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ABSTRACT Cyber-security is the practice of protecting computing systems and networks from digital
attacks, which are a rising concern in the Information Age. With the growing pace at which new attacks
are developed, conventional signature based attack detection methods are often not enough, and machine
learning poses as a potential solution. Adversarial machine learning is a research area that examines both the
generation and detection of adversarial examples, which are inputs specially crafted to deceive classifiers,
and has been extensively studied specifically in the area of image recognition, where minor modifications are
performed on images that cause a classifier to produce incorrect predictions. However, in other fields, such
as intrusion and malware detection, the exploration of such methods is still growing. The aim of this survey
is to explore works that apply adversarial machine learning concepts to intrusion and malware detection
scenarios. We concluded that a wide variety of attacks were tested and proven effective in malware and
intrusion detection, although their practicality was not tested in intrusion scenarios. Adversarial defenses
were substantially less explored, although their effectiveness was also proven at resisting adversarial attacks.
We also concluded that, contrarily to malware scenarios, the variety of datasets in intrusion scenarios is still
very small, with the most used dataset being greatly outdated.

INDEX TERMS Cybersecurity, adversarial machine learning, intrusion detection, malware detection.

I. INTRODUCTION
Protecting computer systems and networks from digital
attacks is a rising concern in the recent years [72]. Although
most systems today are built with improved security char-
acteristics, there is still a vast amount of vulnerabilities,
mainly due to outdated software, insecure protocols/systems
and human error. Cyber-attacks can target any infrastructure,
from cloud systems to Internet of things (IoT) devices, in the
most various forms [72].

Intrusion detection systems (IDS) typically use signatures
or system misuse patterns to identify cyber-attacks, but with
the growth of the diversity of attacks in recent years, machine
learning approaches are being widely employed [64].

Malware detection follows a similar approach, classically
using signature based and reverse engineering techniques to
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detect malicious code in files, such as trojan horses, spyware
and rootkits [70].

A downside of using machine learning techniques to per-
form classifications is the possibility of adversaries that try to
circumvent the classifiers. The field that studies these types
of attacks is called ‘‘adversarial machine learning’’, and has
been extensively explored in some areas such as image clas-
sification and spam detection; its exploration is still small in
other areas though, such as intrusion detection [46]. Basically,
adversarial examples are inputs to a classifier specifically
crafted to deceive the model, causing misclassification.

Models are many times trained with assumptions in mind
for convenience or ease of computation, such as feature inde-
pendence and linear separability of the data, but these types
of assumptions can often open possibilities for adversarial
attacks [23].

The aim of this survey is to explore applications of adver-
sarial machine learning to cyber-security scenarios, specifi-
cally intrusion and malware detection, since with the growth
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of machine learning applied to this area, adversaries can
attempt to circumvent detection systems. Critical systems,
which must be highly reliable, often deal with sensitive data.
Therefore, achieving the maximum amount of security is a
top priority, including resilience to adversarial attacks which
are proven effective in the various studies explored here.

To elaborate this survey, a search was performed on mul-
tiple science databases, such as IEEE Xplore, Springer,
arXiv, ScienceDirect and Research Gate, as well as regu-
lar search engines such as Google, using keywords ‘‘Intru-
sion Detection’’, ‘‘Malware Detection’’ and ‘‘Adversarial
Machine Learning’’. We found in total twenty papers on these
topics, with nine being related to intrusion detection, and
eleven being related to malware scenarios. We also found
other papers that apply adversarial concepts to intrusion and
malware scenarios, but we specifically focus on adversar-
ial machine learning. Several adversarial machine learning
surveys and books were used to find multiple adversarial
attack and defense strategies [12], [15], [18], [21], [23], [24],
[26], [50]. After exploring these studies, we concluded that
adversarial attack techniques were proven effective in both
malware and intrusion scenarios, with a high diversity of
techniques being tested. We also concluded that adversarial
defense techniques are still not thoroughly explored, with
few studies testing their application, and that the variety of
datasets on intrusion scenarios is still very small.

The article is organized as follows: in section 2, some
background concepts on machine learning and adversarial
machine learning are presented; in section 3 we explore state-
of-the-art adversarial attack strategies; in section 4, we take a
look at defensive strategies, which aim to detect adversarial
attacks; in section 5 we explore works in the field of intrusion
and malware detection that apply adversarial machine learn-
ing concepts; in section 6, we present our conclusions, and
propose new directions for future research.

II. BACKGROUND KNOWLEDGE
In this section we explore the fundamentals of machine
learning and adversarial machine learning, along with several
attack and defense strategies that have been applied both
to malware/intrusion detection and computer vision security
scenarios.

A. MACHINE LEARNING ALGORITHMS
Machine learning, a narrower field of artificial intelligence,
comprises the study of algorithms that computer systems
use to mainly perform classification tasks without external
instructions, by using trained models.

Pedro Domingos [22] distinguishes five tribes of
algorithms:
• Symbolists - These algorithms essentially focus on
inverse deduction. Instead of starting with the premise
and looking for conclusions, symbolists start with some
premises and conclusions, and try to fill the gaps in
between. Among the symbolists, the most notorious are
decision trees and random forests.

A decision tree is a tree-structure resembling a flowchart
where every node represents a test to an attribute, each
branch represents the possible outcomes of that test, and
the leaves represent the class labels. The paths from root
to leaves represent the decision rules.
A random forest is an ensemble learning method that
builds a large group of independent decision trees, and
outputs the mode of the label predictions of all the trees.
This method has higher computing costs, but tends to
reduce overfitting of the data, which happens when a
model adapts too strictly to a particular set of data,
having poor capabilities for generalization.

• Connectionist - This tribe focuses on reverse engineer-
ing the human brain. This approach involves creating
artificial neurons and connecting them in neural net-
works. All connectionist algorithms revolve around the
usage of neural networks.
Neural networks are a learning framework that aims to
mimic animals brains. The main concept is that a group
of neurons are organized among layers, with each layer
connected to surrounding layers. The training process
consists of adjusting the weights of the connections
among layers, until the output of the final layer repre-
sents the correct labels. The process of adjusting weights
is typically back-propagation, a method that, given an
objective function in the last layer, adjusts the weights
of the entire network given the gradient of this function
in respect to every weight.
Autoencoders are a type of neural network that aims
to reconstruct data from the input layer into the output
layer with a minimal amount of distortion [65]. Since
the objective function is calculated with a comparison
between the input and output, autoencoders are an unsu-
pervised learning algorithm, since they do not require
class labels to be trained.

• Evolutionaries - The evolutionaries focus on applying
the idea of genomes and DNA in the processing of
data. The survival and offspring of units is essentially
considered the performance data.
Genetic algorithms are a set of evolutionary algorithms
which take inspiration from genetic evolution observed
in living beings. The algorithms typically start with a set
of individuals, and through processes of mutation and
reproduction between multiple individuals, new popula-
tions are generated. With the progress of the algorithms,
the most fit individuals have a higher chance of repro-
ducing, leading to a more fitting population on each
iteration.

