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ABSTRACT The present work proposes a new approach to address the energy-based acoustic localization
problem. The proposed approach represents an improved version of evolutionary optimization based on
Elephant Herding Optimization (EHO), where two major contributions are introduced. Firstly, instead of
random initialization of elephant population, we exploit particularities of the problem at hand to develop an
intelligent initialization scheme. More precisely, distance estimates obtained at each reference point are used
to determine the regions in which a source is most likely to be located. Secondly, rather than letting elephants
to simply wander around in their search for an update of the source location, we base their motion on a local
search scheme which is found on a discrete gradient method. Such a methodology significantly accelerates
the convergence of the proposed algorithm, and comes at a very low computational cost, since discretization
allows us to avoid the actual gradient computations. Our simulation results show that, in terms of localization
accuracy, the proposed approach significantly outperforms the standard EHO one for low noise settings
and matches the performance of an existing enhanced version of EHO (EEHO). Nonetheless, the proposed
scheme achieves this accuracy with significantly less number of function evaluations, which translates to
greatly accelerated convergence in comparison with EHO and EEHO. Finally, it is also worth mentioning
that the proposed methodology can be extended to any population-based metaheuristic method (it is not only
restricted to EHO), which tackles the localization problem indirectly through distance measurements.

INDEX TERMS Acoustic localization, elephant herding optimization, gradient descent, population initial-

ization, swarm intelligence.

I. INTRODUCTION
Acoustic event detection, classification and localization has
gained much attention in the signal processing community
in recent years. Since the introduction of the acoustic decay
model [1], [2] many studies have been proposed in sev-
eral fields of applications, namely wildlife environments [3],
assisted living [4], gunshot characterization [5], underwater
sensors networks [6], smart cities [7], and localization [8],
just to name a few examples.

The present work focuses on localization of an acoustic
source, and more particularly, on the energy-based acoustic
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localization problem. This problem has been addressed
by several authors, mostly using deterministic approaches.
Ho and Sun [9] proposed an algebraic closed-form solution
which offers a good performance for low noise power, but
their solution presented considerable degradation for higher
levels of noise. Two different weighted least squares methods
were proposed in [10], [11] with low computational burden
for energy-based localization. Even though these methods
have low computational burden, both methods ignore second-
order noise terms (although [11] adds a correction technique
leading to further performance gains); hence, their perfor-
mance is highly degraded when noise power becomes large.
Wang [12] and Beko [13] proposed two semi-definite relax-
ation methodologies, both with good performance even in
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noisy environments, but their major drawback is their high
computational complexity, which increases significantly with
the size of the network. Beko showed in [14] that this issue
can be alleviated to some extent by applying Second-Order
Cone Programming (SOCP) relaxations instead. Nonethe-
less, although the SOCP offers relatively good accuracy even
in noisy environments, its computational complexity is still
not satisfactory for real-time applications.

Moreover, all above mentioned algorithms bypass the orig-
inal localization problem by applying a set of approxima-
tions/relaxations to the problem in order to transform it into
a form suitable for solving by the applied tools. Although
the solutions obtained in this manner are reasonable in gen-
eral, they are sub-optimal and their quality depends on the
tightness of the applied relaxations. In huge contrast to the
deterministic algorithms, here we take a different approach
which tackles the original problem directly, without applying
any approximations/relaxations.

