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In silico methodologies have opened new avenues of research to understanding and

predicting drug resistance, a pressing health issue that keeps rising at alarming pace.

Sequence-based interpretation systems are routinely applied in clinical context in an

attempt to predict mutation-based drug resistance and thus aid the choice of the

most adequate antibiotic and antiviral therapy. An important limitation of approaches

based on genotypic data exclusively is that mutations are not considered in the

context of the three-dimensional (3D) structure of the target. Structure-based in silico

methodologies are inherently more suitable to interpreting and predicting the impact

of mutations on target-drug interactions, at the cost of higher computational and

time demands when compared with sequence-based approaches. Herein, we present

a fast, computationally inexpensive, sequence-to-structure-based approach to drug

resistance prediction, which makes use of 3D protein structures encoded by input target

sequences to draw binding-site comparisons with susceptible templates. Rather than

performing atom-by-atom comparisons between input target and template structures,

our workflow generates and compares Molecular Interaction Fields (MIFs) that map the

areas of energetically favorable interactions between several chemical probe types and

the target binding site. Quantitative, pairwise dissimilarity measurements between the

target and the template binding sites are thus produced. The method is particularly suited

to understanding changes to the 3D structure and the physicochemical environment

introduced by mutations into the target binding site. Furthermore, the workflow relies

exclusively on freeware, making it accessible to anyone. Using four datasets of known

HIV-1 protease sequences as a case-study, we show that our approach is capable of

correctly classifying resistant and susceptible sequences given as input. Guided by ROC

curve analyses, we fined-tuned a dissimilarity threshold of classification that results in

remarkable discriminatory performance (accuracy ≈ ROC AUC ≈ 0.99), illustrating the

high potential of sequence-to-structure-, MIF-based approaches in the context of drug
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resistance prediction. We discuss the complementarity of the proposed methodology to

existing prediction algorithms based on genotypic data. The present work represents a

new step toward a more comprehensive and structurally-informed interpretation of the

impact of genetic variability on the response to HIV-1 therapies.

Keywords: drug resistance prediction, Molecular Interaction Fields, sequence-to-structure algorithm, binding-site

dissimilarities, HIV-1 protease

INTRODUCTION

Drug resistance is one of the greatest threats of the twenty
first century. Fundamentally, the problem resides in the
development and spread of resistance-conferring mechanisms
among infectious pathogens such as viruses and other microbial
targets (McKeegan et al., 2002). Importantly, the selection of
random mutations stands out as one of the main mechanisms
of acquiring resistance, particularly relevant in viruses which
mutate at high frequencies. RNA viruses, for instance, have a
mutation rate estimated at 10−4 per nucleotide per replication,
while DNA viruses have a rate of 10−8 per nucleotide per
replication (Vere Hodge and Field, 2011; Mason et al., 2018).
The extreme variability and rapid mutational spectrum of viral
genomes, ongoing viral replication, and prolonged drug exposure
linked with the selection and widespread of new drug-resistant
strains is still a matter of great concern and importance,
particularly in immunocompromised populations (Strasfeld and
Chou, 2010; Mason et al., 2018). While a limited number of
antiviral drug classes are getting approved for human use, an
increasing resistance to some of the most effective available
antivirals for HIV/AIDS, herpes, influenza and hepatitis, is being
observed. Furthermore, the unpredictability of viral evolution
and drug resistance means that antiviral treatments remain costly
to the health care systems and are still associated with a significant
risk of mortality, particularly in low- and middle-income
countries (Irwin et al., 2016). Hence, a priori understanding and
prediction of resistance against drug targets is of paramount
importance toward developing more effective and longer lasting
treatment options and regimens.

Antiviral drug resistance has been extensively studied in the
rapidly mutating human immunodeficiency virus (HIV). HIV-1,
in particular, is one of the most studied virus and the increasingly
affordable and accessible genotypic data from clinical HIV-1
strains, together with corresponding data on strain susceptibility
or resistance toward several drugs, have sparked the development
of several genotypic interpretation systems for prediction of
phenotypic drug resistance and therapy response based on
genotype (Bonet, 2015). Said systems include (a) rule-based
algorithms, including the Agence Nationale de Recherche sur le
Sida (ANRS) (Brun-Vézinet et al., 2003), the Stanford HIV Drug
Resistance Database interface (HIVdb) (Tang et al., 2012), Rega
(Van Laethem et al., 2002), and HIV-GRADE (Obermeier et al.,
2012a), which heavily rely on the periodic update of mutation-
resistance profile lists, and on the knowledge of expert panels;
and (b) machine learning-based algorithms trained on large sets
of genotype–phenotype pairs to predict the in vitro resistance

to a specific drug, with renowned examples such as geno2pheno
(Beerenwinkel et al., 2003) and SHIVA (Riemenschneider et al.,
2016). These sequence-based methods are relatively fast and low
cost, justifying their routine use to support medical decision in
HIV pharmacotherapy (Vercauteren and Vandamme, 2006).

The most relevant computational predictors of antiviral drug
resistance currently available share the shortcoming of being
purely based on genotypic sequence data. By disregarding the
three-dimensional structural context and enzymatic function of
the mutated amino acid residues, these systems fail to capture
the links between genetic viral mutations and the corresponding
mutation-induced structural changes to the effector protein
viral machinery (Cao et al., 2005; Weber and Harrison, 2016;
Khalid and Sezerman, 2018). This means that such methods
are limited in their predictive power and interpretability
toward novel mutations and combinations of mutations that
go beyond the information accessible for training, such as
mutation patterns that are encountered in only a small number
of patients.

