry is mainly due to the high
cooling rate that characterizes the SLM processes.

As shown in the schematic arrangement represented in Figure 4, the three-electrode setup was
composed by a saturated calomel electrode (SCE) that works as reference electrode (RE) with a constant
potential (242.2 mV vs. Standard Hydrogen Electrode (SHE)) which is the model Radiometer XR110
(Hach, Düsseldorf, Germany). It consists of a glass body, saturated calomel reference system, refillable
electrolyte (sat. KCl), ground joint, and porous pin junction. This electrode was coupled with a
platinum sheet counter electrode (CE), model XM120. A polycarbonate container holds the specimen
to study, considered as working electrode (WE), keeping it submerged in the electrolyte (artificial
saliva). An insulated wire was soldered to our cut samples. Then the cold-cure epoxy resin mixture
was poured with a suitable amount of filler to hold the samples securely in their plastic casings while
simultaneously shielding the soldered wire from the environment. An O-ring rubber seal at the bottom
ensures that the bottom of the sample remains dry and the hole beneath makes it possible for the wire
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to exit the container and connected to the potentiostat. The potentiostat used was a Bio-Logic Science
Instrument SP-50 (Hach, Düsseldorf, Germany) which was connected to a computer and controlled by
EC lab version 11.26 (December, 2018).
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Figure 4. Schematic setup of the tribocorrosion cell showing the working electrode (WE), reference
electrode (RE) and counter electrode (CE) connected to a potentiostat and sliding against a zirconia ball
under different contact conditions.

The reciprocating sliding tests were performed with a varying load of 3, 5 and 7 N. The frequency
was fixed to 3 Hz and the stroke 2 mm, corresponding to 0.012 m/s of linear sliding speed. During the
test setup, the specimens were immersed with artificial saliva with the composition shown in Table 3.
The artificial saliva was replaced after every single test. Contact was then made between the 10 mm
diameter ZrO2 ball and the specimen and then the load was applied corresponding to contact pressures
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between 0.42 and 0.57 GPa according to Hertzian contact theory and rubbing was initiated. The sintered
ZrO2 ball presented a density of 6.05 g/cm3 and a microhardness of approximately, 1250 Kgf/mm2 (HV).
Open CIRCUIT POTENTIAL measurements were taken for 3600 s before rubbing experiment. The
sliding distance was set to 15 m corresponding to a rubbing time of 1250 s. After sliding, the potential
was monitored for 3600 s until reach the equilibrium. The sequential test procedures are summarized
in Table 4. Potentiodynamic polarization curves were recorded between −1.2 V and +1.2 V vs. SCE at
a scan rate of 1 mV/s as shown in Table 5.

Table 3. Chemical composition of the artificial saliva used as lubricant/electrolyte (pH = 6.5).

Compound Content (g/L)

NaCl 0.600

KCl 0.720

CaCl2.2H2O 0.220

KH2PO4 0.680

Na2HPO4.12H2O 0.856

KSCN 0.060

NaHCO3 1.500

Citric acid 0.030

Table 4. Sequences used during the open circuit potential (OCP) method.

Step Description Time (s)

1 Open circuit potential (OCP) 3600

2 Open circuit potential (OCP) with tribological experiment (reciprocating sliding) 1250 (3 Hz)

3 Restabilization of the system 3600

Table 5. Sequences used during the potentiodynamic polarization method.

Step Description Time (s)

1 Stabilization of the system under open circuit potential (OCP) 3600

2 Potentiodynamic polarization (−1200 mV to +1200 mV vs. SCE) (scan rate = 1 mV/s) 2400

In the projected tribometer, the upper specimen is connected to an eccentric and rod mechanism,
which generates the reciprocating harmonic motion with 2 mm of stroke. A spindle-spring mechanism
is used to apply the normal load, assessed by a load-cell. An acrylic tub, supported by a set of plane
springs, was used to build the tribocorrosion cell. A force sensor restricts the tangential motion of
the acrylic tub allowing the assessment of the friction force. Labview is used to control the rig and to
acquire the data over the test duration.

