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This mini-review reports on the existing knowledge of the metabolic effects of palladium
[Pd(II)] complexes with potential anticancer activity, on cell lines and murine models. Most
studies have addressed mononuclear Pd(II) complexes, although increasing interest has
been noted in bidentate complexes, as polynuclear structures. In addition, the majority of
records have reported in vitro studies on cancer cell lines, some including the impact on
healthy cells, as potentially informative in relation to side effects. Generally, these studies
address metabolic effects related to the mechanisms of induced cell death and antioxidant
defense, often involving the measurement of gene and protein expression patterns, and
evaluation of the levels of reactive oxygen species or specific metabolites, such as ATP
and glutathione, in relation to mitochondrial respiration and antioxidant mechanisms. An
important tendency is noted toward the use of more untargeted approaches, such as the
use of omic sciences e.g., proteomics and metabolomics. In the discussion section of this
mini-review, the developments carried out so far are summarized and suggestions of
possible future developments are advanced, aiming at recognizing that metabolites and
metabolic pathways make up an important part of cell response and adaptation to
therapeutic agents, their further study potentially contributing valuably for a more
complete understanding of processes such as biotoxicity or development of
drug resistance.
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INTRODUCTION

The discovery of the important antitumor activity of cisplatin [cis-diamminedichloroplatinum(II),
cis-Pt(NH3)2Cl2, cDDP] (1), a complex that targets DNA resulting in the formation of intra- and
inter-strand DNA cross-links and triggering apoptotic cell death, led to it becoming the first
successful metal-based anticancer drug (2). This prompted much interest in inorganic compounds
as potential antineoplastic agents, platinum [Pt(II)] complexes remaining some of the most efficient
chemotherapeutic drugs used in the clinic. However, such compounds are typically associated to
serious systemic toxicity and acquired resistance (mainly via interaction with glutathione and
metallothioneins) (3). Therefore, other metal complexes have been tested, namely containing
ruthenium (4, 5), titanium (6), gold (7), and palladium, Pd (8–11). Pd(II) compounds have attracted
much attention due to the similarity of the metal center to Pt(II) (electronic structure and
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coordination chemistry) (12, 13). Such complexes have shown
favorable cytotoxic activity despite their higher lability compared
to Pt(II) analogues (10, 11). In vivo stability of Pd(II) antitumor
complexes relies on strongly coordinating ligands (e.g.,
dithiocarbamates, polydentate linear amines) and reasonably
nonlabile leaving group(s) (13, 14). Both mono- and
polynuclear Pd-complexes (i.e., containing one or more than
one metal centers) have been synthesized and characterized (8–
11, 13), along with heterometallic Pt/Pd-complexes (di- and
trinuclear), in order to improve antineoplastic response and
patient survival (15). In contrast to mononuclear metal agents,
which can only bind (covalently) to one or two sites at their main
pharmacological target (DNA bases), polynuclear compounds
may interact with DNA at several sites on the double helix
(via short or long range interactions depending on the nature
of the ligands), inducing more severe and less repairable
damage. In addition, development of polynuclear agents is
based on the assumption that they may lead to interactions
with multiple biological targets, simultaneously (e.g., sulfur-
donor biomolecules, thioethers, thiols), thus restricting the
induced deleterious side effects.

The Pd(II) complexes tested so far in relation to their
antitumor activity have, mostly, been characterized in terms of
cytotoxic and antiproliferative properties toward different tumor
cell lines (15, 16), as well as to their DNA- or protein-binding
abilities (17, 18). The knowledge of the ability of metal complexes
and, in particular, Pd(II) complexes, to disrupt and induce
adaptations in cell/organism metabolism is still scarce, in spite
of its importance for the evaluation of the more global effects of
these potential new antineoplastic agents. In this context, further
and untargeted metabolic studies are of great value to unveil new
disruptions in cellular metabolism resulting from exposure to
complexes. Indeed, increasing interest is noted in further
understanding the metabolic response of tumoral (and
occasionally healthy) cell lines or tissues to drugs, both in vitro
and in vivo. In this mini-review, the specific metabolic effects of
Pd(II) complexes will be addressed, noting the complexes´
impact on different genes, proteins or metabolite levels,
subsequently interpreted as related to specific deviant
metabolic pathways. Reports solely based on typical
cytotoxicity/cell proliferative actions or DNA and protein
binding are not included in this review, which intentionally
gathers only the studies that include some reference to
metabolic effects.
IN VITRO STUDIES OF THE METABOLIC
IMPACT OF Pd(II) COMPLEXES