In contrast, structure-based methods hold potential to help
understanding and eventually predicting resistance mechanisms
for previously unknown data, shedding light on the elusive
link between novel mutations and drug resistance. This may be
justified by the fact that such methods can take advantage of
available structural information on protein-ligand complexes and
structural modeling of point mutations in the protein structure
(Hao et al., 2012). Reported examples of the use of structure-
based methods include the application of molecular docking
to predict resistance or susceptibility of HIV1-PR to different
inhibitors (Jenwitheesuk and Samudrala, 2005; Toor et al., 2011),
the use of molecular dynamics simulations to study the impact
of mutations on enzyme dynamics, stability and binding affinity
(Hou and Yu, 2007; Agniswamy et al., 2016; Sheik Amamuddy
et al., 2018), and the use of computational mutation scanning
protocols to extract insights on free energy and binding affinity
changes resulting from active site and non-active site mutations
(Hao et al., 2010). Even though these methods are constantly
adding new pieces to the puzzle and opening opportunities in
the understanding of drug resistance, they suffer from various
drawbacks, such as being time-consuming and offering limited
predictive accuracy. As a result of such limitations, the primary
challenge facing structure-based drug resistance prediction is to
achieve an acceptable balance between prediction accuracy and
computational efficiency to become both reliable and fast tools
to be used in clinic context (Hao et al., 2012). In fact, some of
the most recent reports describe the use of machine learning
strategies merging both sequence and structural data in attempt
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to achieve such balance (Masso and Vaisman, 2013; Yu et al.,
2014; Khalid and Sezerman, 2018).

In this contribution, we describe a fast, computationally
inexpensive, sequence-to-structure-based approach to the
prediction of drug resistance. The proposed workflow makes use
of an archetypal GRID-basedmethod (Goodford, 1985) involving
the generation and comparison of Molecular Interaction Fields
(MIFs). MIFs may be defined as the spatial variation of
interaction energies between a molecular target structure and
selected types of chemical probes laid out on a three-dimensional
(3D) grid (Cruciani, 2005). The broad range of applications
of MIFs extends from ligand-based methodologies, e.g., 3D
Quantitative Structure-Activity Relationships (3D-QSAR)
models, drug metabolism and pharmacokinetics (DMPK)
predictions and pharmacophore elucidation, all the way to
structure-based drug design, including binding site detection
and molecular docking (Artese et al., 2013). Within the context
of viral drug resistance, MIFs hold potential in capturing subtle,
mutation-induced, chemical perturbations within the binding
site of resistant or susceptible viral structures, thus representing
a promising approach to anticipating the impact of mutations on
the response to antiviral drugs with atomistic detail.

HIV-1 protease (HIV1-PR) is one of the most characterized
viral enzymes, with extensive structural, inhibitor, and mutation
data available (Weber and Agniswamy, 2009). As of late 2019, the
RCSB Protein Data Bank (RCSB PDB, 2000) ranks HIV-1 as the
virus holding the highest number of available structures (2,586),
majorly obtained through X-ray crystallography. Of these, the
PDB returns 662 entities with at least 90% identity to the HIV1-
PR subtype B consensus sequence from a BLAST sequence search
(Stanford University, 1998a). The search by consensus sequences
of other HIV-1 subtype B enzymes (Stanford University, 1998a)
returns 586 structures for reverse transcriptase and 190 for
integrase. With such amount of structural information available,
we have built the framework of the present work using HIV1-PR
as our first case-study. Commercially available HIV-1 protease
inhibitors (PIs) are competitive peptidomimetics with a core
structural scaffold that mimics the tetrahedral transition state of
HIV1-PR substrate. Although these drugs are chemically distinct,
their active conformations are superimposable, and generally
establish the same pharmacophoric interactions with their target
(Wlodawer and Erickson, 1993; King et al., 2004; Qiu and Liu,
2011; Nayak et al., 2019). Many mutations in HIV1-PR translate
into changes in the structure and binding site physicochemical
environment, thus affecting the affinity of PIs and representing
a hurdle to achieving long-term viral suppression (Irwin et al.,
2016; Pawar et al., 2019; Wensing et al., 2019). A quantitative
analysis of HIV1-PR drug-resistant mutation frequency, with
particular focus on the binding site, was performed using
public sequence datasets to support the potential of a MIF-
based approach to capturing mutation-induced active site
dissimilarities. From this perspective, the workflow proposed
here encompasses the use of a conservative structural modeling
step for the generation of a HIV1-PR structure from its
respective amino acid sequence, and a MIF-based structural
alignment and chemical dissimilarity detection step comparing
the input sequence-structure pair with a carefully selected naïve,

susceptible template sequence-structure pair. We demonstrate
that the quantification of such dissimilarity, depicting the extent
of structural, physicochemical and pharmacophoric alterations
introduced by mutations, allows for an accurate prediction of
HIV1-PR’s resistance to PIs.

Compared with previous approaches reported in the
literature, and to the best of our knowledge, this work stands
out as a first implementation of a fast, sequence-to-structure-
based algorithm capable of discriminating susceptible and
resistant HIV1-PR sequences. Considering that the problem of
mutation-induced resistance cuts across virtually all infectious
diseases, we believe the approach reported herein may be
extended to a wide range of microbial targets besides HIV-
1, thus helping rationalize and personalize the therapeutic
decision-making process.

MATERIALS AND METHODS

The availability of a public and curated database such as HIVDB
(Stanford University, 1998c; Rhee et al., 2003) allows access to
HIV1-PR sequences with known levels of resistance, and thus
to establish datasets for the development of new methodologies
to predict HIV1-PR resistance to protease inhibitors (PIs). This
section describes the materials and methods employed in (1)
the preparation of sequence datasets with various levels of
resistance to PIs; (2) frequency analysis of major and minor
mutations in the sequence datasets in (1); (3) the structural
modeling of the reference structure used as template for
subsequent modeling of HIV1-PR structures corresponding to
each sequence in the datasets; (4) the core components of the
proposed algorithm, including the calculation and comparison
of pairwise Molecular Interaction Field points between the
resulting structural models and the selected naïve template
structure; and (5) the performance metrics used to test and
evaluate the predictive power of the developed structure-based
drug-resistance classification algorithm. A general workflow
illustrating (4) and (5) is sketched (draw.io, 2005) in Figure 1

and the complete scriptHIV1predict.sh for running the sequences
is available at GitHub (Alves et al., 2019b). Calculations
were run on a 64-bit CentOS 6 Linux server with an Intel
Xeon CPU (E5620) at 2.40 GHz (further information as
Supplementary Table S1).