3. Results and Discussion

3.1. Friction Behaviour

Figures 5 and 6 show the evolution of the coefficient of friction (COF) with the sliding time for
the reciprocating sliding tests, for both Ti6Al4V specimens, under three different applied loads (3, 5
and 7 N) and lubricated with artificial saliva. It can be seen that the COF doesn’t vary much with the
applied load and stays stable throughout the entire test, for both specimens. Figure 7 shows the steady
state coefficient of friction and respectively standard deviations values. It can be observed that the
COF varies for both specimens between a maximum value of 0.51 and a minimum of 0.41. It can be
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concluded, that the difference in the microstructures of Ti6Al4V specimens doesn’t affect substantially
the friction behaviour which has approximately the same performance if one considers the standard
deviation values shown in the error bars.
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against a zirconia ball.

3.2. Wear Behaviour

Figures 8 and 9 show the 3 D profiles of the wear tracks obtained, sliding a TiO2 ball under a 3, 5
and 7 N applied load onto a Ti6Al4V specimen produced respectively, by SLM and conventionally. The
cross section profiles that were taken in the middle of the wear tracks can be seen in Figures 10 and 11.
It is possible to observe that in general, the depth and diameter of the wear scars increases with the
increasing load, exception made for the cross section profiles presented in Figure 11 for 5 and 7 N
applied load that seems to be of the same order. In order to calculate the wear volume, each wear track
was integrated using a laser stylus profilometer. Figure 12 presented the wear volume as a function of
the sliding distance times the normal load for three different applied loads and both Ti6Al4V specimens.
It can be seen, that the wear volume increases with the applied load (the sliding distance was kept
constant and equal to 15 m) for both specimens. By fitting an equation to the data points presented in
Figure 13, it is possible to determine the wear rate coefficient, k (mm3/N m) which is the same as saying
that is the slope of each equation. It can be concluded that the slope for the conventional produced
specimen is slightly higher, with a value of 8.3 × 10−4 mm3/Nm than that for the SLM specimen with
a value of 6.3 × 10−4 mm3/Nm. However, these different values are of the same order of magnitude.
On the other hand, as can be seen in Figure 13, the wear volume of the zirconia ball also increases
with the increasing applied load. However, the wear rates coefficients are some minor orders of
magnitude than Ti6Al4V specimens, with values of the wear rate coefficient of 6.31 × 10−4 mm3/Nm
and 1.66 × 10−4 mm3/Nm for respectively Ti6Al4V obtained by SLM and Conventional way.
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sliding against Ti6Al4V discs under 3, 5 and 7 N applied load and 15 m sliding distance.

Figures 14 and 15 show different SEM micrographs for respectively, SLM and conventional Ti6Al4V
specimens. It can be concluded, that the wear mechanism is very similar, for both specimens with some
grooving and parallel striations along the direction of sliding as exemplified in Figures 14a and 15a.
Figures 14c and 15c show SEM micrographs in Back-Scattered Electron (BSE) detector mode, while
Figures 14b and 15b show the same SEM micrographs in Secondary Electron (SE) detector mode. It is
possible to conclude from the lack of significant contrast between SE and BSE mode, that the surface is
uniformly coated with the passive and protective TiO2 layer after the reciprocating sliding tests have
occurred where depassivation happens due to the rubbing process. According to Walczak et al. [29],
one would expect more pronounced ridging from the increased β phase since the plasticity of the β
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phase is higher than that of α phase, which, in turn, leads to a local increase in plastic deformation.
However, it appears to be very similar to each other, especially as the SLM can be having significantly
lesser β phase than their traditional counterpart.
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Figure 15. SEM micrographs of the wear tracks for the Ti6Al4V alloy produced by conventional method
rubbing against Zirconia ball.