• Bayesians - Focuses on applying probabilistic inference,
such as the Bayes theorem. Applies ’a priori’ thinking,
with the belief that different outcomes have different
probabilities.
Naive Bayes is a machine learning algorithm that
consists of applying the Bayes theorem in order to
find a distribution of conditional probabilities among
class labels, with the assumption of independence
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between features. It has the advantage of being highly
scalable.

• Analogizers - Focuses of the idea that close elements
are more strongly related, essentially matching related
pieces of data. Among the analogizers, the most popular
ones are k-nearest-neighbours (KNN) and support vec-
tor machines (SVM).
KNN is a classification algorithm that uses a distance
function (e.g. Euclidean distance) in order to find the k
closest elements in the feature space. The final label will
depend on themode of the distribution of classes in those
neighbours.
SVM is a binary classification algorithm which creates
an hyper plane that separates the data. On each side of
the hyper plane are the classes used for classification,
and the objective is to maximize the gap perpendicular
to the plane, allowing better generalization. Through the
usage of kernel functions (e.g. gaussian), it is possible
to generate hyper planes in higher dimensions, when the
classes are not linearly separable.

B. FUNDAMENTALS OF ADVERSARIAL MACHINE
LEARNING
Adversarial machine learning is the field that studies a class
of attacks which aim to deteriorate the performance of clas-
sifiers on specific tasks. Adversarial attacks can be mainly
classified as poisoning attacks, if the attacker influences the
training data or its labels to cause the model to under-perform
during deployment, or evasion attacks, if the attacker manip-
ulates the data during deployment to deceive previously
trained classifiers [67]. This paper explores evasion attacks,
because: they are the most researched types of attacks; they
are the most practical types of attacks, since they are per-
formed during the deployment phase; they are the most used
types of attack on intrusion and malware scenarios.

Huang et al. [67] proposed a formal taxonomy to model an
adversary, according to the following aspects:
• Influence - refers to the capabilities the attacker has
over its interaction with the target. It can either be a
causative attack if the attacker can tamper the training
data of the classifier, or exploratory if the attacker can
not influence the training process, but can use other
techniques to probe for useful information;

• Security violation - refers to the type of violation of the
attack. These can be integrity attacks when the aim is
for the attack to be classified as normal (false negative),
availability attacks, when the aim is to cause misclas-
sifications of any type (false negative or false positive),
rendering the model useless, or privacy attacks, when
the aim is to obtain information from the learner;

• Specificity - refers to the broadness of misclassification.
These can be targeted attacks when the intent is for the
attacks to be misclassified into a certain class/group of
classes, or indiscriminate when there is no specific
class to be targeted, and the objective is only to cause
a misclassification.

III. ADVERSARIAL ATTACK STRATEGIES
In this section, we explore adversarial attack techniques that
have been applied to intrusion and malware attack scenarios.
Several techniques have been proposed, with a trade-off on
performance, complexity, computational efficiency [46] and
application scenario (black-box and white-box). In white-box
attacks, the attacker has knowledge over the training data,
model parameters, and other useful information about the
classifier. In black-box scenarios, the attacker has little to no
knowledge of the classifier, and thus is severely limited.

Gradient based methods typically introduce perturbations
optimized for certain distance metrics between the original
and perturbed samples. The three mainly used distance met-
rics in literature are:
• Linf - minimize the maximum amount of perturbation
introduced to any feature;

• L0 - minimize the amount of features perturbed;
• L2 - minimize the Euclidean distance between original
and adversarial samples.

Szegedy et al. proposed one of the first gradient meth-
ods to generate adversarial examples applied to the imaging
field, using box constrained limited-memory Broyden–
Fletcher–Goldfarb–Shanno (L-BFGS) optimization [63].
Given an input image, it searches for a different image that
is similar to the first, under L2 distance, that is mislabeled
by the classifier. By adding noise to the original image,
the problem is represented as an optimization problem, where
the objective is to minimize the perturbations r added to the
original image under L2distance:

min ||r||2 subject to : f (x + r) = l

Here, x is the original image, r is the perturbation, f is
the loss function of the classifier and l the incorrect pre-
diction/label. Since this is a non-trivial problem, the authors
approximate it by using L-BFGS optimization algorithm to
solve it (the box constraint is needed to limit the possible
values of the variables, which are pixels in image scenarios).

Although this method is effective at producing adversarial
examples, it is not very practical, since it uses a computation-
ally expensive algorithm to search for an optimal solution.

Goodfellow et al. proposed a simple and fast gradient
based method to generate adversarial examples called Fast
Gradient Signmethod (FGSM), with the aim of minimizing
the maximum amount of perturbation added to any pixel (Linf

distance metric) of the image to cause misclassification [58].
The rationale of this technique is to compute the gradient
of the loss function with respect to the input (e.g. using
backpropagation), and add perturbations to each feature (each
pixel in the case of images) with the sign of the gradient by a
flat amount. The formula for the attack is the following:

η = ε ∗ sign(∇x J (x, y))

Here, η is the perturbed sample, ε is a hyper-parameter
controlling the amount of perturbation added to each feature
(which is a flat value), J is the cost function, x is the original
input and y the target label (figure 1).
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FIGURE 1. FGSM - By using a ε of 0.007, which only allows at most 1 bit to
be changed in a 8 bit representation of each channel of a pixel,
the perturbation can lead to a misclassification (in [58]).

Although this method is less effective than other state of the
art techniques for generating adversarial attacks, while also
introducing more perturbations than others, it is one of the
most efficient at computing time, allowing fast generation of
adversarial examples.

Papernot et al. proposed a new adversarial sample genera-
tion technique called Jacobian based Saliency Map Attack
(JSMA) that, unlike the previous method, uses feature selec-
tion, with the aim ofminimizing the number of features modi-
fied (L0distance metric) while causing misclassification [55].
This method revolves around the computation of saliency
maps for an input sample, which contain the saliency values
for each feature. These values indicate how much the modi-
fication of each feature will affect the classification process.
The features are then selected in decreasing order of saliency
value, and each is perturbed according by the value θ . The
process finishes when misclassification occurs, or a threshold
number of modified features is reached.

This is a more computationally intensive method com-
pared to FGSM, since it requires the computation of the
saliency values, but drastically reduces the amount of features
perturbed, allowing the generation of adversarial examples
seemingly closer to the original sample (figure 2).

Moosavi-Dezfooli et al. proposed an untargeted adversar-
ial sample generation technique called Deepfool, with the
aim of minimizing the euclidean distance between perturbed
samples and original samples (L2 distance metric) [59]. The
generation of the attack consists of the analytical calculation
of a linear decision boundary that separates samples from
different classes, followed by the addition of a perturbation
perpendicular to that decision boundary (figure 3). In neural
networks, these decision boundaries are almost always non
linear, so they add the perturbations iteratively by performing
the attack multiple times, finishing when an adversary is
found. The overshoot parameter is used as a termination
criterion to prevent vanishing updates.