Table 1 lists the studies that report the impact of mono- and
polynuclear Pd(II) complexes on some aspect of in vitro or in
vivo metabolism, while the chemical structures of the
corresponding Pd(II) complexes are shown in Table S1 (to
guide the reader through the structural characteristics of these
compounds). It becomes clear that most of the reported studies
have addressed mononuclear Pd(II) complexes, often using
Frontiers in Oncology | www.frontiersin.org 2
cisplatin as a reference, and have been conducted in in vitro
conditions. However, a more recent interest is noted in binuclear
Pd(II) complexes, while some of the existing reports also describe
comparison of results obtained in vitro with those registered in
vivo in murine models. The text below is, when possible,
organized chronologically, for each type of palladium
complex investigated.

Mononuclear Pd(II) Complexes
An early study tested curcumin, the main yellow pigment of
turmeric, as a ligand, together with 4,4′-dinonyl-2,2′-bipyridine
(bipy) (19) (Table 1). Curcumin is believed to play several
beneficial roles on human health, e.g., anti-inflammatory and
antioxidant. The action of the [(bipy)Pd(Pcurc)][CF3SO3]
complex on several human prostate cancer lines revealed
induction of apoptosis (with caspase-3 activation), associated
with production of reactive oxygen species (ROS) and
mitochondrial membrane depolarization. Interestingly, the
complex did not seem to affect DNA structure or the activity
of the DNA-repair enzyme PARP, contrary to the free curcumin
ligand. This demonstrates the importance of ligand
complexation, which in the case of [(bipy)Pd(Pcurc)][CF3SO3],
seems to determine intracellular mechanistic action. Also tested
on prostate cancer cells (this time of the PC-3 cell line), a
luminescent Pd(II) complex, [Pd(L)Cl], with acyclic tridentate
ligand quinoline-2-carboxaldehyde-2-pyridylhydrazone, also
revealed caspase-3 activation as indicative of cell apoptosis
(20). These effects were associated with cell cycle modulation
indicated G2/M phase arrest and increased cytochrome c
expression, indicative of a deviant mitochondrial pathway.

Breast cancer cell lines have been the target of many studies
testing the anti-cancer action of Pd(II)-based complexes. An
earlier report addressed the action of a Pd(II) complex with
saccharinate (sac) and 2,2’:6’,2’’-terpyridine (terpy), [Pd(sac)
(terpy)](sac)•4H2O, on two metabolically distinct breast cancer
cell lines: estrogen-receptor-positive MCF-7 and triple-negative
MDA-MB-231 (metastatic) (21). The authors report, for the first
time to their knowledge, the increased expression of specific
genes and proteins related to cell death receptors. An increment
in the protein corresponding to the DR5 cell death receptor gene
was interpreted as indicative that activation of cell death
receptors by the Pd(II) complex is the main mechanism of
apoptosis induction. However, in vitro results revealed different
behaviors for the two cell lines, with MCF-7 cells becoming more
actively apoptotic than MDA-MB-231 cells. The latter responded
to the complex with reduced ability for tubules formation (and,
hence, formation of cell networks), which may reflect an ability
of the Pd(II) complex to reduce metastasis formation in triple-
negative breast cancer cells. A few years later (25), the same
authors published a full biochemical and proteomic study of the
same complex on MDA-MB-231 cells, compared to human lung
adenocarcinoma (A549) and epithelial cervical cancer (HeLa)
cell lines. About 30 proteins were identified with altered
expression levels in MDA-MB-231 cells, as a result of complex
exposure. These proteins were suggested to impact on multiple
cellular processes, e.g., energy metabolism, double strand break
repair mechanisms, membrane trafficking, protein degradation
October 2020 | Volume 10 | Article 590970
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TABLE 1 | List of metabolism-related studies of Pd(II) complexes tested in vitro or in vivo.

Pd(II) complexes and ligands (L) Cell line/animal
model

Main metabolic observations Ref.