Datasets of Resistant and Susceptible
Sequences
A set of genotype-phenotype correlated HIV1-PR sequences
was retrieved from HIVDB, version 8.7 (Stanford University,
1998b,c), and filtered by drug class for PIs. The considered PIs
include darunavir, fosamprenavir, atazanavir, indinavir, lopinavir,
nelfinavir, saquinavir, and tipranavir. Analyzing the subtype B
HIV1-PR sequence of each isolate, i.e., a viral sample obtained
from an infected individual, and considering positions with a
mixture of amino acids, all possible mutation patterns were
written to the FASTA format using a script written in-house
(Alves et al., 2018f).
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FIGURE 1 | General description of the workflow underlying the proposed sequence-to-structure-based drug resistance classifier, holding platform applications to

multiple microbial targets. The depicted algorithm starts off with the sequential reading of an amino acid sequence in FASTA format, followed by identification of the

present mutations by comparison with the consensus sequence, insertion of the identified mutations in the naïve template, and processing of the structural models for

alignment and comparison. Upon structural alignment of the target or database (predicted) structure with the naïve template structure, six types of MIF probe points

are computed for the former structure and superimposed with pre-calculated MIF probe points of the latter structure. Calculation of MIF dissimilarities by means of a

Tanimoto coefficient proceeds. The bottom panel represents the process of performance evaluation of the proposed classifier based on its application to a large

dataset of sequence-structure pairs generated for HIV1-PR sequences retrieved from HIVDB. Included are performance metrics such as accuracy, Matthews

Correlation Coefficient (MCC), and the area under the receiver-operating-characteristic curve (ROC AUC).

The genotype-phenotype correlation results from the in vitro
PhenoSense assay (Zhang et al., 2005), which measures the
levels of resistance to a PI compared to the wild-type sequence.
Following the categorization of susceptibility to PIs described
by Rhee et al. (2006), the collected sequences were classified
as follows:

• Susceptible. Sequences holding <3.0-fold resistance to all
PIs in the dataset were considered susceptible (N =
7,768) [Susceptible].

• Resistant. Sequences holdingmore than 20.0-, or 15.0-, or 10.0-
fold resistance to all PIs, resulting in three resistant subgroups
of increasing degree of resistance: respectively, [Res20] (N =
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60) [Res20], [Res15] (N = 83) [Res15], which encompasses
[Res20] plus 23 sequences holding between 15- and 20-fold
resistance, and [Res15] (N = 873) [Res10], which encompasses
[Res20] and [Res15] plus 790 additional sequences holding
between 15- and 10-fold resistance.

Counting of Mutations in HIV1-PR
The quantification of major and minor mutations (Weber and
Agniswamy, 2009) in all datasets was carried out using scripts
written in-house (Alves et al., 2018a,b, 2019a) that sequentially
read the listing of mutations for each sequence, extract either the
major or minor mutations, and count them for each sequence.
Said script was applied to quantifymajor andminormutations in
the HIV1-PR binding site.

Preparation of HIV1-PR Structures
Using PDB’s BLAST utility (Altschul et al., 1990) to guide the
choice of a template for homology modeling, a sequence search,
with a 10.0 E-value cut-off and at least 50% identity to the HIV1-
PR subtype B consensus (Stanford University, 1998a), resulted in
784 entities available. With a more refined query of at least 95%
identity to the HIV1-PR subtype B consensus, there were still 376
structures available to work with.

Out of these 376 structures, PDB entry 1NH0 for HIV1-PR
was chosen as template structure for homology modeling by
using PDB’s BLAST utility (Altschul et al., 1990). It returned an
E-value of 7.20281E-51, but since the intended work was heavily
based on structure, our choice was also based on having the best
resolution possible. The structure of 1NH0 holds 99% sequence
identity (98/99) with the consensus B amino acid sequence of
protease, HXB2 (henceforth referred to as consensus sequence),
with one single mutation at position 37 (S37N), has 100%
coverage of the sequence, and has been determined at 1.03 Å X-
ray resolution. Importantly, this HIV1-PR sequence is known to
be susceptible to all PIs.

In this work, Modeler version 9.19 (Šali and Blundell, 1993;
Šali, 2019a) was used for predictive modeling of all HIV1-
PR structures from their respective sequences. The listing of
mutations present in each sequence was automated by scripting
(Alves et al., 2018c) and followed by sequentially running the
mutate_model.py script provided with Modeler (Šali, 2019b)
to obtain the correct pattern of mutations and outputting the
respective structural model. The procedure implemented in
mutate_model.py performs local optimization of the mutated
residues region and ensures that the obtained structural models
are comparable to the template structure. The PDB structure
itself (1NH0) was subjected to mutate_model.py in order to
reverse the mutation present in the template with 99% identity
(Asn37, on the outside of the protease) and keep on the consensus
sequence, remove HETATM entries and alt-locs—thus yielding
the reference template structure. This reference structure was
used as template for the generation of the respective structural
model of each input FASTA sequence present in the datasets.

All generated structural models were protonated using
Reduce, version 3.23 (Word et al., 1999). The reference structure
was centered to the origin of the axes of the cartesian coordinate
system using VMD, version 1.9.3 (Humphrey et al., 1996).