Although this method allows the generation of adversar-
ial samples with less perturbations than FGSM and JSMA
(using Euclidean distance as a metric for comparison) and
with higher misclassification rates, it is more computationally
intensive than both.

Carlini and Wagner created a new attack based on the
L-BFGS attack, called Carlini & Wagner attack (C&W),
by representing the attack as an optimization problem [37].

FIGURE 2. JSMA on MNIST dataset. The original samples are found in the
diagonal, with all other cells containing adversarial examples with
different target classes (in [55]).

FIGURE 3. Deepfool - a perturbation r is added to a sample x0 in the
direction of the hyperplane that separates the original class and the
target class (in [59]).

Instead of using the same loss function as in L-BFGS,
the authors proposed the usage of other loss functions, such
as hinge loss instead of cross entropy loss, and added a
new variant w to the minimization problem to avoid the box
constraints, making the problem more efficient to solve.

This method is more efficient than L-BFGS at generating
adversarial examples, and was shown to be able to defeat
state of the art defenses, such as defensive distillation and
adversarial training.

Generative adversarial networks (GAN) have also been
used to generate adversarial attacks. GANs were initially
proposed by Goodfellow et al. [62], and can be described
as a machine learning system, where two neural networks
compete with each other, with one acting as a generator, and
the other behaving as the discriminator. The two networks
play a zero-sum game, where the generator tries to produce
samples that will be misclassified by the discriminator, while
the latter will try to distinguish real samples from ones created

35406 VOLUME 8, 2020



N. Martins et al.: Adversarial Machine Learning Applied to Intrusion and Malware Scenarios: Systematic Review

by the generator. This process trains the generator to synthe-
size data from a similar distribution of the real data, with the
goal of deceiving the discriminator. Ideally, in the end, a Nash
equilibrium between the generator and the discriminator will
be found, where one of the networks cannot improve without
changing the opposing networks parameters (figure 4).

FIGURE 4. The general flow of a GAN. Only one loss function is used,
which is be used to train both the generator and the discriminator ( [62]).

One of the biggest problems with regular GANs is that
using exclusively gradient descent to train the networks often
leads to mode collapse to a parameter setting, always emmit-
ting the same point [56]. So, the optimization can become
highly unstable. Wasserstein GANs (WGAN) were intro-
duced as a means to solve this problem. Instead of using
the gradient of the loss function of the neural networks to train
the models, they used the Wasserstein distance, also known
as the earth-mover distance, which measures the distance
between two distributions [35]. This technique was shown
to eliminate many of the shortcomings of vanilla GANs, and
provide a smoother training [35].

Although the generation of adversarial samples with GANs
is effective, the distribution of the perturbations is more
unpredictable than the previously mentioned gradient based
methods, which all introduce perturbations under a certain
distance metric, and the generation can also be highly unsta-
ble, even for WGANs [17].

Zeroth-order optimization attack (ZOO) was proposed
by Chen et al., and allows the estimation of the gradient
of the classifiers without access to the classifier, which is
ideal for a black box attack [39]. The method uses zeroth
order stochastic coordinate descent to optimize the malicious
samples, by iteratively adding perturbations to each feature
of the samples and querying the classifier to estimate the
gradient and hessian of the different features. The authors
then use Adam optimizer to find the optimal perturbations for
the target sample under first order using the estimated gradi-
ent, or Newton’s method using both the gradient and hessian.
This makes it an oracle based technique, not requiring the
training of substitutemodels, and the attacker does not require
information on the classifier.

Although this method was proven effective at estimating
the gradient and hessian, showing results similar to the C&W
attack, it requires a large amount of queries to the oracle,
which can be used to detect the attacker in real scenarios.

Goodfellow et al. explored a property of adversarial inputs,
which is transferability across models [58]. The authors
observed that, when an adversarial input is successfully
misclassified by a model, it will often be misclassified by
other models, even when they have different arquitectures
or were trained in different datasets. It was also observed
that they often agree on the predicted classes for multi-class
scenarios. This property is particularly useful when perform-
ing black-box attacks, where an attacker creates a substitute
model trained on data following the same distribution, and is
able to generate samples that are misclassified on the target
model.

Most of the attacks presented were initially tested on
image domains, where nearly negligible perturbations were
introduced to existing images, which caused the models to
misclassify these malicious samples.

Although these attacks were initially proposed to target
pixels in images, they can equally be applied to other types
of data, such as tabular datasets with a limited number of
features, since these attacks are not data type dependant.
In this case, a normalization of the features would create a
similar scenario to the ones of images, where every pixel has
a set range of possible values.

This poses as a security threat, as an attacker can virtu-
ally target any type of data used by a classifier to produce
adversarial examples, such as modifying existing malware
to prevent their detection, or manipulating denial of service
attacks to go undetected.

Some limitations exist for the attackers in these situations,
such as potentially not knowing the features used by the clas-
sifiers, or having limited access to modify certain features.
Nonetheless, the threat of adversarial attacks still exists.

A summary of the attacks explored in this section can be
explored in table 1.

IV. ADVERSARIAL DEFENSES
To counteract many of the attack strategies illustrated in the
previous section, many approaches have been proposed to
improve the resilience of classifiers to adversaries.

Goodfellow et al. proposed adversarial training on the
imaging field, the first method to improve resilience to adver-
saries which consists of including adversarial examples in
the training set [58]. Instead of directly including adversarial
examples in the training set, the authors propose the usage of
an adversarial objective function, by introducing the FGSM
attack to the loss function of the neural network, which
replicates the same effect. The authors concluded that this
technique was effective at regularizing the classifier, although
misclassifications still occurred. The original authors were
able to reduce the error rate from 89.4% to 17.9%using adver-
sarial training against FGSM on the MNIST dataset [58].
Swami et al. further explored this technique by showing supe-
rior effectiveness when introducing perturbations on inter-
mediate layers of deep neural networks instead of the input
layers [47]. The main disadvantage of this method is that it
needs to be trained against specific types of attacks to be
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TABLE 1. Summary of most common and explored adversarial attacks.

resilient to them, being mostly effective against Linf attacks,
such as FGSM [44].

Gradient masking comprises a group of defensive tech-
niques which assume that ‘‘if the model is non-differentiable
or if the model’s gradient is zero at data points, then gra-
dient based attacks are ineffective’’ [23]. One form of gra-
dient masking is gradient hiding, which consists on using
non differentiable models to perform classification, such as
decision trees. This prevents the adversary from estimating
the gradient and using it to generate adversaries. Gradient
smoothing comprises a range of techniques that smooth out
the model’s gradient, causing numerical instabilities which
hamper the estimation of the gradient.

Although the objective of preventing the adversary of
estimating the gradient was achieved, Papernot et al. con-
cluded that, both under black-box and white-box scenarios,
the training of substitute classifiers to estimate the gradient
is an effective strategy to generate adversarial attacks against
gradient masking because of the transferability of the attacks,
making gradient masking an ineffective defense [53], [54].