In vitro studies

Mononuclear [(bipy)Pd(Pcurc)][CF3SO3]; L: pure curcumin (Pcurc),
4,4′-dinonyl-2,2′-bipyridine (bipy)

LnCaP, PC3, DU145
(prostate cancer)

• Apoptosis (caspase-3 activation)
• ↑ ROS levels (and ↓GSH), JNK phosphorylation, GSTp1
downregulation
• Mitochondrial membrane depolarization, upregulated Bax,
downregulated Bcl-2 proteins
• Hindered PARP activation, no effect on DNA (contrary to
Pcurc alone)

(19)

[Pd(L)Cl]; L: acyclic tridentate quinoline-2-
carboxaldehyde-2-pyridylhydrazone

PC3 (prostate cancer) • Apoptosis (caspase-3 activation)
• G2/M phase cell cycle arrest, cell growth inhibition
• Mitochondrial pathway triggered, cytochrome c release,
higher caspase-3 activity

(20)

[Pd(sac)(terpy)](sac)•4H2O; L: saccharinate (sac),
2,2’:6’,2’’-terpyridine (terpy)

MCF-7, MDA-MB-231
(breast cancer)
(comparison to in vivo)

• ↑ expression of DR4/DR5 cell death genes, DR5 protein
• Possible anti-invasive activity by prevention of tubule
formation in MDA-MB-231 (metastatic)
• Apoptosis only in MCF-7 (non-metastatic)

(21)

Pd(MCO)2 (compared to Pt(MCO)2 and cDDP); L: 2-
cyano-2-isonitroso-N-morpholylacetamide

HeLa (cervical cancer) • Unspecified different metabolic impact compared to cDDP
family, probably averting negative side effects

(22)

[Pd(acac)2] (compared to cDDP); L:
bisacetylacetonate (acac)

H460 (non-small-cell lung
cancer)
(more lines in other
studies and comparison
to in vivo)

• Apoptosis, via ER stress, with CHOP upregulation
• ↓ Ca2+ levels, ↑ misfolded protein in ER
• Upregulation of IRE1 signaling, caspases activation

(23)

Pd(diethyl dithiocarbamate)2 (compared to Pt(II)
analogue and other symmetrical Pt(II) and Ni(II)
complexes); L: diethyl dithiocarbamate

K562 (leukemia) • Cytosolic antioxidant defense enzymes (GST, GPX, PTK,
CAT) inhibition pattern, dependent on metal-complex
• Pd complex: good antioxidant and antitumor activity

(24)

Pd(sac)(terpy)](sac)•4H2O; L: saccharinate (sac),
2,2’:6’,2’’-terpyridine (terpy)

MDA-MB-231 (breast
cancer), A549 (lung
cancer), HeLa (cervical
cancer)

• MDA-MB-231: 30 proteins with altered expression levels
and impacting on multiple pathways, including energy
metabolism, double strand break repair mechanisms,
membrane trafficking, protein degradation and apoptosis
• ↑ ROS levels in all cell lines

(25)

[Pd(L1)2], [Pd(L
2)2], [Pd(L

3)2], [Pd(L
4)2] (compared to

cDDP); L: 2-(arylazo)phenol with different R and R´:
L1: R, H; R’=CH3, L

2: R, CH3, H; R’=H, L
3: R,

CH2CH3; R’=H, L
4: R, (CH2) 2CH3; R’=H

A549 (lung cancer), HeLa
(cervical cancer), PA-1
(teratocarcinoma)

• [Pd(L2)2]: apoptosis, increased sub-G1 cell cycle
population, induced mitochondrial dysfunction
• ↑ ROS levels, mitochondrial membrane depolarization,
cytochrome c release, caspase overexpression, Bax
overexpression, Bcl-2 under-expression

(26)

[Pd(sac)2(dppm)], [Pd(sac)2(dppe)], [Pd(dppm)2](sac)

2, [Pd(dppe)2](sac)2
(compared to Pt(II) analogues and cDDP);
L: saccharinate (sac), 1,1-bis(diphenyl phosphino)
methane (dppm),1,2-bis(diphenyl phosphino)ethane
(dppe)