Structural alignment of all query models onto the centered
reference structure was performed with LovoAlign, version
16.342 (Martínez et al., 2007).

Workflow for Detection and Scoring of
Molecular Interaction Field Dissimilarities
The MIF module of the software package IsoMIF, version
dated March 2015 (Chartier and Najmanovich, 2015), was used
to generate Molecular Interaction Fields (MIFs) within the
HIV1-PR binding sites. MIF-based alignment and calculation
of pairwise MIF dissimilarities between reference and dataset
binding sites proceeded using the IsoMIF module of the same
package. The IsoMIF setup comprises three sequential modules:
GetCleft, MIF, and IsoMIF.

Cavity Detection (GetCleft Module)
GetCleft (Gaudreault et al., 2015) was employed to predict
cavities in the structure of the reference HIV1-PR (Alves et al.,
2018e). This geometry-based method detects cavities by insertion
of spheres of radius r between the non-hydrogen protein atoms,
reducing such radius if they intersect with any neighboring atoms
(clefts defined by the union of overlapping spheres). First, the
top five largest cavities were searched at the same time, with
a minimum and maximum sphere radius of 1.5 and 4.0 Å,
respectively. The largest predicted cavity was visually confirmed
to be completely enclosed within the HIV1-PR binding site, using
VMD, version 1.9.3 (Humphrey et al., 1996). Next, such cavity
volume represented by spheres was used to define the location of
MIF interaction vectors to be calculated for the reference and all
3D HIV1-PR structural models.

Generation of Molecular Interaction Field (MIF) Probe

Points (MIF Module)
The MIF module of IsoMIF was used to compute molecular
interaction fields (MIFs) for six different chemical probe
types (Figure 2): hydrophobic, aromatic, H-bond donor, H-
bond acceptor, positive charge and negative charge. The
pharmacophoric features shared by PIs (Wlodawer and Erickson,
1993; Nayak et al., 2019) highlight the importance of a conserved
physicochemical environment in the binding site. Alterations of
this environment are detected with the MIF probes (circled in
Figures 2A,B) which allow for a quantification of changes caused
by the presence of mutations. In this work, a grid resolution of
1.5 Å was defined to calculate the MIFs on the cleft covering
the volume of the binding site. Such resolution was selected
upon testing to achieve an adequate balance between speed and
accuracy of IsoMIF pairwise field dissimilarity calculations.

Alignment of MIF Probe Points and Calculation of

Dissimilarities (IsoMIF Module)
Field similarities were computed using the IsoMIF module,
which employs a clique-based graph matching approach based
on the Bron-Kerbosch algorithm (Bron and Kerbosch, 1973) to
perform functional alignments between the probe points under
comparison. A grid spacing of 1.5 Å, a geometric distance
threshold of 1.0 Å and a maximum of 100 cliques were used
as parameters for the calculation of similarities between the
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FIGURE 2 | A three-dimensional ribbon depiction of the quaternary structure

HIV1-PR dimeric unit, including the six different types of MIF probe points

calculated on the enzyme’s binding site. (A) Structure and probe points of the

reference naïve template. (B) Illustration of the structure and probe points of a

mutated model resulting from a sequence holding over 20-fold resistance for

PIs. (C) An exemplary output of IsoMIF, highlighting a MIF-based alignment

and comparison of both structures: (A,B). The red circles in (A,B) denote areas

where the difference in probe points is most visible. The arrows in (C) point to

semi-transparent probes, representing the probes which are not shared

between the two structures. Legend for the six (6) probe types legend:

hydrophobic in light blue, aromatic in orange, H-bond donor in dark blue and

acceptor in red, positive in green and negative charge in purple.

binding site of reference and structural models of HIV1-PR. Such
similarities were then quantified by the Tanimoto coefficient (Tc),
calculated as in Equation 1:

Tc =
NC

NR+NQ−NC
(1)

where Nc is the number of common probe points to the two
MIF maps under comparison; Nr and Nq represent the number
of probe points present in the reference and query structure,
respectively (Figure 2C) (Chartier and Najmanovich, 2015). The
measurement of dissimilarity (Equation 2) between binding
sites is justified by the fact that the focus of this work is set
on the discrimination of resistant structures, when compared
with a susceptible reference. Therefore, the chosen metric was
dissimilarity rather than similarity:

dissimilarity coefficient = 1.0−Tc (2)

Analysis of Mutation Patterns Across
Thousands of HIV1-PR Sequences
Analyses of the number and position of mutations were
performed on HIV1-PR sequences in order to obtain

information supporting and justifying the development of
a sequence-to-structure-, MIF-based approach to antiviral
resistance classification and prediction.

R version 3.4.3 (R Core Team, 2018) was used to conduct the
analysis and generating the associated graphical representations.
The R packages used in this work were ggplot2 (Wickham,
2009), gplots (Warnes et al., 2019), and ROCit (Khan and
Brandenburger, 2019).

“Outlier” Detection on Binding-Site MIF

Dissimilarities
Tukey’s method (Tukey, 1949; Hoaglin, 2003), also referred to
as Tukey’s fences method, was used to detect outliers in the
binding-site MIF dissimilarities results. Tukey’s method is a
statistical approach used to determine whether a value should
be considered an outlier or not: the method relies on the
interquartile range (IQR) measurement, which is calculated by
the difference between the first quartile (Q1) and the third
quartile (Q3) (see Equation 3). Q1 stands for the value in the
dataset that holds 25% of the values below it and Q3 is the value
in the dataset that holds 25% of the values above it.

IQR= Q3−Q1 (3)

According to Tukey’s method, a value is considered an outlier if
it is observed in the range described in Equation 4:

outlier<Q1−k×IQR∨outlier>Q3+k×IQR

outlier<LowerBound∨outlier>UpperBound (4)

where k= 1.5 indicates an outlier and k= 3 indicates an extreme
outlier. For the purpose of the present work, only extreme outliers
were discarded.