Evolutionary optimization falls within the set of
metaheuristics algorithms for global optimization inspired
by biological evolution. In general, it works as follows.
An initial group of candidate solutions is generated and
iteratively updated based on a predetermined behaviour.
Each new generation is produced by removing less desired
solutions, and introducing small random changes based on
the behavior of interest (biological, swarm, or physical)
[15]. Due to the simplicity of the computational models
adopted, this kind of algorithms have low computational
complexity and consequently, low processing time. To over-
come the limitations of deterministic methods, a swarm-
based metaheuristic algorithm based on Elephant Herding
Optimization (EHO) was proposed by Wang et al. [16].
However, this algorithm was designed for solving global
optimization tasks and does not take any model particularities
of the problem at hand into consideration. A parametric
study of the classical EHO algorithm was carried out in
[17], using a standard test bench, engineering problems, and
real-world problems. Moreover, the authors in [17] consid-
ered enhancing the performance of the original EHO, via
cultural-based, alpha-tuning, and biased initialization EHO.
Another improved version of the original EHO algorithm
was recently proposed in [18], where the authors noticed that
there is a lack of exploitation in EHO, which leads to slow
convergence. Hence, they updated the two operators (clan
and separation operator) for the population regeneration in
each iteration. Their reasoning was based on a vector analysis
of the movement that new elephants should engage in the
search space. In [19], the authors showed how to adapt the
classical EHO algorithm to the problem of energy-based
source localization. Nevertheless, their approach failed to
capture any particularities of the observation model at hand;
thus, the authors left the initialization and search processes to
chance completely (randomness). In sharp contrast to [19],
here we do not simply disregard the intrinsic information
coming from the observation model, but rather exploit it to
develop an improved procedure for the initialization step
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in our proposed approach. Moreover, to enhance the search
phase, we propose a discrete gradient-based method. It will
be shown (in Section V) that these improvements lead to
enhanced localization performance of EHO, both in terms
of localization accuracy and convergence. The work in [20]
showed promising results, in both simulation environment
and field experiments. The method was also applied to
other engineering problems, namely for proportional integral
derivative control [21], networks quality of service [22] and
drone placement control [23]. Other swarm algorithms are
also worth mentioning, namely, Monarch Butterfly optimiza-
tion algorithm [24], Grey Wolf Optimization [25], Chicken
Swarm Optimization Algorithm [26], among several others
that are used in a variety of fields nowadays. More recently,
in [27], the authors proposed a metaheuristic method inspired
by farmland fertility in nature, which was evaluated through
20 main functions of mathematical optimization. The authors
in [28] proposed a robust stochastic population-based algo-
rithm based on the hunt behavior of falcons that requires the
adjustment of few parameters for its three-stage movement
decision. Its performance was assessed against 12 well-
known benchmark single-objective functions. An algorithm
inspired by a group of hunting sailfish was proposed in [29].
This method consists of two types of populations, sailfish
population for intensification of the search around the best
so far and sardines population for diversification of the
search space and was tested with 20 well-known unimodal
and multimodal mathematical functions. A novel population-
based swarm intelligence algorithm for global optimization
in continuous domain inspired by meerkats was introduced
in [30] and was tested against six classical constrained engi-
neering problems from the literature. In [31], the authors pro-
posed a simple metaheuristic optimizer related to the swarm
intelligence field based on the decoy behavior of owls when
any kind of danger is detected near the nests. The algorithm
requires five main steps and simple control parameters to
tune, and its effectiveness was demonstrated on a set of
well-known mathematical benchmark functions for single-
objective and multi-objective optimization and engineering
case studies focusing on heat exchangers. An interactive
search algorithm that combines affirmative features of two
developed metaheuristic methods called integrated particle
swarm optimization and teaching and learning based opti-
mization was introduced in [32]. The algorithm is composed
of two paradigms, namely tracking and interacting, and was
evaluated through a few mathematical functions. The authors
in [33] proposed a coyote optimization algorithm, which is
a population-based metaheuristic for optimization inspired
on the canis latrans species. The main contribution of [33]
is a new algorithmic structure and mechanisms for balancing
exploration and exploitation, and the algorithm was assessed
via numerical results and non-parametric statistical signif-
icance tests. In [34], the authors proposed cheetah-based
optimization algorithm, capturing the social behavior from
those animals. The algorithm was validated against seven
known optimizers using three different benchmark problems.
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In [35], the authors proposed the use of swarm intelligence
algorithm, namely the firefly algorithm, for optimization
of hard multi-objective problems. The algorithm was tested
on standard benchmark data and its results were results
compared with other techniques from the literature showing
improved performance in terms of coverage, energy con-
sumption, robustness and convergence speed. Lastly, a two-
stage algorithm with semi-mobile anchors that uses swarm
intelligence firefly algorithm for optimization for sensor node
positioning based on radio strength signal index was proposed
in [36]. It is worth mentioning that none of the above methods
take into account information coming from the observations
(i.e., the model itself) for initialization (it is considered
random in general), which represents a serious overlook.
Intuitively, it is clear that additional information about the
problem at hand could offer us an upper hand. Still, to the
best of our knowledge, there is no existing metaheuristic
method which accounts for this additional information; thus,
the present work is the first one to show one way of how
measurements acquired within a network could be exploited
to better the performance of a metaheuristic algorithm. All of
the mentioned algorithms, based on particle swarms, namely
EHO, are proposed as generic methods, usually tested on
generic fitness functions, with the purpose of being applied
afterwards in all kind of scientific areas where the main goal
is achieving global optima. Hence, although the authors in
[19] study the same problem as the current work, the pro-
posed EHO presents some shortcomings that can be avoided.
It disregards any specification or internal information about
the model that serves as a base to derive a cost function. The
same issue is applied concerning population initialization,
where randomization is most frequently employed. Never-
theless, the proposal of new initialization methods and their
improvement have been the subject of several studies over
the years [37]. Randomization, being the most widely used
method, aims to generate evenly distributed populations [38].
Population initialization is crucial since poor initial guesses
might prevent an algorithm to find optimal solutions. Besides
generic methods like pseudo-random number generator [39]
or chaotic number generator [40], application specific initial-
ization methods have also been considered for a particular
set of problems, namely for antenna design [38] or image
segmentation [41].