MCF-7 (breast cancer),
A549 (lung cancer),
DU145, HCT116 (colon
cancer), BEAS-2B
(bronchial epithelial)

• Cationic Pd-dppm and Pd-dppe: more active in all cells
• Neutral/cationic Pd-dppm complexes: apoptosis through
caspases-3/7 activity, B-phase cell arrest, ↑ROS levels

(27)

Polynuclear Pd2Spm [compared to Pt(II) analogue and cDDP]; L:
spermine (Spm)

A2780, A2780/CP
(ovarian cancer, CP:
cDDP resistant)

• Affects SMO, arginase 2, down-regulates NRF-2
• ↓ biogenic PAs putrescine, spermidine, spermine

(28)

Pd2[S(−)C
2, N-dmpa]2 (m-dppe)Cl2(compared to

cDDP); L: N,N-dimethyl-1-phenethyl-amine (dmpa),
1,2-ethanebis(diphenyl phosphine) (dppe)

B16F10-Nex2 (murine
melanoma) (more lines
for other studies and
comparison to in vivo)

• Reacts with protein thiol groups in mitochondrial
membrane, changes membrane potential, induces Bax
translocation into mitochondria
• Mitochondria and ER damage (changed Ca2+, ATP,
endonucleases levels)
• Caspases activation

(29)

Pd2Spm, Pd2BENSpm (compared to Pt2CPENSpm);
L: spermine (Spm), N1,N11-bis(ethyl) norspermine
(BENSpm), N1-cyclo-propylmethyl-N11-
ethylnorspermine (CPENSpm)

MCF-10A (normal-like
breast epithelial), JIMT-1,
L56BR-C1 (breast
cancer)

• L56Br-C1: Pd2BENSpm decreased PAs levels, increased
SSAT activity
• Pd2BENSpm is selectively cytotoxic for breast cancer cells,
with low toxicity for non-neoplastic MCF-10A cells
• Pd2Spm: ↓GSH levels (L56Br-C1 most sensitive)

(10)

Pd2Spm (compared to Pt analogues and cDDP); L:
spermine (Spm)

MDA-MB-231 (breast
cancer)

• Pd2Spm and Pt2Spm: distinct cytotoxicity pathways,
↑ lipids, changes in DNA/protein structures
• ↑ Thymine; ↓ adenine, cytosine, guanine, deoxyguanine,
deoxyribose

(30)

(Continued)
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and apoptosis (Table 1). This report on proteomics and subsequent
pathway analysis for data interpretation illustrates the large levels of
complex information retrievable from the use of untargeted
omic approaches.

The epithelian cervical cancer cell line HeLa was also used to
test the Pd(MCO)2 complex (with ligand 2-cyano-2-isonitroso-
N-morpholylacetamide), compared to Pt(MCO)2 (22). Results
showed that the complexes induced no change in mitochondrial
metabolism, although overall results suggested different
metabolic impacts of the Pd/Pt(MCO)2 complexes, compared
to those of cisplatin family. This was interpreted as a possible
circumvention of the negative side effects usually associated with
cisplatin. A subsequent paper has described the effect of [Pd
(acac)2] (acac: bisacetylacetonate), a Pd-O complex, on several
cancer cell lines and, in particular, on human non-small-cell lung
cancer H460 cells (23), to investigate the mechanism through
which apoptosis was induced. The authors concluded that the
apoptotic mechanism did not seem to relate to DNA but, rather,
was mediated by endoplasmic reticulum (ER) stress pathway. ER
stress increase was reflected by increased expression of the
CHOP protein (associated to growth arrest and DNA damage-
inducible gene 153), known to play a key role on the ER pathway.
Since the ER regulates intracellular Ca2+ levels, the lower Ca2+