Evaluation of the Algorithm’s Predictive Performance
The performance of our method at discriminating resistant from
susceptible models was assessed by calculation of several metrics
typically employed in the fields of predictive modeling and
machine learning, particularly in cases where binary classification
occurs. These included the Receiver Operating Characteristic
(ROC) and the respective Area Under the Curve (ROC AUC).
The ROC curve is a graphical representation of the True Positive
Rate (TPR) as a function of the True Negative Rate (TNR), i.e.,
at various cut-off settings. The TPR is also known as Sensitivity
(Equation 5), which measures the proportion of positive cases.
On the other hand, the TNR is also calculated as 1—Specificity
(Equation 6) and measures the proportion of true negative cases.

Sensitivity =
TP

TP+FN
(5)

Specificity =
TN

TN+FP
(6)

where TP represents the number of correctly identified resistant
structures (true positives), TN, the number of correctly identified
susceptible structures (true negatives), FP, the number of
susceptible incorrectly predicted as resistant (false positives), and
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FN the number of resistant incorrectly predicted as susceptible
(false negatives).

Additional performance metrics included Accuracy (Equation
7) and Matthews Correlation Coefficient (MCC; see Equation 8)
(Matthews, 1975; Florkowski, 2008; Powers, 2011).

Accuracy=
TP+TN

TP+FP+TN+FN
(7)

MCC=
TP×TN−FP×FN

√
(TP+FP) (TP+FN) (TN+FP) (TN+FN)

(8)

The dissimilarity threshold used for classification in resistant
or susceptible sequence-structure pairs was derived from ROC
curves, corresponding to the highest Youden’s index (Youden,
1950), J, calculated as in Equation 9:

J = Sensitivity+Specificity−1 (9)

This index defines the maximum potential effectiveness of a
classifier. It can be determined for all points of an ROC curve,
although its maximum value represents the classifier optimal
differentiating ability cut-point when equal weight is given to
Sensitivity and Specificity (Ruopp et al., 2008).

RESULTS AND DISCUSSION

In this work, we describe a sequence-to-structure-, MIF-based
method to assess binding-site dissimilarities across sequence-
structure pairs, with the aim of predicting antiviral resistance—
and using HIV1-PR as a case-study. It is generally accepted
that the majority of resistance-conferring mutations occur in the
binding site regions of viral enzymes (Weber and Agniswamy,
2009; Weber and Harrison, 2016). In order to further support
the rationale and underlying assumptions of the proposed
approach, we performed analysis of major and minor mutations
of HIV1-PR binding site residues focusing on sequences known
to be fully resistant and fully susceptible. For the sake of
comparison, the quantification of mutations was also extended
to major and minor mutations occurring in the remainder
residues, i.e., residues not comprising the binding site region
of HIV1-PR.

Counting of PI-Resistant Mutations in
HIV1-PR Sequences
Resistance to PIs develops upon accumulation of mutations
that increasingly impact the structure of HIV1-PR, resulting in
highly-resistant variants of HIV-1. As mentioned by Weber and
Agniswamy (2009), PI resistance is linked to the occurrence
of primary (major) mutations, commonly associated with
the active site where HIV PIs typically bind, resulting from
structural changes that disrupt the van derWaals contacts and/or
hydrogen bonding patterns in the inhibitor-protein interaction
and promote direct steric hindrance, by altering the pocket
volume or its physicochemical environment. Secondary (minor)
mutations occur in addition to major mutations, acting like
accessory mutations that compensate the flaws produced by
major mutations and enhancing the resistance level (synergistic

effect). Being less obvious, they seem to affect HIV1-PR catalysis,
dimer stability, inhibitor binding kinetics, and/or active site re-
shaping through long-range structural perturbations (Weber and
Agniswamy, 2009; Weber and Harrison, 2016).

Our workflow follows a sequence-to-structure approach in
attempt to capture changes to the structural and physicochemical
determinants of HIV1-PR’s binding site upon mutation, based on
the assumption that these changes represent the main driver of
antiviral resistance. To support this assumption, quantification of
mutations known to contribute to PI resistance was carried out
across the retrieved datasets. The version 8.7 HIVDB (Stanford
University, 1998b,c,d) listed the following PI-resistant mutations
for HIV1-PR:

• Major mutations: D30N, V32I, L33F, M46IL, I47VA,
G48VM, I50VL, I54VTALM, L76V, V82AFTSL, I84V, N88SD,
and L90M;

• Minor mutations: L10FIVRY, V11IL, K20RIMTV, L23I,
L24IFM,M36I, K43T,M46V, G48ASTQL, F53LY, I54ST, Q58E,
A71VTIL, G73STCADV, T74PS, V82MC, N83DS, I84AC,
I85V, N88TG, and L89VT.

Even though not all sequences exhibit the same degree of
resistance to each PI, we selected these two groups of major and
minor PI-resistant mutations and quantitatively characterized
their presence in our subsets. Since all HIV1-PR sequences in
our dataset were retrieved from the same unique source, HIVDB
(Stanford University, 1998c; Rhee et al., 2003), the percentage
of sequences holding PI-resistant mutations distributed across
the entire HIV1-PR sequence, as well as the percentage of
PI-resistant mutations manifesting in residues comprising the
binding site of HIV1-PR, were determined and compared among
all four subsets: [Susceptible], [Res10], [Res20], and [Resistant∗]–
as represented in Figure 3.