Firstly, a new strategy based on theoretical foundations
through distance estimation is proposed for the initialization
of population. The second major contribution concerns the
acceleration of the method’s convergence by integrating dis-
crete gradient search methodologies in the EHO algorithm
[42]. With this procedure, it will be shown that the modified
algorithm obtains up to 1 m of reduction in the localization
error for lower values of noise, when considering the original
version, requiring considerably less iterations (regarding the
enhanced version, the error will be just slightly lower). For
higher values of the noise, it replicates the performance of the
original EHO [16] and its enhanced version [18]. The increase
in computational effort is compensated by the reduction of
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the number of iterations, due to substantial increase of the
convergence rate.

Finally, it should be noted that, although the proposed
enhancement procedure is applied to EHO here, it is universal
in the sense that it can be applied to any population-based
metaheuristic method, which tackles the localization problem
indirectly through distance measurements.

The paper is organized as follows. Section II formulates the
mathematical approach in terms of the acoustic model and the
optimization algorithm. Section III present the novel method-
ology for the population initialization. Section IV defines the
new methodology for accelerating EHO convergence rate.
Section V presents and discusses simulations results of the
proposed enhanced algorithm and Section VI concludes the
paper and presents future lines of research.

Il. PROBLEM FORMULATION

Consider a 2-dimensional sensor network, composed of N
sensors and one acoustic source node. The sensors are uni-
formly distributed on a circle, centered at the middle point
of the search space, deployed over a 100m x 100m square
region. The unknown location of the source is denoted by
x and the known location of the iy sensor by s;, where
i = 1,...,N. The goal of this work is to determine the
unknown location of the source by exploiting acoustic energy
measurements acquired by sensors. The relation between the
acoustic signal and other model parameters is correlated with
the decay model of an acoustic signal [1], [2].

To obtain the energy observations at the i, sensor, we aver-
age the readings over M signals obtaining the following decay
model equation:

_ &P

|Ix — sill#
where P is the transmitted power, v; represents the measure-
ment noise, assumed as a Gaussian distribution with zero
mean, v; ~ N(O0, 0‘)21_), and B is the path loss exponent. The
value of § typically falls within the interval [2, 4] (2 in free
space and 4 in adverse indoor environments) [1], [2]. In this
work we consider 8 = 2, since we consider signal prop-
agation in free space, without reflections or reverberations.
By employing the noisy observations defined in (1), the max-

imum likelihood (ML) estimator of x can be formulated
as [1], [2]:

2
- . giP
- o8 2
b argfan(” ||x—sl-||2> @

The problem in (2) is non-convex and has singularities, thus,
itis well suited for application of a metaheuristic optimization
method. EHO algorithm [16], which models herding behavior
of elephants in nature, can be summarized as follows: the
population of elephants contains a number of clans, which
comprise a number of elephants. Each clan moves under
the leadership of a matriarch, while a number of male ele-
phants that reached adulthood leave the clan they belong to
and live alone in nature. EHO models these behaviors with

Vi + v, fori=1,...,N, (D
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FIGURE 1. Distances configurations. (a) Consistent case (secant circumferences) (b) Non-consistent case (external circumferences).

two operators: clan update (which updates the elephants and
matriarch current positions in each clan) and a separation
operator (which enhances the population diversity at the later
search phase) [16]. In terms of population initialization, each
clan and its respective elephants, are randomly distributed
in the search space. For those not familiar with the biolog-
ical terminology used here, what the presented methodology
represents is essentially an intelligent Monte Carlo search,
in which a set of points (called elephants) is evaluated through
a cost function (the objective function in (2)) in search for
the best one. Mathematically, the algorithm can be resumed
by Egs. (3) to (6). Eq. (3) is the clan updating operator, that
controls the movement of the clan according to the elephant
matriarch c;

Xnew,cij = Xejj T “(Xbext,c,- - Xc,-,j)r 3)

where Xy, ¢; j and X, ; are the updated and previous positions
of the j;, elephant in the iy, clan respectively, o € [0, 1] is a
tuning parameter and r ~ U [0, 1] is a randomly generated
number, with a uniform distribution and X, ¢; represents the
fittest elephant individual in clan ¢;. Eq. (4) and (5) update the
position of the fittest elephant in the clan where § ~ U/ [0, 1]