levels observed upon treatment with the Pd(II) complex were
interpreted as reflecting ER stress, together with accumulation of
misfolded protein in ER. The authors suggested that this
apoptotic mechanism could be explained by the Pd-O nature
of the complex (instead of Pd-N), which may prevent interaction
with S-ligand- or N-ligand-containing molecules (e.g., DNA). In
the same year, a comprehensive study of Pd(diethyl-
Frontiers in Oncology | www.frontiersin.org 4
dithiocarbamate)2, compared to its Pt(II) analogue and
other symmetrical mononuclear Pt(II) and Ni(II) complexes
(24), on human leukemia cells (K562 cell line) revealed
detailed information on glutathione utilization, antioxidant
mechanisms and kinase signaling, aiming at investigating the
impact on cellular defense mechanisms. Figure 1 shows part of
the different cellular defense mechanisms believed to be triggered
by cisplatin, for instance, and correlate to development of drug
resistance. In this study of Pd(diethyl-dithiocarbamate)2, the
activity of several enzymes was measured including for
glutathione-transferase (GST) enzymes (associated to drug
resistance and cancer development) and protein tyrosine
kinase (PTK) (Table 1). Results showed that the extent of
antioxidant defense is strongly dependent on the nature of the
metal complex, Pd(diethyl-dithiocarbamate)2 exhibiting
favorable antioxidant characteristics, in tandem with good
antitumor performance. A later systematic study of four Pd(II)
[bis-2-(arylazo)phenolates] on human lung carcinoma (A549),
cervical carcinoma (HeLa) and teratocarcinoma (PA-1) cell lines
(26) helped to single out one of the complexes as the most
effective in inducing apoptosis in all cell lines, while causing
mitochondrial dysfunction affecting several enzymes and raising
ROS levels (Table 1).

Following on earlier studies of Pd(II) complexes with
saccharinate as a ligand (21, 25), a more recent report by the
same group further exploited the promise of Pd(II)/Pt(II)
complexes with saccharinate, now combined with diphoshine
ligands (27). A series of neutral and cationic Pd(II) saccharinate
complexes with 1,1-bis(diphenyl-phosphino)methane (dppm) or
1,2-bis(diphenyl diphosphino)ethane (dppe) were synthesized
TABLE 1 | Continued

Pd(II) complexes and ligands (L) Cell line/animal
model

Main metabolic observations Ref.

Pd2Spm (compared to cDDP; single and Dox/Mtx
combined administration); L: spermine (Spm)

MG-63 (osteosarcoma),
HOb (osteoblasts)

* Pd2Spm alone: no apoptosis, less and reversible changes
in MG-63 (↓GSH, inositol, ↑hypoxanthine, ↓UXP, ↑PC),
changes amino acid levels in HOb
* Combined Pd2Spm: apoptosis, changes in lipids, choline
compounds, amino acids, nucleotides, GSH, inositol,
hypoxanthine (antioxidant defense)

(31)

In vivo studies

Mononuclear [Pd(sac)(terpy)](sac)•4H2O (compared to cDDP and
paclitaxel); L: saccharinate (sac), 2,2’:6’,2’’-
terpyridine (terpy)

Balb/c mice
subcutaneously injected
with Ehrlich ascites
carcinoma (EAC) cells
(comparison to in vitro)

* Mild-to-low toxic profile (evaluated through animal weight),
comparable to paclitaxel and less toxic than with cDDP (delays
cancer growth)

(21)

[Pd(acac)2] (compared to cDDP); L:
bisacetylacetonate (acac)

H460 (lung cancer)
xenograft mouse model
(Balb/c) (comparison to in
vitro)

* Significant toxic profile but lower than with cDDP (better
antitumor activity)

(23)

Polynucl. Pd2 [S(−)C
2, N-dmpa]2 (m-dppe)Cl2 (compared to

cDDP); L: N,N-dimethyl-1-phenethyl-amine
(dmpa),1,2-ethanebis (diphenylphosphine) (dppe)

Wistar rats and B16F10-
Nex2 (melanoma)
xenograft mice (C57Bl/6)
(comparison to in vitro)

* Wistar rats: disturbed permeabilization of mitochondria
membranes
* Xenograft mice: reduced number of nodules, anti-
metastatic effect