Figures 3A,B shows that, as expected, all HIV1-PR sequences
belonging to the Susceptible subset hold much less PIs-resistant
mutations than those belonging to the Resistant subsets. The
majority (98.24%) of susceptible HIV1-PR sequences does not
hold any major mutations, while 1.74% contain one major
mutation, and only one sequence (0.01%) comprises three
major mutations. The presence of major mutations across drug-
resistant sequences is higher, ranging from three to seven
major mutations, implying that among these subsets the major
mutations appear in the shape of mutation patterns rather
than individual mutations. The presence of minor mutations
(Figure 3B) follows a similar trend to that witnessed for major
mutations, with susceptible sequences denoting a lower number
when compared to their resistant counterparts. Approximately
98.25% of the susceptible sequences present two or less minor
mutations, with about half of susceptible HIV1-PR sequences
(53.3 %) displaying nominor mutations.

When comparing susceptible vs. drug-resistant sequences,
it can be observed that resistance against PIs is linked to
the presence of major mutations, as implied above (Weber
and Harrison, 2016). However, within the subsets of drug-
resistant sequences, a direct relation between the number of
major mutations and the increase of resistance is not observed.
Drug-resistant sequences show a higher frequency of minor

Frontiers in Chemistry | www.frontiersin.org 7 April 2020 | Volume 8 | Article 243

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Alves et al. MIF-Based Drug Resistance Prediction

FIGURE 3 | Histograms representing the percentage of PI-resistant mutations in the datasets showing increasing number of PI-resistant mutations in the datasets

retrieved from HIVDB. (A) Percentage of major mutations in the whole HIV1-PR. (B) Percentage of minor mutations in the whole HIV1-PR. (C) Percentage of major

mutations in the HIV1-PR binding site. (D) Percentage of minor mutations in the HIV1-PR binding site. Represented datasets: [Susceptible] (green); [Res10] (yellow);

[Res15] (orange); [Res20] (dark orange).

mutations, ranging from three to 18, with a visual apparent
difference between sequences with lower resistance ([Res10]) and
the more resistant sequences ([Res15] and [Res20]). In [Res10],
98.2% of the sequences have up to seven minor mutations, while
78.3% in [Res15] and 93.3% [Res20] have more than eight minor
mutations. This trend in the profile of mutation distribution
among the resistant sequences is in line with minor mutations
acting as accessory mutations, appearing as patterns and not
as individual mutations, and showing a similar trait as the one
observed for the distribution ofmajor mutations.

Analysis ofmajormutations located in HIV1-PR’s binding site
residues (Figure 3C), corresponding to sequence positions 30,
32, 47, 48, 50, 82, and 84, shows that 99.78% of the susceptible

sequences do not display major mutations, while the remainder
show only one major mutation. In contrast, less than 1% of
resistant sequences lackmajormutations in the drug binding site.
Interestingly, the eight sequences representing this small fraction
(0.91%) belong to the lower (10-fold) resistance subset ([Res10]).
All remaining drug-resistant sequences hold from one to three
major mutations in the enzyme’s binding site.

Counting of mutations in binding site residues of HIV1-PR
exposes a systematic presence of major mutations in resistant
HIV1-PR sequences, while also highlighting the absence of such
mutations on 99.78% of their susceptible counterparts. This
contrasting trait observed between the binding site region of
susceptible and resistant HIV1-PR supports the development
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of a structure-based drug-resistance classifier focusing on the
detection and quantification of binding site dissimilarities.

Regarding the distribution ofminor mutations across binding
site residues, as represented in Figure 3D, mutations localized in
sequence positions 23, 48, 82, and 84 were quantified among both
HIV1-PR susceptible and drug-resistant sequences, revealing
that the great majority does not presentminor mutations in their
respective binding sites. Only a small percentage of susceptible
(0.01%) and resistant sequences (0.91%) show minor mutations
in this region. It should be noted that the small subset of resistant
sequences holding a minor mutation in their binding site region
correspond to sequences that do not display major mutations in
the active site.

These results show that the binding site minor mutations
are uncommon on the datasets of HIV1-PR sequences—be they
resistant or susceptible. Although such mutations appear to be
important to increase the enzyme resistance’s by stabilizing the
mutated protein structure, they seem to produce limited direct
effect on the enzyme’s binding site, where they are mostly absent.
Thus, these results seem to be in agreement with our motivation
to explore a quantitative detection of binding-site dissimilarities
to predict HIV1-PR resistance to PIs, as themajormutations play
the main role on altering the binding site conformation, volume
and/or physicochemical environment.

The quantification of mutations in the datasets retrieved from
HIVDB yielded distinct results between the susceptible and drug-
resistant sequences.Most of the resistant sequences show a higher
frequency of major mutations when compared to the susceptible
set. All resistant sequences present at least one mutation in
the binding site region, contrasting with 98% of susceptible
sequences that do not present anymajormutations in that site. It
is worth noticing that half of themajormutations are found in the
binding site of resistant sequences. However, when considering
the total number of mutations, the increase in the number
of mutations per sequence seems to hold a reflection on the
increase in the resistance of the observed sequence. Furthermore,
binding sitemajormutations are more likely to cause changes on
the HIV1-PR binding cleft physicochemical environment when
compared with susceptible enzymes which do not have such type
of mutations.

A Fast, Sequence-to-Structure-,
MIF-Based Antiviral Drug Resistance
Classifier
The quantification of resistance-conferring mutations in HIV1-
PR sequences, using the datasets retrieved from HIVDB,
prompted us to further develop a discriminative resistance-
classifier approach focused on analysis and comparison of
binding-site MIFs. In practice, the proposed workflow involves
performing structural modeling of input HIV1-PR sequences
using the same template (i.e., 1NH0) and a script (Alves et al.,
2018d) that calls mutate_model.py (Šali, 2019b) to conduct
local energy minimization around the mutated residues of the
HIV1-PR structure. Once the generation of structure models is
concluded, the modules belonging to the IsoMIF package are
deployed for cavity detection (GetCleft module), calculation of

TABLE 1 | Tukey’s method results to determine outliers.