Another defense technique was proposed by Papernot et al.
called defensive distillation [52]. The authors propose the
usage of distillation as a means to improve the robustness of
a classifier to adversarial inputs. Instead of using distillation
in the conventional way to train a different, simpler model
from a teacher model to allow deployment on resource con-
strained devices, it is proposed to use the knowledge extracted
during the distillation process to improve the classifier itself
at detecting adversarial samples. By increasing the temper-
ature at which a neural network is trained on the softmax
layer, the teaching network outputs have less confidence on
the ground truth label and show a higher distribution across
classes. It is then proposed to use this output to train a second
network with the same structure as the first. The structure is
not changed since the objective is to make the network more

resilient, and not more computationally efficient. The authors
observed that, by using the entropy generated in the softmax
layer to train the same network, it will become more resilient
to adversarial samples, as it prevents the network from fitting
too tightly to the ground truth class labels. An overview on
the proposed technique is in figure 5.

To test the proposed method, the authors used MNIST [7]
and CIFAR10 [2] datasets, and the results showed that dis-
tillation reduces the success of adversarial samples from
95.89% to 0.45% on the MNIST dataset, and 78.9% to 5.11%
on the CIFAR10, with variations of accuracy in the detection
of normal samples in the range of −2% and 2%.

Although this technique was proven effective against
adversarial attacks, it requires the training of an entire new
model, and was shown to be ineffective against C&W attacks.

Xu et al. proposed feature squeezing as ameans to combat
adversarial examples [48]. The intuition behind this tech-
nique is to compress the features of the sample (the pixels
of the image in their case) and perform classification on
the compressed sample. If the prediction by the classifier
on the compressed sample is substantially different from
the prediction of the original sample, it is considered an
adversarial example. The authors tested several compression
methods, namely bit depth compression, median smoothing
and non local means, but found that the best method was
largely dependent on the dataset. An overview of the feature
squeezing framework can be seen in figure 7.
This technique was proven effective on MNIST,

CIFAR10 and ImageNet [69] datasets against many state
of the art adversarial attacks, such as FGSM, JSMA, Deep-
fool and C&W under different distance metrics, showing an
improvement between 20% and 70% on the detection rate
for all datasets, with bit depth squeezing being the most
effective on the MNIST dataset and median smoothing the
most effective in CIFAR10 and ImageNet.
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FIGURE 5. Overview of defensive distillation technique. A neural network F was initially trained and performed
predictions under a certain temperature T. The predicted labels distribution is then used to train a second
neural network with the same structure, which is shown to be more resilient to adversaries (in [52]).

The main limitations of this technique reside in the choice
of compression methods, as the best ones were different for
each dataset. This strategy is also limited to the field of
images, as applying the compression methods tested in this
study to tabular data would result in the loss of a substantial
amount of data.

Hosseini et al. proposed a new technique to block the trans-
ferability of adversarial examples across different models on
black-box environments [42].

It was previously shown that adversarial examples crafted
to target a specific classifier often work on different classi-
fiers, even if their training data or architecture are different.
Instead of trying to create a defense mechanism that assigns
adversarial examples to their original label, the authors pro-
pose discarding adversarial examples, by creating a new class
called NULL, which indicates if the input is suspicious.

The authors started by training a classifier exclusively
with normal data. After the initial training, they computed a
function that outputs theNULL probabilities, which represent
the probability of a sample being adversarial based on the
amount of perturbations present. They introduced perturba-
tions using a brute-force method, which iteratively modified
certain features, and repeated this process for multiple num-
ber of features perturbed. The third and final step was to
perform adversarial training, and deciding the label based on
the NULL probabilities (figure 6).

Although this method is not intended to identify the true
label of a certain sample, it is one of the most effective tech-
niques in literature aimed at identifying adversarial examples.

The results show the transferability rate of different attacks
on the MNIST and GTSRB [4] datasets reduced from
over 55% to less than 6%.

The main limitation of this technique is not being able to
find the original label of the adversarial samples, since these
are labeled as NULL.

Naveed Akhtar and Jian Liu proposed the Universal per-
turbation defense method as a defense method against
adversaries [32]. The method consists of placing a perturba-
tion rectifying network (PRN) before the input layer of the

FIGURE 6. Transferability defense: instead of assigning a larger credibility
to the target class during training, the network is trained to assign it to the
NULL label, proportionally to the magnitude of the perturbations (in [42]).

FIGURE 7. Framework of feature squeezing. When the difference of
predictions on different models using different/no squeezers exceeds a
threshold, the input is considered adversarial.

target classifier. This network is trained on images with and
without perturbations, having the layers of the classifying net-
work frozen. This process creates a network that is effectively
denoising the inputs and, by evaluating the difference on the
inputs and the outputs of the PRN, extracts discriminative
features, which are used to train a binary classifier that is able
to identify adversarial samples. The results on a GoogleNet
dataset [60] show that the detection rate of adversarial attacks
was between 91.6% and 97.5%, both against Linf and L2

attacks.
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This technique is especially useful in practical scenarios
since it offers defenses without need of modifying a pre-
viously trained classifier, although a PRN still needs to be
trained.

Dongyu Meng and Hao Chen proposed a defensive frame-
work called MagNet [45]. The framework consists of two
main modules: a detector and a reformer.

The authors consider that a model misclassifies an adver-
sarial attack for two reasons: the example is distant from the
boundary of the manifold of the normal examples, or the
example is close to the manifold of normal examples, but the
classifier does not generalize well.

The purpose of the detector is to defend against the first
case (adversarial examples distant from the manifold), and it
is built using an autoencoder. The autoencoder is trained on
normal samples, and during deployment, it rejects samples
that deviate substantially from the manifold. It does this by
verifying the loss function, which is the mean squared error,
and rejects samples with an error above a set threshold.
The reformer then receives samples that were classified as
normal by the detector, and ‘‘denoises’’ the inputs, to remove
small perturbations that were not caught by the detector,
and approximate the adversarial samples to normal samples.
The output of the reformer is then input on a classifier,
which will perform classification among the normal classes
(figure 8).

FIGURE 8. MagNet defense strategy. Using an ensemble of detectors,
if any considers a sample to be adversarial, it is considered to be
adversarial, removing samples with high magnitude perturbations.
Regular samples and adversarial samples with small perturbations are
then directed to the reformer, which denoises the data and directs it to a
classifier that performs predictions (in [45]).

The authors tested the proposed technique on the MNIST
and CIFAR datasets, using FGSM, IGSM (an iterative varia-
tion of FGSM),Deepfool andC&W. Initially, the attackswere
effective at decreasing the performance of the classifiers, with
C&W being the most effective by reducing the accuracy to
0%, and Deepfool to 19.1%. After deploying the defense,
all accuracies improved, with all being above 92% on the
MNIST dataset, and above 77.5% on the CIFAR dataset.

This strategy also has the advantage of not requiring the
training of a new model to perform classification, although
the training of autoencoders can be costly.

A summary of the defenses seen in this section can be
explored in table 2.