(29)
October 2020 | Volume 10 | Article 59
ATP, adenosine triphosphate; Bax, Bcl-2-associated X protein; Bcl-2, B-cell lymphoma 2; CAT, catalase; cDDP, cisplatin; CHOP, growth arrest and DNA damage-inducible gene 153
(GADD153); Dox, docetaxel; ER, endoplasmic reticulum; JNK, Jun N-terminal kinase; GPX, glutathione peroxidase; GSH, glutathione (reduced); GST, glutathione transferase; GSTp1,
glutathione S-transferase pi; IRE1, inositol-requiring enzyme 1; PARP, poly(ADP-ribose) polymerase (DNA-repair enzyme); PA, polyamine; PLS-DA, partial least squares—discriminant
analysis; PC, phosphocholine; PTK, protein tyrosine kinase; MTX, methotrexate; n/a, not applicable; NRF-2, nuclear factor erythroid 2–related factor 2; ROS, reactive oxygen species;
SMO, spermine oxidase; SSAT, spermidine/spermine N1-acetyltransferase (SSAT-1).
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and subsequently tested on several human cancer cell lines:
breast (MCF-7), lung (A549), prostate (DU145), colon
(HCT116), as well as on healthy bronchial epithelial cells
(BEAS-2B). This systematic report enabled the identification of
cationic Pd-dppm and Pd-dppe complexes as promising as
potential anti-cancer agents, while the former (Pd-dppm,
either of neutral or cationic nature) seemed to cause clearer
apoptosis, accompanied by cell arrest at the S-phase stage (DNA
synthesis) and production of high levels of ROS.

Polynuclear Pd(II) Complexes
All studies listed for polynuclear Pd(II) complexes relate to
bidentate chelates and most refer to complexes bearing
biogenic polyamines (PAs) (Table 1). The exception relates
to a study of a biphosphinic cyclopalladated complex with N,
N-dimethyl-1-phenethyl-amine (dmpa) and 1,2-ethanebis
(diphenylphosphine) (dppe) as ligands (29) (Table 1). This
complex was tested in vitro on murine melanoma cell lines.
The results indicated mitochondrial dysfunction, in tandem with
increased cytosolic Ca2+ levels and decreased ATP levels, as well
as activation of caspase enzymes, triggering apoptosis.

In relation to biogenic PA complexes, the Pd2Spermine
(Spm) and Pt2Spm bidentate complexes have been compared
Frontiers in Oncology | www.frontiersin.org 5
early on (28) as to their effects on the expression of genes
involved in the polyamine pathway. This metabolic pathway
has been recognized as an important target for therapeutic
strategies since PA are required for cell proliferation and are,
thus, usually found elevated in tumor tissues (28). The Pd2Spm
complex was found to induce a similar effect on several
polyamine pathway enzymes as Pt2Spm, both compounds
inducing distinguishing enzymatic profiles compared to
cisplatin. Interestingly, Pd2Spm induced significant declines
in biogenic PA levels, whereas the Pt(II) analogue did not
(28), thus pinpointing Pd(II)/PA complexes as promising
agents in therapeutic strategies. Pd2Spm was subsequently
compared to Pd2BENSpm [with PA analogue N1,N11-bis
(ethyl)norspermine as ligand] and Pt2CPENSpm (with PA
analogue N1-cyclo-propylmethyl-N11-ethylnorspermine), as
well as with the free ligands BENSpm and CPENSpm) (10),
in relation to its action against both normal (MCF-10A) and
breast cancer (JIMT-1, L56BR-C1) cell lines (Table 1).
Comparison with normal cell lines is important to evaluate
the action of potential anti-cancer drugs on healthy tissue,
thus helping to identify effects related to possible side effects.
L56BR-C1 cells seemed to be significantly sensitive to Pd(II)
complexes, Pd2BENSpm inducing decreased PA levels and
FIGURE 1 | The coordination mechanism of Pt(II)-derived drug cDDP (cisplatin) with GSH and the consequent effect of GST-mediated drug resistance. Adapted
from reference (24).
October 2020 | Volume 10 | Article 590970
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increased spermidine/spermine N1-acetyltransferase (SSAT)
activity, whereas Pd2Spm induced lower glutathione (GSH)
levels (including in other cell lines studied). In addition,
Pd2BENSpm was found to elicit quite low toxicity toward
non-tumorigenic breast epithelial cells (IC50 = 34.2 µM vs. 7.3
and 0.4 µM for breast cancer cell lines), which is a promising
result supporting its possible use as an anticancer drug. A later
study (30) compared the same Pd2Spm and Pt2Spm complexes
using vibrational spectroscopy and unsupervised multivariate
analysis to identify changes in several cellular components. The
study identified changes in the levels of cellular lipids and
several nitrogen bases, as well as in DNA and protein structure
(conformational changes or proteolysis), as resulting from
exposure to the spermine-based complexes (Table 1). A more
recent study tested Pd2Spm on osteosarcoma cells and
osteoblasts, compared to cisplatin, using untargeted high-
resolution-magic-angle-spinning (HRMAS) nuclear magnetic
resonance (NMR) spectroscopy metabolomics (31). HRMAS
NMR enables the direct analysis of cells, thus providing
information simultaneously on polar and apolar components.
The Pd(II) complex alone was seen to affect the metabolome of
osteoblasts more extensively than that of cancer cells,
evidencing no indication of apoptosis, contrary to cisplatin
alone. However, when combined with doxorubicin and
methotrexate, the Pd(II) complex impacted more strongly on
cancer cells, in a similar way to the equivalent cisplatin-based
combination: apoptosis was induced and strong variations
were noted in lipids, choline compounds (cell membrane
metabolism), several amino acids, nucleotides, and compounds
related to antioxidative defense mechanisms (GSH and, possibly,
inositol and hypoxanthine). This showed that an untargeted
metabolomics strategy can unveil a large number of a priori
unknown responsive metabolites (and pathways). In this case,
this approach revealed that Pd2Spm can impact differently on cell
metabolism (of both cancer and healthy cells), depending on
whether it is administered alone or combined with other drugs.
In fact, the promise of such strategies in revealing hidden features
of cellular response to metal complexes with potential anti-cancer
action has been recently reviewed, giving particular emphasis to
NMR as the chosen analytical technique (32).
IN VIVO STUDIES OF THE METABOLIC
IMPACT OF Pd(II) COMPLEXES