Ci = N
Xnew,c; = & Xcenter,c “®
ne;

1
= — E Xc;jd (5
Ne; ©
i j=1

Xcenter,ci,d

while « determines the influence of the i; matriarch on
Xnew,ci,j» & determines the influence of Xcenrer,c; ON Xpew,c;»
where Xcenser¢; 18 the centre of clan ¢;. Index d is a reference
to the dy, dimension, where 1 < d < D and D being the
dimension of the considered problem, n, is the number of
elephants in the i, clan. Eq. (6)

Xyworst,c; = Xmin + Xmax — Xpmin + DV, (6)
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corresponds to the separating operator that moves the ele-
phants with the worst fitness to their new position, where
Xmax and Xpi, are respectively the upper and lower bound of
the position of elephant individual, and ¢ ~ U/ [0, 1]. More
details can be found in [16].

Ill. POPULATION INITIALIZATION METHOD

As seen in Section II, the original EHO algorithm initializes
elephants in clans, the matriarchs and male elephants ran-
domly, without considering any prior knowledge of the prob-
lem itself. When applying the algorithm to a specific problem,
we can take the advantage of knowing the observation model
employed. If we consider the acoustic decay model presented
in eq. (1), we can obtain an estimate of the distance between
sensor sj and the source, from the noisy observations y;j as

4= i=1...N )
Yi

Eq. (7) provides an ML estimate of the distance from each
sensor to the source, meaning that the source is within a
circle centered at each one of the sensors with a known radius
equal to d;. If the measurements were noise-free, the true
source coordinates would be at the intersection point of all
radii. Nevertheless, in practice, there will not exist a single
intersection point of the circles, due to noise. In order to study
the most likely region of intersections, we consider groups
of 3 sensors. The extrapolation to different number of sensor
is straightforward.

To demonstrate two extreme configurations, we consid-
ered a setup of N = 9 sensors with simulated observation
readings between sp, S4, §7 and one source (blue square).
Fig. 1a corresponds to a consistent case, where all circum-
ferences intersect, forming a convex hull. On the opposite,
in Fig. 1b, we obtained three external circumferences without
intersections. In the following two subsections, both cases
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FIGURE 2. Secant circumferences center calculation.

will be treated separately in terms of concerning the proposed
strategy for initialization of the clans.

A. SECANT CIRCUMFERENCES

In this case, we are interested in calculating the center of the
convex hull formed by the intersection of the three circum-
ferences that will be the center of the clan.

Consider 3 circumferences with center at coordinates s; €
R? and radius Ri e R,i = 1,...,N, where the circumfer-
ences intersect themselves at at least two points, which means
that the expression (8) is logically true (Fig. 1a).

(dig <R +Ry) A7 <Ry +R7)A(dg7 <Ry +R7) (8)

In eq. (8), dj; refers to the true Euclidean distance between
sensors s; and s;.

Considering Fig. 2, the points delimiting the convex hull
common to the intersection of the three circumferences, Pcq,
Pc2 and Pc3, will be defined by the following generalized
expressions:

r = Plx) — th()’) — 5i(y)
I1si — sjll
xox = P'(x) + h—sjn(; ) = ;(ﬁ )
Po = e PO th(x; — s 1Pk = Pall > Ry
[Isi — s;l|

where P’ is the intersection point between P, P, and 5154, xck
and y are the coordinates of the point P¢, and

i — i
P=si+a——
[Isi — sjll
2 2 2
a = Rj — Rj + |Isi —sjl|
2 _ p2 2
h"=R; —a".
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FIGURE 3. External circumferences center calculation.

The calculated clan center will correspond to the center of
mass of Pcy1, Pc2 and Pcs, thus

P — Pc, +Pc, +Pg;
T 3

)]
B. EXTERNAL CIRCUMFERENCES

Consider 3 circumferences with center in coordinates s; € R?
and radius R; € R,i = 1, ..., N, where the circumferences
do not intersect themselves (Fig. 1b), meaning that eq. (10) is
logically false:

(dig < R1 +Rg) vV (dy7 <Ry +R7)V (dg7 < R4 + R7)
(10

In the case of external circumferences not having any point
of intersection, we consider the straight-line segment between
s7 and S1, S7S1, that will intersect the circumferences radii
in two points, Po and Pg (Fig. 3). Our point of interest
will be the middle point Py7, obtained with the following
expressions:

Ps +Pg

Py7 = — (11)

{PA(X) = 57(x) + cos(a)R7

Polx,y) = Pa(y) = 57(y) + sin(@)R;

(12)

_ [Poo) = 5100 — cos(@)Rs
Foln ) = {PB@) = 51() — sin(@)R 4

where:
ls1(x) — S7(X)|)
[Is7 — s1ll

The center of the clan will correspond to the center of the
triangle formed by AP17P47P14, thus

P — P17 + P47 + P1g

= 3

The application to other set of points is straightforward.
The next sets to consider would be (szs588) and (s3S6S9).