V. APPLICATIONS TO INTRUSION AND MALWARE
SCENARIOS
In this section, we explore different works that have applied
adversarial machine learning to intrusion and malware detec-
tion scenarios. We selected all articles found on intrusion
detection, and selected the most cited on malware detection.

Maria Rigaki and Ahmed Elragal first tested the effec-
tiveness of adversarial attacks in an intrusion detection sce-
nario [46]. The authors performed tests on the NSL-KDD
dataset [8], by using FGSM and JSMA to generate Targeted
attacks, and used 5 models to perform classification: decision
tree, random forest, linear SVM, voting ensembles of the
previous three classifiers and a multi-layer perceptron neural
network (MLP). The results on JSMA showed that all classi-
fiers accuracy was affected, with linear SVM being the most
substantial one with a drop of 27%. The drop on F1-score
and AUC was also notable, especially on the Linear SVM
and Voting ensemble. Overall, the most resilient classifier
was random forest, which suffered smaller performance drops
across all metrics, with a drop of 18% on the accuracy and 6%
on the F1 score and AUC. The authors made an important
remark on the percentage of features modified by the attacks:
FGSMmodifies 100% of the features on every sample, while
JSMA only modified on average 6% of the features. This
makes JSMA a more realistic attack, since in the field of
intrusion detection, there are domain specific limitations to
the attacker relating to what features he can modify, which
is coherent with the taxonomy of Huang et al. [67]. It was
also noted that, although the explored attacks proved their
effectiveness against unknown classifiers, they still required
knowledge about the preprocessing of the data, such as
the features used for classification, and the effectiveness of
attacks under other circumstances was not tested.

Zheng Wang also tested the performance of adversarial
attacks on theNSL-KDDdataset [8]. Similarly to Rigaki [46],
multiple adversarial attack strategies were used to modify
malicious samples in the dataset, this time using four different
adversarial attack techniques to attack aMLP neural network:
FGSM, JSMA, Deepfool and C&W [29]. On the original
dataset, an AUC of 0.94 was achieved by the classifier on
the normal data. The results on the attacks showed that they
were effective at decreasing AUC, with C&W being the least
effective attack, with an AUC of 0.80, and targeted FGSM
being the most effective one, with an AUC of 0.44. JSMA
was again identified as the most realistic attack, since a
small range of features was modified, producing an AUC of
approximately 0.5 for all classes. The authors also compared
different attacks on the modified features, having found that
there aremainly seven features used by almost all attacks, also
discussing how an attacker can manually modify each one to
perform adversarial attacks on a real scenario.

Zilong Lin et al. also performed adversarial attacks on
the NSL-KDD dataset. Unlike the previous two studies [29],
[46], where existing malicious samples were slightly mod-
ified by introducing perturbations, the authors created new
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TABLE 2. Summary of most common and explored adversarial defenses.

malicious samples by using a variation of a WGAN called
IDSGAN [25]. These samples follow a similar distribution to
the ones in the dataset, but cause misclassification. By train-
ing a Generator to produce adversarial malicious traffic from
real malicious traffic, and a discriminator that distinguishes
normal traffic from adversarial, the authors were able to
generate adversarial network traffic. The effectiveness of the
attacks was tested against a multitude of classifiers, namely
SVM, naive Bayes, MLP neural network, logistic regres-
sion, decision tree, random forest and k-nearest neighbors.
By applying this concept to the NSL-KDD dataset, the results
showed that the detection rates of adversarial examples on
all classifier dropped from over 70% on the original data to
less than 1% for all classifiers and types of attacks. To make
the attacks more realistic, the authors prevented the IDSGAN
from modifying functional features of the attacks, which are
features that would affect the performance of the intrusions,
such as time-based features for denial of service attacks,
or content based features for user-to-root attacks. However,
they observed no notorious difference from the performance

with the inclusion of functional features, proving thus the
effectiveness of IDSGAN at creating adversarial examples,
although there were no limitations to the amount of noise
introduced by the technique.

The authors concluded that IDSGAN is effective in gen-
erating adversarial attacks by creating new malicious sam-
ples, even when limiting the number of perturbed features to
realistically and functionally modifiable ones, reducing the
detection rate to close to 0%. For future work, it was proposed
to test the technique on more types of attacks.

QiaoYan et al. followed a similar approach to Lin et al. [25]
and applied WGANs to the NSL-KDD dataset, this time
exploring exclusively the generation of adversarial examples
for denial of service samples only [17]. To decide what
features are realistically modifiable, the authors split them
into four categories: basic features refer to most elementary
properties of the connection; content features refer to the
content of the connection, and are not important for DoS
attacks; traffic features over a two second window refer
to statistical features over all the connections performed in
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the last two seconds; traffic features over 100 connections
window are statistics for the 100 previous connections, and
are also considered not important to DoS attacks. Therefore,
the authors only allow the modification of content features
and traffic features of 100 connections windows. To prevent
the modifications of these features, a converter was added
between the generator and the discriminator, which replaces
the unmodifiable features with their original values. After
training the WGAN by generating adversarial DoS samples
by approximating them to the distribution of normal traffic
samples, the authors were able to decrease the true positive
rate of a convolutional neural network classifier (CNN) from
97.3% to 47.6%, showing the effectiveness of the attack while
maintaining the integrity of the denial of service attack by not
modifying its functional features.

It is concluded that DoS-WGAN is effective at generating
adversarial examples against a CNN based IDS. Informa-
tion entropy was calculated for all scenarios and its stability
through the training confirms that WGAN is more stable than
other models. The diversity of attacks was also observed to be
greater when using WGAN.

Yang et al. used three attack strategies on the NSL-KDD,
against a simple neural network classifier. Two of those
strategies were already explored in previous works (C&W
and GAN), while ZOO was never previously tested [30].
For the first scenario, a substitute classifier was trained and
used to generate adversarial samples using C&W to attack a
separately trained model. On the second scenario, to attack
the target classifier without training a substitute one, ZOO
was used by querying the classifier to estimate the gradi-
ent and produce adversarial attacks. For the third scenario,
a WGAN was trained to generate adversarial samples. The
results achieved were the following: with the C&W attack,
a deterioration of 24% in the F1 score was achieved, from
0.898 to 0.687; with the ZOO attack, the deterioration was
more notorious, with 70% on the F1 score, from 0.898 to
0.273; with the WGAN attack, the F1 score reduced by 62%,
from 0.989 to 0.350. The authors concluded that, although
ZOO was the most effective technique, it was also the least
realistic, as it required an excessive amount of queries to
generate adversarial examples, which would be detected in
a real scenario. They also concluded that the GAN technique
was very powerful, although the training procedure was still
unstable, even when using WGAN, and suffered from model
collapse and convergence failure.

Their work showed the practicality of crafting adversarial
attacks using more varied techniques against deep neural
networks, with all attacks being effective at deteriorating
the performance of the classifiers. It is also noted that the
attacks are effective when the attackers have no access to the
classifier used by the IDS (black-box attack), but, for greater
effectiveness, knowledge of the parameters of classifier can
be advantageous.