In vivo studies are still few in number and the existing reports
tend to describe indirect features of altered metabolism, in
comparison with in vitro observations (21, 23, 29). Three
different Pd(II) complexes have been studied in vivo in murine
animal models (all in tandem with in vitro studies) (Table 1): [Pd
(sac)(terpy)](sac)•4H2O, [Pd(acac)2] and Pd2 [S(−)C

2, N-dmpa]2
(m-dppe)Cl2. Reports generally indicate that these Pd(II)
complexes induce a lesser toxic profile than cisplatin on
animals, as evaluated by animal weight, while performing more
effectively in terms of antitumor activity. However, to our
Frontiers in Oncology | www.frontiersin.org 6
knowledge, no further specific metabolic information has been
reported on either toxicity or anticancer activity of Pd(II)
complexes in an in vivo context, thus clearly unveiling a niche
of research which would be interesting to pursue.
DISCUSSION

This mini-review has shown that most of the existing knowledge
on the effects of Pd(II) complexes with potential anticancer activity
on cell lines has been based on the important understanding of the
mechanisms of induced cell death and antioxidant defense. The
majority of studies have involved the measurement of changes at
the gene and protein expression levels, usually adding
measurements of ATP, ROS, and glutathione as markers of
antioxidant mechanisms, and, in the specific cases of Pd(II)
complexes with biogenic polyamines, the cellular levels of those
compounds. Few reports have, so far, to the best of our knowledge,
followed more untargeted approaches, although a tendency is
noted for the use of omic sciences such as proteomics and
metabolomics, involving analytical techniques such as mass
spectrometry, vibrational spectroscopy and NMR spectroscopy.
We propose that possible future developments in the context of
metal complexes as anti-cancer agents, and particularly the
promising Pd(II) complexes explored so far, may include the
more extensive use of untargeted omic sciences, not only limited to
study cancer cells but also including healthy/normal cells, in order
to evaluate possible underlying metabolism deviations that may
give rise to negative side effects. Furthermore, the issue of drug
combination may follow naturally, based on studies that have
shown how different the impacts of single and combined
complexes may be. Finally, an increasing need of translational
studies between in vitro and in vivo scenarios becomes clear,
although the use of animal models is challenging and costly, with
the added challenges of determination of drug doses of relevance
and overall interpretation encompassing systemic response. In any
case, metabolic players are, undoubtedly, an important part of cell/
organism response and adaptation to therapeutic agents, their
further study potentially contributing valuably for a more
complete understanding of processes such as biotoxicity or
development of drug resistance.
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