Susceptible Res10 Res15 Res20

Q1 0.0057 0.1075 0.1173 0.0649

Q3 0.0225 0.2041 0.2041 0.2171

IQR 0.0168 0.0966 0.0868 0.1522

Lower Bound −0.0447* −0.1823* −0.1431* −0.3917*

Upper Bound 0.0729 0.4939 0.4645 0.6737

Quartile 1 (Q1), Quartile 3 (Q3), Inter Quartile Range (IQR), Upper Bound and Lower Bound

values for susceptible sequences dissimilarity coefficient distribution. Upper and Lower

Bound were calculated as described in Equation 4, with k = 3. Values above the upper

bound and below the lower bound were considered outliers. *Negative values are not

realistic lower bounds; the minimum value must be 0.

MIFs within the selected cavity volume (MIF module), field
alignment and quantification of dissimilarities between MIF
points computed for the dataset HIV1-PR structural models and
those computed for a high quality [Susceptible] reference HIV1-
PR structure (1NH0) and, finally, scoring bymeans of a Tanimoto
coefficient (IsoMIF module). The average running time of the
workflow is ≈ 77 s per sequence (Supplementary Figure S1 and
Supplementary Datasheet S1), considering that this value varies
with the amount of mutations present in the HIV1-PR.

Analysis of MIF Dissimilarities in HIV1-PR
Binding Site
Figure 4 discloses the frequency of HIV1-PR sequence-structure
pairs scattered across a spectrum of Tanimoto coefficient (Tc)
values (varying from 0.00 to 1.00), in turn reflecting binding-
site MIF dissimilarities in the subset of susceptible sequences
(containing 7,768 sequence-structure pairs) against the selected
naïve, template structure. Analyzing this profile of binding
site dissimilarities, we observe that there are substantially
more susceptible sequences concentrated on lower end of the
dissimilarity spectrum. However, a small number of sequences (N
= 81) present higher values, more visibly around the Tc value of
0.35. Since susceptible HIV1-PR sequence-structure pairs display
a lower frequency of mutations in the binding site residues, we
assume that Tc values deviating from the normal trend may
highlight inconsistent data, errors and/or any form of outliers
worthy of further investigation.

In order to verify if the higher Tc values could reflect true
outliers, Tukey’s outlier detectionmethod was used (Tukey, 1949;
Hoaglin, 2003).Table 1 shows the result of applying the statistical
Tukey method to the MIF dissimilarity Tc values obtained
for the dataset of susceptible sequence-structure pairs, and to
the [Res10], [Res15], and [Res20] subsets. For each of the four
groups, Figure 5 shows boxplots summarizing the distribution
of the MIF dissimilarity Tc values. On the susceptible subset,
the higher Tc values were identified as significantly different
from the central tendency (values were below the determined
lower bound; see Equation 4 in Methods). Looking at the
dataset of resistant sequence-structure pairs, extreme outliers
(as described in the Methods section) were only found in
the [Res10] subset. These outliers were found to be associated
with a software limitation wherein the same reference grid
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FIGURE 4 | Frequency of susceptible sequences distributed across a range of HIV1-PR binding site 3D dissimilarity coefficients. The maximum value reported

is ∼0.667.

FIGURE 5 | Boxplot representation of dissimilarity coefficients obtained for the HIVDB datasets. The maximum value reported is ∼0.667. Outliers are marked in red.

Represented datasets: [Susceptible] (green); [Res10] (yellow); [Res15] (orange); [Res20] (dark orange).

(generated by GetCleft), covering the entire binding site volume,
was not homogeneous across all HIV1-PR structure models.
In fact, a wider grid was calculated for some structures when
compared to the reference HIV1-PR structure, which resulted
on a different number of grid points, consequently leading to
an increase of dissimilarities. Thus, these sequence-structure pairs

were not considered relevant for performance evaluations, as
they could introduce performance bias. The Tukey’s boxplot
analysis thus allowed the identification and removal of extreme
outliers in the [Susceptible] and [Res10] subsets, resulting in
6269 and 680 HIV1-PR structural models, respectively. The
[Res15] and [Res20] subsets remained unchanged with 83 and 60
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FIGURE 6 | Percentage of sequences distributed across a range of HIV1-PR binding site 3D dissimilarity coefficients. Maximum value reported is ∼0.463.

Represented datasets: [Susceptible] (green); [Res10] (yellow); [Res15] (orange); [Res20] (dark orange).

HIV1-PR structural models, respectively. The resulting dataset
has been used for further statistical analysis and as test set for
performance calculations.

Figure 6 shows a profile of the HIV1-PR binding-site
MIF dissimilarities across the susceptible dataset withdrawn
of extreme outliers ([Susceptible∗]) and the stratified resistant
data set (encompassing [Res10], [Res15], and [Res20]) also
withdrawn of extreme outliers ([Susceptible∗]). As seen,
susceptible HIV1-PR structures tend to present very low to null
binding-site MIF dissimilarities compared to the ([Susceptible])
structure modeled from the consensus sequence. In fact,
93.91% of the sequence-structure pairs in the susceptible group
show dissimilarities lower than 0.02, indicating a considerable
degree of conservation within the binding site. Overall, these
results show a segregation between susceptible and resistant
sequence-structure pairs, when analyzing their binding-site MIF
dissimilarities against a susceptible reference sequence-structure
pair, suggesting that our method is able to quantitatively capture
differences among susceptible and resistant HIV1-PR structures.