Even if abrasive wear is the dominant mechanism observed in Ti6Al4V, it can be detect the
occurrence of some points of adhesive phenomena resulting from the plastic deformation of secondary
wear products.

3.3. Electrochemical Behaviour

3.3.1. Potentiodynamic Polarization Curves

Figure 16 shows potentiodynamic polarization curves for Ti6Al4V alloy produced by a conventional
method and by the selective laser melting (SLM) process, immersed in artificial saliva. In these curves,
it can be seen the evolution of the current density with the varying potential of the working electrode.
These curves are composed by one cathodic branch and by one anodic branch. Often, for passive films,
these curves are characterize by parameters like, the passive current density (ipass) and potential range
of the passive film (∆E), as shown in the graphic of Figure 16.
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Figure 16. Potentiodynamic polarization curves for Ti6Al4V alloy produced by a conventional method
and by a selective laser melting (SLM) process, tested in artificial saliva at a scan rate = 1 mV/s.

By analysing Figure 16, it can be concluded that the specimen produced by conventional methods
(orange line) presents a potential range of the passive film (∆E) between −0.3 V and 0.4 V vs. SCE,
where the passive current density (ipass) remains approximately constant with a value of 0.74 µA/cm2

due to the formation of a stable protective passive film composed of a very thin oxide layer of TiO2. At
high anodic potentials, extremely high current densities were observed due to the dissolution of the
TiO2 protective film, probably from the attack of chloride ions in the electrolyte enhancing corrosion.
On the other hand, the specimen produced by SLM (blue line) does not lose its protective oxide layer
as fast as the conventional specimen since the transpassivation domain starts at higher potential values
with the potential range of the passive film being between −0.25 V and 0.72 V vs. SCE and passive
current density of approximately 0.46 µA/cm2. However, the specimen produced by SLM shows a less
flat plateau than the conventional specimen.

All the electrochemical parameters collected from the data presented in Figure 16 can be observed
at Table 6.

Table 6. Electrochemical parameters: Corrosion potential (Ecorr), passive current density (ipass),
potential range of the passive film (∆E) and corrosion rate for both Ti6Al4V specimens investigated.

Specimen Ecorr
(V vs SCE)

ipass
(µA/cm2)

∆E
(V vs SCE)

Corrosion Rate
(mm/year)

SLM −0.37 0.46 −0.25 to +0.72 1.86 × 10−3

Conventional −0.40 0.74 −0.29 to + 0.38 3.37 × 10−3

Figure 17 shows a schematic picture of the Ti6Al4V SLM producing process with: (a) the different
successive layers altering the laser scan direction of an angle of 90◦ between adjacent layers and, (b)
the building direction (Z-axis) and the different planes.
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Figure 17. Schematic picture of: (a) Laser scan direction and; (b) 3D diagram showing the different
planes of SLM produced Ti6Al4V [18].

An investigation into SLM produced Ti6Al4V specimens, performed by Nianwei et al. [18], showed
higher corrosion resistance in the direction of the build (upwards, XY-plane), concluding that this
property can be anisotropic. They also reported more pits in the XZ-plane indicating that the resistance
of the passive film it’s lower than for the other plan. However, during the present research work, only
the XY-plane (normal to the building direction) was investigated and compared with conventional
produced specimens.

According to Nianwei et al. [18], during the production of SLM Ti6Al4V alloy, there is a higher
occurrence of acicular α′ martensitic and less β-Ti phase, as shown in Figure 2, which is distinct from
the conventional well-known biphasic α + β microstructure. These findings were also corroborated by
our studies as demonstrated in the micrographs shown in Figure 3. Due to the higher cooling rate and
thermal gradient/rapid solidification process of the SLM method, fine microstructure were obtained
and improved mechanical properties than by using conventional techniques [18]. Since the corrosion
resistance of different specimens is correlated with the respective microstructure, it is believed that the
SLM produced specimens possess a more dense and protective film formation in order to justify this
slightly corrosion resistance.