Nuno Martins et al. tested the effectiveness of four
adversarial attacks which modified existing malicious
samples, similarly to Wang [29], on the NSL-KDD and

CICIDS2017 datasets (only on denial of service records),
with the aim of analyzing the footprint of multiple clas-
sifiers [13]. Four adversarial strategies were used: FGSM,
JSMA, Deepfool and C&W, and the classifiers that were used
were: decision tree, random forest, SVM, naive Bayes, neural
network and DAE. The DAE was used for classification
by first training the autoencoder, and then freezing those
layers and training new layers attached to the end of the
autoencoder, which performed classification. It was found
that all techniques were able to deteriorate the performance
of the classifiers, with the average AUC decreasing by 13%
on the NSL-KDD and by 40% on the CICIDS. This is mainly
due to the larger proportion of modifiable features available
on the CICIDS dataset, which exposes more vulnerabilities
to an adversary. It was observed that the DAE was the
most resilient classifier, showing only a drop of 1% of AUC
on both datasets. Adversarial training was then tested as a
defensive technique on all classifiers, and it was observed
that the performance of all classifiers improved, with random
forest being on average the best performing classifier on both
datasets, which only suffered a 0.1% AUC loss from the
baseline tests on normal data for both datasets.

Apruzzese et al. performed an evaluation of integrity
attacks against network intrusion detectors [10]. Three dif-
ferent models were attacked: random forest, MLP neural net-
work andKNN. The testbed consisted on the CTU-13 dataset.
The detectors were split in multiple instances, each devoted to
a specific botnet family, and using a 80/20% ratio as training
and testing sets. The recall measure of all detectors was
between 0.93 and 0.97, with random forest being the highest
performing and KNN the worst. The authors then implement
a custom adversarial attack, which targets three features:
exchanged_bytes (number of bytes exchanged), duration
(duration of the connections) and total_packets (number of
packets exchanged). The attack works by adding random val-
ues within a specific interval to each feature, leading to new
adversarial samples. The recall lowered to between 0.34 and
0.31, with the highest performing classifier being random for-
est, and the lowest the MLP neural network. The authors then
tested two defenses: adversarial training and feature removal.
When using adversarial training, the recall was increased to
between 0.49 for KNN and 0.60 for random forest. When
using feature removal, which consists on training detectors
with every feature except the ones being perturbed, the recall
was between 0.76 for MLP neural network and 0.89 for
random forest.

Giovanni Apruzzese and Michele Colajanni also tested the
effectiveness of adversarial attacks on a scenario where an
attacker aims to spread a botnet malware inside a large net-
work, while going undetected, by exclusively modifying the
network flows [19]. This experiment was performed by using
the CTU13 dataset, which contains 7 malware variants, while
using a random forest detector trained on existing botnets
with features related to network flows, such as protocol of
the connection, IP addresses, ports and packets transmitted.
In total, 7 classifiers were used (1 for each attack type),
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since the authors defend that classifiers wield superior results
when focusing on a single problem. The classifiers were
trained on training sets, of which 95% were benign samples
and 5%malicious. The detection rate ofmost attacks was over
0.95, with two exceptions, one of which should bementioned,
because it was so low (0.14): the Sugou attack, that had the
least number of samples available. To generate adversarial
samples, the authors randomly manipulate combinations of
up to 4 features of the original malicious flows, namely dura-
tion of the flow, number of packets exchanged and number
of bytes exchanged. The magnitude of the modifications was
random, and these features were selected because they do not
alter the logic of the attack. The detection rates were greatly
reduced for every type of attack, proportionally to the number
of features modified andmagnitude of modification, reducing
the detection rates to between 0.84 and 0.0.

Wu et al. applied deep reinforcement learning to generate
adversarial attacks on botnet attacks [16]. In this scenario,
the attacker has no knowledge of the detector (black-box
attack), and only receives a boolean feedback on each query
of the classifier, which states if the sample is detected as
malicious or not. The framework for the attack consists on
deep Q-learning, where the agent is rewarded when mis-
classification occurs, and each action is a modification to
the sample, which must maintain the integrity of the attack.
Since the representation of each flow is too large for the
deep Q-learning framework, the authors used autoencoders
to produce smaller feature vectors (1024 bytes). The authors
then defined a limited set of actions to modify the sample,
such as adding random values to the timestamps of the flow,
adding length to the packets and appending benign packets.

Using the CTU-13 dataset, the authors trained two different
models for validation: a decision tree and a CNN. The models
were trained on 100000 botnet and benign flows, using a
feature vector of 12 network related features, such as IPs,
ports, number of bytes and duration. Bothmodels achieved an
accuracy of 0.99. After training an agent on 40000 flows with
a maximum of 10 actions/modifications to existing flows,
the authors achieved evasion rates between 0.35 and 0.50 on
the CNN, and between 0.02 and 0.1 on the decision tree. The
authors theorize that the CNN is more affected because it is
trained on the compact representation of the autoencoder, and
small perturbations can generate greater distortions on this
representation, while some features that are not perturbed,
such as IP addresses, are not modified on the original rep-
resentation, which is used to train the decision tree.

Jin-YoungKim et al. proposed a technique based on the
usage of autoencoders and GANs to detect zero-day attacks
in malware [31]. Zero-day attacks are attacks which are
unknown prior to their detection, and thus resemble adver-
sarial examples.

The authors began the preprocessing of the data by mod-
eling the code used for the attack as an image matrix,
and trained a denoising autoencoder (DAE) with this data,
extracting relevant features from the bottleneck layer of the
DAE. Then, they used the decoder of the DAE as the data

generator of the GAN, given a known probability distribu-
tion, and trained the discriminator of the GAN to detect the
adversarial examples generated by the decoder. The discrim-
inator was then used as the malware detector of the IDS, and
trained using malware data. By using the dataset from the
Kaggle Microsoft Malware Classification Challenge [6] to
train and test the models, the proposed model achieved an
accuracy of 98% at detecting zero-day attacks, outperforming
every other tested conventional models (SVM, decision trees,
random forest, adaboost, KNN, MLP neural network, naive
Bayes, linear discriminant analysis (LDA) and quadratic dis-
criminant analysis).

Joseph Clements et al. used four adversarial attacks on the
Mirai botnet dataset [34], and used Kitsune [11], a network
IDS (NIDS) system recently proposed by Mirsky et al. [27]
to perform detection of intrusions. The IDS is based on an
ensemble of autoencoders, which receives a feature vector of
preprocessed packets. The ensemble was trained exclusively
on regular data, making the autoencoders rebuild regular
instances of data, using root-mean-squared-error (RMSE) as
an objective function. The IDS then performed classification
during deployment based on the RMSE of input samples,
triggering an alarm when it was above a threshold value.
Four adversarial attack techniques were used: FGSM, JSMA,
C&Wand Elastic NetMethod (ENM [40]).When performing
integrity attacks, all techniques achieved 100% false nega-
tive rate (FNR). Under availability attacks, only C&W and
ENM achieved 100% FNR, with FGSM achieving 4% and
JSMA 0%. It was concluded that the attacks were effective
against Kitsune, but the adversary required knowledge of the
data representation to perform the attacks. The authors also
predict that, as feature representations inNIDSs becomemore
automated and less human knowledge will be necessary in the
future, adversarial attacks will become a larger concern.