O = arccos (

(14)
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In our study, we did some approximations for calculating the
center of mass considering straight-line segments. A more
precise approach would be to consider the semicircles that
delimit the space, but the computational effort would not
justify their use, since they might bring only a marginal gain.

C. POPULATION INITIALIZATION ALGORITHM

Notice that, in real life applications, Fig. la would corre-
spond to additive noise in all sensors, while Fig. 1b would
reflect subtractive noise in all sensors readings. Nevertheless,
in practice it is likely that a combination of the two extreme
cases occurs. In such a case, one should consider the expres-
sions of Subsections (III-A) and (III-B) separately, for each
pair of sensors combination. The purpose of determining the
center points of the convex hull limited by the intersections,
or the middle points when facing external circumferences,
lays in the fact that the solution of the ML problem that will
be applied to EHO algorithm is likely to be located in the
regions of intersection. One of the goals of our improved
methodology is to initialize EHO clans at the center of the
intersection points presented in Subsections III-A and III-B.
With that purpose, the matriarch will be initialized at the
center and elephants belonging to the same clan, will be ini-
tialized in a circumference with the biggest radius that covers
all intersection points. Notice that, since we are dealing with
three sensors for each intersection set, the total number of
sensors must be a multiple of three, and the number of clans
(Ncians) that will be generated is directly related with the
number of sensors

Ncians :N/3 (15)

where N is the total number of sensors. Male elephants will
be generated outside the clan radius, but sufficiently close
to it, catching possible local minima that could fall outside
the radius. As we shall see, this simple procedure enables
a substantial improvement of the original EHO algorithm in
terms of convergence. This can be explained to some extent
by the fact that the population is initialized near the optimal
solution. It should be noticed that the number of function
evaluations is directly proportional to the number of new
clans generations (eq. 16); thus, with a lower number of
generations it is expected to obtain similar results

NFEvul =NC1ans*NC,- *NGen (16)

where NF'g,q; is the number of function evaluations, Ny
is the number of generated clans, N¢; is the number of ele-
phants in each clan and Ng,, the number of generations. A
pseudo code of the proposed procedure to generate the initial
population is summarized in Algorithm 1.

IV. LOCAL SEARCH METHODOLOGY

Our proposed approach for local search is based on apply-
ing the Steepest Descent Gradient (SDG) method for each
matriarch elephant [43], in each iteration, before applying the
clan update operator. The simplest method, although not the
most efficient one for determining the direction of search,
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Algorithm 1 Clan Initialization Procedure

1: function Clanlnit(S, H)

2: n=1

3: L = length(s) > Number of Sensors

4: q=0:L/3:L —L/3 > Select most distant sensors
for each group

5: fork =1:L/3do > Groups of 3 Sensors to create
the clans

6 P = ||skq1 _skq2||

7: if Dy < Dy, then > Check point positions

8 Rm = Djyq,; RM = Dy,

9: else

10: Rm = Dyg,; RM = Dy,

11: end if

12: if (D + Dk 4+ q2 > p)&&(p + Rm > RM) then

13: Py=.. > Apply Eq. 9

14: else

15: Py=.. > Apply Eq. 14

16: end if

17: P(k) = Py

18: ... Repeat the procedure for remaining groups (q)

19: end for

20: end function

Algorithm 2 Local Search Procedure
1: function LocalSearch

2: k=0

3: while Stopping Criterion is not reached do

4: gk = gradient(Model, Xx) v Finite Difference
Approximation

s: di = —gx

6: o = min(Xg + o.dg) > A. G. condition

7: Xk+1 = Xk + o .dg

8: k=k+1

9: end while

10: end function

the direction opposite to the function gradient. Therefore,
a course in the set direction will imply the direction of
maximum decay [44]. Thus, mathematically it corresponds to
aka (xk ). The determination of ok, that corresponds to the
search step, will be considered as an uni-dimensional search
problem such as:
of = argminf(x* — ok Vf(x")) (17)
a>0
A line search method as considered in (17), for choosing an
appropriate step length, o, is considered. The solution pre-
sented in our work, is the Backtracking Line Search (BLS).
The BLS is a scheme based on the Armijo—Goldstein con-
dition [45], where the method evolves from starting with a
large estimate of the step size (o), and iteratively backtracks
the step size until a decrease of the objective function is
observed. The proposed local search procedure is summa-
rized in Algorithm 2.
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FIGURE 4. Improved elephant herding algorithm (iEHO).