3.3.2. Open Circuit Potential (OCP) Method

Figures 18 and 19 show the potential of the working electrode (EWE) as a function of the sliding
time before, during and after the rubbing process. Before the sliding test begins, the samples were
immersed in artificial saliva for 1 h to monitor the open circuit potential (OCP). During this time, the
changes in OCP’s slope of test materials were negligible. This suggests corrosion was minimal and
an oxide layer was in existence to retard metal dissolution since the samples were exposed to the
artificial saliva solution. Once the samples were put under normal applied loads, and reciprocating
sliding motion starts, a sharp drop in EWE indicates how fast the passive oxide layer of the test samples
was physically removed with each run of a different load. This is a mixed response of the system to
mechanical and chemical action as each time we remove the oxide layer, it tries to reform again, so on
and so forth. When the applied load and the reciprocating sliding movement ends, the surface of the
sample passivates again as it is possible to observe at Figures 18 and 19 by the logarithmic shape curve
on the right side of both graphics. The magnitude of EWE drop in the cathodic direction is presumed
to be predominantly governed by gross slip mechanism and the strength of the passive film. The
extent of the cathodic shift in both figures further confirms the onset of wear, removal of the passive
protective oxide layer and increase in corrosion susceptibility of Ti6Al4V alloy in artificial saliva. The
fluctuations that we see in the rapidly changing directions can be directly interpreted as proportional
to shifts of anodic: cathodic free corrosion potential. This stems from the presence of passive and
active galvanic couples [30]. When the sliding is stopped, the free corrosion potential shifts in the
anodic direction as film re-passivates on the worn area. Restoration depends on the extent of wear and
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the corrosion behaviour of the alloy as a galvanic couple is formed between the unworn (anodic) and
worn (cathodic) surface.
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By analysing Figures 18 and 19, it can be concluded that there is some sensitivity to the applied
load, namely in the cathodic shift. This fact is particularly noted in Figure 19 where the cathodic
shift increases with the increasing of the applied load. However, load appears to play a slight role in
repassivation since the time it takes to reach the same Ewe it’s approximately the same.

4. Conclusions

The understanding gained from the present research work reinforces the idea of the synergistic
effect of various forces at play, from a chemical point of view as well as tribological. The following
conclusions can be drawn:

• The mechanical and tribocorrosion behaviour of Ti6Al4V produced by SLM is significantly
dependent on the scan optimization variables since the process is anisotropic. However, we have
only tested the surface that is normal to the building direction.

• Regarding the tribological behaviour of the Ti6Al4V specimens obtained by SLM and conventional
method, they exhibited similar COF in the order of 0.41–0.51. The wear rate coefficients (k) for
Ti6Al4V obtained by SLM and conventional method are of the same order showing the following
values: k (SLM) = 6.3 × 10−4 mm3/N.m and k (Conventional) = 8.3 × 10−4 mm3/N.m. The wear
mechanism is mainly abrasive wear with grooves aligned in the direction of sliding.

• The corrosion resistance of Ti6Al4V obtained by SLM is slightly higher than the corrosion resistance
of Ti6Al4V obtained by conventional method. The potential range of passive film ∆E (SLM) > ∆E
(conventional) that implies higher stability of the passive film; the passive current density: ipass

(SLM) < ipass (conventional) that implies easy passivation of the alloy; the corrosion potential:
Ecorr (SLM) > Ecorr (conventional) that implies a noble alloy.

• Ti6Al4V can be produced by additive manufacturing methods to at least comparable mechanical
and tribological properties then those obtained by conventional produced methods. Even when
properties between SLM and conventional produced samples are comparable, SLM can still be a
vastly superior choice simply due to its design freedom and manufacturing-flexibility advantages,
provided designs are sufficiently intricate, require better quality control or/and cater to the low to
medium volume production. The implant industry fits all these requirements as the demands are
custom tailored to individuals. Thus, requires the utmost quality, complex osseointegration to the
bone with a suitable tailored/fine-tuned porosity, and don’t need mass production.
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