Biggio et al. proposed a technique to generate adversarial
examples and test it on malware classifiers for PDF files [36]
using the Contagio dataset [3]. A black-box scenario is
assumed, where the attackers only have knowledge of the
distribution of the training data and the feature space used by
the target. The method proposed consists of optimizing the
following formula:

x∗ = min
x
g(x)

subject to d(x, x0) < dmax

Here g(x) is the loss of the replicated classifier, x is
the original sample, x0 is the desired adversarial sample
and x∗ is the generated sample. Since this is a non-trivial
problem the authors propose using optimization methods to
solve it by using gradient descent. A problem with using
gradient descent in this scenario is that it might lead to
local minimums, or unsupported regions since the distribu-
tion of the data known by the attacker might not be exact.
As such, the authors modified the formula, by minimiz-
ing ĝ(x) while maintaining the generated samples in highly
populated regions (of regular samples). The authors then

VOLUME 8, 2020 35413



N. Martins et al.: Adversarial Machine Learning Applied to Intrusion and Malware Scenarios: Systematic Review

applied this technique to generate adversarial malware on
PDF files, by using a feature representation proposed by
Maiorca et al. [66] which consists of the tally of occurrences
of keywords. The results showed that False Negative rates of
up to 100% were achieved for both neural network and SVM
classifiers.

The authors believed that these results could be extended
to non-differentiable classifiers, such as k-nearest-neighbors
and decision trees, and also proposed the usage of other
techniques such as bagging or random subspace method.

Weiwei Hu and Ying Tan generated adversarial malware
examples in a black-box oracle scenario using a new sys-
tem based on GANs called MalGAN [43] on a malware
dataset [5]. The system consisted of a generator, a substi-
tute detector (discriminator) and a black box detector. The
generator received real malware samples, along with a noise
vector which works as a seed for the output (an adversarial
sample). These adversarial samples, along with benign sam-
ples, were then input to the substitute model, which predicted
if they were malware or not. The main difference between
this system and other GANs is that the ground truth labels
are not used to train the system, but, instead, the output of
the black box model (the target model) is used, since the
objective is to deceive that classifier. The authors attacked six
classifiers from different architectures: random forest, linear
regression, decision tree, SVM, MLP neural network and a
Voting Ensemble of the previous classifiers. On normal data,
all classifiers achieved true positive rates of over 90%, with
decision tree showing the best performance of 98%. After
generating adversaries, the true positive rate dropped to below
0.20% for all classifiers, both for the training and testing sets.

Grosse et al. attacked a binary neural network classi-
fier trained on the Drebin dataset, an Android malware
dataset [41]. Since adding perturbations to dynamically gath-
ered features is hard, the authors took the simpler approach
of only considering static features. The authors used a feature
vector exclusively with binary features which represented
mainly system calls, and applied an attack strategy similar
to JSMA, but instead only allowed the perturbations to cause
extreme values (0 or 1) since the features were binary. After
testing the effectiveness of the attack, the authors reached
misclassification rates between 63% and 69% based on the
proportion of malware samples on the training set, having
lower misclassification rates when the malware ratio was
higher.

Two defensive techniques were also tested: distillation and
adversarial training. When applying distillation, a drop of up
to 2% in the accuracy was observed on the normal data, but
the misclassification rate dropped drastically up to 38%when
under attack. Adversarial training was also proven effective,
but largely depended on the proportion of adversarial samples
used to train the classifiers.

Andersonn et al. took a different approach at attacking a
malware dataset by using deep Q-learning, a reinforcement
learning technique [33]. The environment was defined as a
feature vector comprised of 2350 categorical features on the

metadata of the samples, and the action space was defined
as a set of valid modifications to the samples. Rewards were
provided when a sample successfully misclassified the tar-
get model. The authors attacked a gradient boosted decision
tree, and achieved an evasion rate of 16%, which is a very
modest result, but serves as a proof of concept, and the
results give insights on which features were used to attack the
model.

Weilin Xu et al. performed evasion attacks on the
Contagio PDF malware dataset using a genetic program-
ming approach [57], with the aim of evading two malware
detection methods. The attack strategy requires knowledge
of the feature representation by the defense, and an oracle
indicating if a given sample is classified as malign or benign.
The attack generation process consisted of applying genetic
algorithms on existing samples until evasion was achieved.
Only mutation operations were performed, by either insert-
ing, removing, or replacing objects in the PDF file’s tree
with low probability. On each iteration, only samples which
retain malicious behavior according to the oracle are kept,
and the fitness function corresponds to the evasiveness of the
attack. This attack strategy was tested against two detectors:
PDFrate and Hidost. PDFrate consists on a random forest
classifier which uses PDF metadata and object metadata as
features, while Hidost is a SVM with a RBF kernel, which
uses structural paths of objects in the PDF file as features.

The results showed that an evasion rate of 100% was
achievedwhen attacking both defenses, whilemaintaining the
integrity of all attacks. In total, 16,985 evasive variants were
found for PDFrate, and 2,859 for Hidost.

A similar approach was followed by Calleja et al. [20],
where the authors use genetic programming techniques to
modify malicious Android apps to be mislabeled to different
malware families in the DREBIN dataset, using RevealDroid
to perform classification, which consists of a decision tree
with various static features from the app. The main objective
was to cause the malicious apps to be misclassified to the
wrongmalware family. The authors achieved this by perform-
ing feature addition, which consists of adding new features
to existing apps, such as API calls and new permissions.
Feature removal was more difficult to perform, since the
integrity of the attacks could be compromised. This addi-
tion was achieved by using four genetic operators: selection,
reproduction, crossover and mutation.

By performing these genetic operations on a population
with different malware families, the authors were able to
achieve misclassification in 28 out of the 29 malware fam-
ilies, by only adding one new feature.

Menéndez et al. [14] used entropy time series analy-
sis (EnTS) to perform detection of malware hidden using
different forms of polymorphism, such as compression and
encryption, by assuming these processes change the entropies
of their binaries. The process consisted of separating the
file as a stream of chunks, and the entropy is calculated
from the byte frequencies on each chunk, followed by a
denoising step using wavelet analysis. The resulting feature
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TABLE 3. Summary of works on Adversarial Machine Learning applied to intrusion and malware scenarios.

vector is then used to train a random forest classifier which
distinguishes benign from malware samples. The authors
tested the technique on multiple datasets: Kaggle malware
competition dataset, packet (Pck) malware from VirusShare,

and Mix, a dataset built from the previous two. The results
showed that EnTS achieved 82% accuracy when maximizing
precision (100%), and 93.9% accuracy when maximizing
accuracy, surpassing all other tested state of the art detection
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strategies and being the most scalable because of linear
complexity.