It should be noticed that in the present work, a linear
approximation of Vf at the point X¢ is obtained as a tangent
line to the graph of f at x¢. This is accomplished by using the
forward finite difference method, where the truncation error is
ignored [46]. In this way, we avoided tedious and burdensome
gradient calculations, that would increase processing time,
and take advantage of the fast convergence of the SDG for
local search. The local search is performed at every genera-
tion, starting from the current best solution provided by the
each clan matriarch, thus avoiding a high number of execu-
tions of Algorithm 2. The flow chart of Fig. 4 represents the
integration of the presented features into the standard EHO
algorithm, called here Improved EHO (iEHO), where new
modifications are marked in red. As it can be seen from Fig. 4,
the present work proposes a new improved algorithm, based
on the original EHO, with two major enhancements repre-
sented. Firstly, expressions derived from Section III are used
to initialize the clans instead of considering a random gen-
eration. Secondly, a local discrete gradient based method is
used to improve convergence, before the original clan update
operator is applied. However, in order to avoid a drastic
increase of the number of function evaluations, the method is
applied only to the matriarch elephant of each clan. Since the
procedure is done before the updating operator, the eventual
benefit obtained will propagate to all other elephants through
eq. (3). Based on the presented improvements, it is expected
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to obtain a faster convergence. This hypothesis will be tested
in the following section by changing the stopping criteria
to a condition monitoring the evolution of the algorithm,
expressed as

(neval < Maxgvar) A (| feost(xk—1) — feost (k) 1> Af) (18)

where the first inequality in (18) is monitoring the number
of function evaluations (ng,,;), until a maximum number is
reached (Maxg,,). The second inequality monitors the evo-
lution of the cost function (fc,s: ), and the method is stopped
when it presents a decrease lower than Af, an arbitrary small
constant.

V. SIMULATIONS AND RESULTS

To validate the claims in the presented work, simulations were
performed, comparing: (1) the SOCP deterministic method
from [14], (2) the original EHO method tuned with the
parameters obtained from [19] (i.e.: P = 500, g; = 1 for
i=1...,.N,8 = 2,¢§ = 0.7, « = 0.1, population
size of 100 elephant divided in 5 clans, and the maximum
number of function evaluations of 3000), (3) the Enhanced
EHO (EEHO) from [18], and the new iEHO presented in
Section III, considering the stopping criteria from eq. (18),
where Af = 1075, In all simulations performed, M¢c =
10.000 Monte Carlo runs are considered, with added noise
fromo? = —30dBtoo? = —5 dB with increments of 5 dB of
variance. The SOCP algorithm [14] was simulated applying
the same layout and model conditions, considered here as the
state of the art of non-metaheuristic methods. All algorithms
considered in this section were implemented in MATLAB®
R2009b, and the experiments were performed on a platform
consisting of an Intel® Core™ 17-4700HQ CPU, running
at 2.4GHz, with 16GB of RAM, on Windows®) 8 (64 Bits)
operating system.

The root mean square error (RMSE) in (19) is used as
the performance metric, in order to dissipate any effect of
the source distribution in the search space, namely, sources
located outside the sensors convex hull.

(19)

In eq. (19), X; denotes the estimate of the true source location,
Xj, in the iy, Monte Carlo run. Fig. 5a and 5b show simulation
results considering N = 9 and N = 12 sensors, respectively.

As it can be seen from the results of Figs. 5a and 5b,
the initialization procedure imply a reduction of the RMSE.
Although the decrease of the error is more evident for low
values of noise, where a reduction of about 1 m is observed,
the proposed iEHO offers improvements for high values of
the noise power as well. It is worth mentioning that the
standard EHO implemented in [19] only outperformed state
of the art methods for high noise values and had some degra-
dation for lower values of noise, situation that is no longer
present when performing the clan initialization. Interestingly,
although the performance of EHO is fairly good in noisy
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FIGURE 5. Simulation results (a) with N = 9 sensors (b) with N = 12 sensors.