To further evaluate the effectiveness of the defense,
the authors presented a new attack called ‘‘El Empaquetador
Evolutivo’’ (EEE). This attack manipulates the entropy sig-
nature of the malware sample by injecting controlled entropy
regions (CERs) without modifying the semantics of the mal-
ware (so it remains effective). To optimize the placement of
the CERs, the authors used genetic algorithms as a learn-
ing process to optimize the misclassification of the target
defense (EnTS). As a result, the false negative rate went from
[0%-9.4%] to [90.8%-98.7%] after the attack, while main-
taining the functionality of the malware.

Chen et al. [38] proposed both an evasion attack model
(EvnAttack) on malware present in portable Windows exe-
cutable files, and a defense for that attack (SecDefender). The
feature vectors used for the experiments were binary features,
each representing an API call to Windows (1 for used, 0 for
not used). The authors usedMax-Relevance algorithm [71] to
compute the importance of each feature on a labeled dataset,
and separate them into two sets: one of features relevant to
malware (M), and another with features relevant to benign
samples (B). To perform the attack EvnAttack, they then used
a wrapper method which iteratively selects features to be
added on a sample from the subset B and removed from the
subset M, with the aim of maximizing the loss function of
the target classifier. To implement a defense to this attack,
the authors exploit this type of attack to retrain the classifier
in a progressive way, by training the classifier both in the
original dataset and generated adversarial samples. They also
added a regularization step to penalize adversarial samples
with high evasion costs (many features modified), since these
attacks are typically not feasible, as they damage the mali-
cious capability of the sample.

The authors performed tests on a private dataset obtained
from the Comodo Cloud Security Center, with 10.000 sam-
ples, of which 5.000 were malicious and 5.000 were benign,
with 3,503 features (API calls). The original classifier
achieved an F1 score of 0.96 on the testing set, and when
faced with EvnAttack with a maximum evasion cost of 22,
it reduced to 0.43, while the FNR increased from 0.05 to 0.70.
When deploying SecDefender, the F1 score was raised back
to 0.95, while the FNR greatly reduced.

Anderson et al. applied GANs to domain generation
algorithms (DGA), which are typically used by malware,
allowing updates to the malware from multiple generated
domains [49]. The authors initially trained an auto-encoder
using the Alexa top 1M dataset, which contains the domain
names of the top one million websites listed at [1].
The decoder of the autoencoder is then used as a generator
for the GAN, receiving a seed of 20 random numbers as seed
and outputting a pseudorandomly generated domain. The
encoder of the autoencoder was then used to distinguish real
samples from the original Alexa 1M dataset and generated
samples by training a logistic regression model on the output
of the encoder. Once the training of the GAN was complete,

the authors used a random forest classifier with manually
crafted features used in other state of the art works, such as
length, entropy character distribution and vowel to consonant
ratio. Against other state of the art DGAs, the random forest
classifier always achieved an AUC 0.99 or above, but only
achieved an AUC of 0.93 against samples generated by the
generator of DeepDGA.

It is presented in table 3 an overview of the different works
explored in this section, and in table 4 a summary of all the
datasets that were used.

TABLE 4. Summary of datasets used in the literature review (section V).

In the case of intrusion detection, several adversarial attack
techniques have been explored against multiple classifiers
from different families and structures, all showing effective-
ness at deteriorating the performance, with Deepfool,WGAN
and Zoo being the most effective, but JSMA the most realis-
tic, since it perturbs less features. All basic classifiers per-
formed approximately at the same level, with the exception
of decision trees and naive Bayes that generally performed
the worst. Although many attack strategies were explored,
defenses were only explored in few studies (adversarial train-
ing based strategies and DAE), which proved their effective-
ness at improving the resilience of the detection system. The
variety of datasets is also scarce, with almost all works using
exclusively the NSL-KDD dataset.

On malware detection scenarios, there is a greater variety
of datasets, although not all are publicly accessible. There
were also a great variety of explored attack strategies, with
similar results to intrusion scenarios, although in malware
scenarios there is more freedom on what features can be
modified, making JSMA no more the only realistic attack.
Adversarial defenses were tested in some studies (distillation,
adversarial training, and attack specific defenses), which,
again, were proven effective with little performance drops on
regular data.

VI. CONCLUSION
In this paper we explored several works which apply adver-
sarial machine learning concepts to intrusion and malware
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detection scenarios. We first showed various fundamental
concepts that can help the understanding of the basics of
adversarial machine learning, along with adversarial attack
and defense strategies. We then explored the application of
these techniques to intrusion detection and malware detection
scenarios and concluded that:
• Adversarial attacks can deteriorate the performance of
malware and intrusion classifiers, even if they follow dif-
ferent architectures or are from different families due to
the transferability of adversarial attacks across different
classifiers;

• Various adversarial attack strategies have been explored
for both scenarios, with some strategies being more
effective than others depending on the situation. Most
attacks are generated using the gradient of a neural
network to identify weaknesses in the classifiers, or by
using genetic algorithms to optimize adversarial sam-
ples. There is a trade-off when choosing adversarial
attacks, such as in the number of features modified,
computing power required and magnitude of the
perturbations;

• All classifiers displayed relatively similar results on nor-
mal data, but under adversarial attacks, decision trees,
naive Bayes and linear SVMs were the most affected
classifiers, while neural networks with a different archi-
tecture from the attacker, random forests andRBFSVMs
were the most resilient;

• Adversarial defenses were very little explored, but their
effectiveness was proven, with adversarial training being
the most effective defense, both in an intrusion and
malware scenarios;

• The number of datasets that were used on intrusion
detection scenarios was small, with only NSL-KDD
being used in six studies, CICIDS2017 being used in one
study and CTU-13 in three studies. This is mainly due
to the small amount of public labeled intrusion datasets.
On the case of malware detection, there is a greater
variety of datasets used across different studies due to
higher availability of public malware datasets.

To further extend the studies that were analyzed in this
paper, we propose for future work:
• Further testing of adversarial defense techniques: in
total, four defense strategies were tested, with defensive
distillation being used in malware detection, denois-
ing autoencoders in intrusion detection and adversarial
training in both scenarios, as well as other defenses
specific to malware scenarios. Their effectiveness was
proven, but there is a wider variety of defensive strate-
gies that were proposed to image recognition that can
be applied to intrusion and malware detection (also pre-
sented in section IV) as well as other deep learning based
anomaly detection techniques [68];

• The usage of more recent and standardized datasets: in
the case of intrusion detection, the main dataset used
is NSL-KDD, which is greatly outdated, but is the
mainly studied one due to lack of available alternatives.

The growth of IoT environments in the recent years
poses as a potential source for generating new test beds
for intrusion detection;

• Performing live attacks against time based intrusion
detection systems, such as recurrent neural network clas-
sifiers, as all attacks and detections were performed on
independent samples.
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