10000

8000

6000 -

4000

2000

Function Evaluations Frequency

Interval Classes

(a)

10000

8000

6000

4000 -,

2000

Function Evaluations Frequency

Interval Classes

(b)

FIGURE 6. Simulation results for standard EHO with a stopping criteria with (a) N = 9 sensors (b) N = 12 sensors.

environments, it exhibits limited performance in low-noise
environments [20], where it fails to outperform deterministic
methods, such as the considered SOCP. This result inspired
us to study alternative approaches which would complement
its performance, both in terms of accuracy and convergence
rate, such as the intelligent initialization and local search
schemes proposed here. From Figs. 5a and 5b, one can see
that these schemes allowed us a significant error reduction
for low noise power, which is maintained (with somewhat
narrowed margin) throughout the whole considered span of
noise powers. Another important feature to highlight here is
the fact that iEHO performs virtually the same with and with-
out the implementation of the stopping criteria in eq. (18).
This result indicates that iEHO algorithm converges before
the maximum number of function evaluations is achieved.
With the purpose of demonstrating the effectiveness of the
results obtained, the non-parametric statistical significance
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Wilcoxon signed-rank test was implemented [47]-[49]. For
this purpose, the original EHO method (denoted by EHO)
was used as the control method, and both the enhanced EHO
method in [18] (denoted by EEHO) and the proposed method
iEHO as the comparison methods, considering a significance
level of « = 0.05. The metric used for comparison was
the mean RMSE value of the 10.000 Monte Carlo runs,
for each variance under test. One can see that the proposed
test conditions imply that the ranks are always positive for
both methods and that the sum of the signed-ranks is always
equal to 21. Given these findings, the p-values are the same
for both methods under comparison, which is 0.0313, and
the null hypothesis is always rejected for a significance
level of 5%.

To get a better comprehension of the described behav-
ior, more simulations were performed, applying the same
stopping criteria to standard EHO. It should be noted that
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FIGURE 7. Simulation results for EEHO with a stopping criteria with (a) N = 9 sensors (b) N = 12 sensors.

TABLE 1. Statistical performance indicators comparing Standard EHO and iEHO (N=9).

a2 (dB) -30 -25 -20 -15 -10 -5

Algorithm [ EHO [ iEHO | EHO [ iEHO [ EHO [ iEHO [ EHO [ iEHO | EHO [ iEHO | EHO [ iEHO
Q1 2640 720 | 2640 840 | 2640 960 | 2760 1080 | 2760 1320 | 3000 1680
N 3000 1080 | 3000 1200 | 3000 1320 | 3000 1654 | 3000 1800 | 3000 2160
Q3 3000 1440 | 3000 1680 | 3000 1800 | 3000 2040 | 3000 2400 | 3000 2880
N 2823 1195 | 2821 1343 | 2822 1474 | 2832 1654 | 2861 1875 | 2935 2173
oN 271 713 275 721 274 709 272 725 250 709 172 637

TABLE 2. Statistical performance indicators comparing Standard EHO and iEHO (N=12).

a2 (dB) -30 -25 -20 -15 -10 -5

Algorithm [ EHO [ iEHO | EHO [ iEHO | EHO [ iEHO [ EHO [ iEHO | EHO [ iEHO | EHO [ iEHO
Q1 2760 840 | 2760 960 | 2760 1080 | 2760 1200 | 2880 1440 | 3000 1680
N 3000 1200 | 3000 1320 | 3000 1440 | 3000 1560 | 3000 1800 | 3000 2160
Q3 3000 1680 | 3000 1800 | 3000 2040 | 3000 2280 | 3000 2520 | 3000 2760
N 2856 1352 | 2852 1477 | 2858 1629 | 2859 1764 | 2879 1948 | 2945 2189
oN 249 780 253 753 250 744 254 727 239 695 161 603

the main advantage of the presented methodology is achiev-
ing a reduced number of function evaluations (resulting in
accelerated convergence). It is accomplished by employing a
stopping condition related to monitoring the evolution of the
cost function, rather than just letting the algorithm run for a
certain number of times in the iterative process. Therefore,
the number of function evaluations is not constant between
methodologies and between samples, making a traditional
convergence analysis based on the cost function value infea-
sible. Nevertheless, in order to provide a comparison of
the considered methods, histograms were implemented as
an indirect measure of convergence. The results are shown
in Figs. 6 to 8 in the form of histograms, with the number of
function evaluations for different noise variances.

The histograms show the comparison of the standard EHO
method and EEHO with our improved one in terms of the
number of function evaluations. As it can be seen from the
results, regardless of the fact that a stopping criteria was
added to EHO and EEHO algorithms, they both required
the maximum number of generations available for most of
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the times and stopped only when this limit was achieved,
independently of the stopping criteria. In huge contrast, it can
be seen that the improved algorithm requires much lower
number of iterations, and the maximum number of evalua-
tions was never attained.

To further address the convergence analysis, five statistical
performance indicators were calculated for each set of the
number of sensors and each set of the added observation noise
(Tables 1 and 2). The calculated parameters were the first
quartile (Q1), the second quartile which corresponds to the
median (IV ), the third quartile (Q3), the mean value (N) and its
standard deviation (oy ). Convergence analysis focuses on the
application of the new methodology to original EHO, and the
improved version iEHO. Through the analysis of the Tables 1
and 2, one can observe that:

(a) Considering the maximum number of evaluations, 25%
of the simulations present reduced values in the new
methodology applied to the EHO method (typically
1/3 of the maximum value), while in the EHO case this
value corresponds mostly to the maximum evaluations.
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FIGURE 8. Simulation results for iEHO with (a) N = 9 sensors (b) N = 12 sensors.

(b) When considering 75% of the simulations (third quar-
tile), the proposed methodology applied to EHO does
not reach the maximum number of evaluations, oppo-
site to the original method.

(c) Inthe new methodology case, the median is very close
to the average, which indicates a uniform distribution
around it. The same assessment can be made for EHO,
however, the mean and median are close to the max-
imum value. Such a situation can be observed in the
histograms.

(d) With regards to the mean, in the case of EHO, high val-
ues with a small standard deviation are assumed. This
means that the distribution is centered at the maximum
value (situation observed in the histograms). In the case
of the proposed methodology, the average is always
reduced, although with greater dispersion. Given that
it is quite small, the dispersion shows that the various
simulations assume mainly higher values.

Therefor, the simulations results corroborate the effective-
ness of the two proposed schemes (initialization and refine-
ment), indicating that the new iEHO algorithm gained more
accuracy and a faster convergence rate compared with its
counterpart, the standard EHO.!

VI. CONCLUSION AND FUTURE WORK

In this work two major contributions were presented to
improve the performance of EHO algorithm applied to the
energy based localization problem. The proposed schemes
take the particularity of the problem at hand and use it in their
advantage, unlike the general EHO. Firstly, a method for clan
initialization was introduced on the estimation of the distance
between the acoustic source and the sensors. It was shown
that the proposed methodology results in better accuracy

I'The proposed scheme was tested with other swarm-based methods (such

as Coyote Optimization Algorithm and Gray Wolf Optimization) as well, and
the main findings remain the same as the ones presented here.

VOLUME 8, 2020

for high values of noise, where other methods tend to fail.
Secondly, a discretized version of the SDG method based
on finite differences was incorporated in the clan update
operator, which allowed us to obtain a substantially faster
converge rate. Finally, the simulation results validated the
productiveness of the proposed schemes, allowing iEHO to
reduce the localization error for roughly 1 m for low noise
powers with regard to EHO, while it matched the performance
of EHO and EEHO in noisy environments. Nevertheless, it is
worth mentioning that the latter result was achieved with sig-
nificantly reduced number of clan generations in comparison
with both EHO and EEHO, which makes iEHO more suitable
for real-time applications and networks with limited energy
resources.

The supremacy of the proposed approach over the existing
ones can be explained in the following. On the one hand,
in contrast to the deterministic methods, the proposed algo-
rithm tackles the localization problem directly, rather than
applying approximations/relaxations to it in order to bypass
its non-convexity. On the other hand, contrarily to the exist-
ing metaheuristic approaches which neglect the observation
information regarding the initialization stage, the proposed
one takes it into account and benefits from it in terms of
accelerated convergence and enhanced localization accuracy.

It is worth mentioning that the proposed methodology is
not limited to EHO exclusively but can be extended to any
population-based metaheuristic method (swarm or evolution-
ary techniques), which approaches the localization problem
by indirect distance measurements. Moreover, generalization
of the proposed approach to other radio measurements, such
on time (difference) of arrival, angle of arrival, or received
signal strength, is straightforward. On the other hand, since
the methodology takes advantage of the model and its particu-
larities, it can only be applied to localization-based problems;
hence, it requires some adaptation to be employed as a general
population initialization methodology.
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Regarding future work, testing other nature-inspired algo-
rithms, will receive our attention. Moreover, integrating meta-
heuristic together with deterministic methods to form hybrid
algorithms which can take advantage of the strengths of the
two approaches and minimize their their weaknesses might
be of interest as well. Finally, testing the algorithm with
measured data from real implementation with broadband sig-
nal for acoustic event detection and localization will be of
interest.
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