Evaluation of the Classification
Performance of Our Drug Resistance
Classifier
At the current stage of development, the proposed workflow only
performs binary classification, meaning that each input sequence
gets classified as either susceptible or resistant. Sequence data are
used exclusively for the generation of the structural models on
which dissimilarities are analyzed, but not to aid the classification
itself. It is worth highlighting that our workflow relies on the
detection of structural and chemical changes in viral enzymes
that dictate susceptibility or resistance to drugs—rather than

on the training of predictive models using sequences with
known phenotypic response to drugs. Therefore, instead of
using performance evaluation methods, such as cross-validation,
that assess the impact of hiding a portion of training data
(observations) on the accuracy of the resulting predictions, we
resorted to the calculation of metrics of overall performance of
our binary classifier.

The Receiver Operating Characteristic (ROC) curve was used
to assess the overall discriminatory performance of our method.
The score assigned to each dataset entry (here used for testing),
corresponding to binding-site dissimilarities between each input
sequence-structure pair and the template consensus sequence-
structure, were thus plotted as a ROC curve. ROC curves
are conceptually simple plots that depicts a binary classifier’s
discriminative capability as its discrimination threshold is varied.
Such graphical plots are created by plotting the method’s true
positive rate (sensitivity) against its false positive rate (1-
specificity), at varying thresholds. The area under the ROC curve
(ROC AUC) value is a single scalar value varying between 0 and
1, providing a measure of the overall discriminatory power of
the method. A ROC AUC value of 1 (or 100%) entails a perfect
discrimination, a value of 0.5 represents random classification,
while values above 0.8 are commonly accepted as indicators
of an acceptable discriminatory performance (Fawcett, 2006;
Pines and Everett, 2008; Powers, 2011; Tape). Furthermore,
several performance measures, such as the Sensitivity (Equation
5), Specificity (Equation 6), Accuracy (Equation 7), and MCC
(Equation 8) were also determined.

Figure 7 represents the obtained ROC curves and
their respective ROC AUC values for the susceptible and
resistant HIV1-PR binding-site MIF dissimilarities. ROC
AUC values for [Res10], [Res15], and [Res20] subsets were
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FIGURE 7 | Predictive performance of the binary classification (resistant vs.

susceptible) produced by the algorithm/workflow presented herein, quantified

by means of Receiver Operating Characteristic (ROC) curves and their

respective Area Under the Curve (ROC AUC). The colors represent the ROC

curves as follows: yellow for HIV1-PR sequences associated with 10-fold

resistance; orange for HIV1-PR sequences associated with 15-fold resistance;

and dark orange for HIV1-PR sequences associated with 20-fold resistance.

found to be similarly very high-−0.9999, 0.9990, and 0.9987,
respectively – suggesting that the method holds significant
discriminatory power to distinguishing susceptible from fully
resistant HIV1-PR sequence-structure pairs—based on their
binding-site MIF dissimilarities to the [Susceptible] reference
sequence-structure pair.

We have also used ROC curve analysis to guide the definition
of an optimal discrimination threshold based on Youden’s
index (Equation 9) (Youden, 1950). The optimal threshold
observed corresponded to a 0.06 dissimilarity Tc for all [Res10],
[Res15], and [Res20] subsets. Table 2 presents the values of each
performance metric obtained for each subset, when applying a
classification threshold of 0.06. At this classification cut-off, the
specificities and sensitivities were found to be 0.997 and 0.994
for the [Res10] subset, 0.997 and 0.952 for the [Res15] subset and
0.997 and 0.933 for the [Res20] subset, respectively. In all cases,
there is strong discriminative performance toward susceptibility
or resistance—as it can be appreciated by the high accuracy values
highlighted inTable 2. Nevertheless, the best results are found for
the [Res10] subset, with an accuracy of about 0.997. On the other
hand, the subsets with increasing degree of resistance, [Res15] and
[Res20], show only slightly worst results concerning Sensitivity
determined at a threshold of 0.06.

The overall predictive performance of our method was also
evaluated by the Matthews correlation coefficient (MCC) on the
three resistant subsets, which summarizes the sensitivity and the
specificity of a classification method within a unique value, also
varying between 0 and 1. A higher value of MCC indicates that

TABLE 2 | Performance metrics obtained using a dissimilarity threshold of 0.0603.

Dissimilarity Threshold = 0.0603 Res10 Res15 Res20

ROC AUC 0.99988 0.99904 0.99867

Sensitivity 0.994118 0. 951807 0. 933333

Specificity 0.992184 0. 992184 0. 992184

Accuracy 0.99669 0.996379 0.996366

MCC 0.98151 0.874199 0.833085

the method has a better discriminatory performance. For the
[Res10], [Res15], and [Res20] groups, MCC values of 0.982, 0.874,
and 0.833 were, respectively, obtained. Still, such performance
metrics seems to highlight the clear potential of our MIF-based
method to predict drug resistance, especially within the most
populated [Res10] group (MCC value close to 1).

Positioning and Differentiation vs.
Sequence-Based, PI-Resistance Prediction
Tools
More than a decade ago, Lengauer and Sing pointed out the
lack of commonly agreed benchmark (or test) datasets to assess
and compare the performance of different prediction methods
(Lengauer and Sing, 2006). The amount of available information
on matched HIV genotype–resistance phenotype has increased
significantly over recent years, with HIVDB embodying an
important role as a centralized data repository (Rhee et al.,
2003). As expected, sequence-based methods can make use of as
much information as available to train their predictions, resulting
in that they become proficient at “predicting” the phenotypic
response for the sequences they have been trained on. Only in
a few cases do we witness a concern in drawing prospective
validation on unseen sequence sets and in making those test
sets available to the community (Tarasova et al., 2018). This
hinders the design of fair comparisons with methods that do
not make direct use of sequence data for training, such as the
one we propose here. On the other hand, over the past years
genotypic-based methods have reached a level of sophistication
that allows them to perform resistance predictions to specific
drugs, exclusively based on sequence data matched to phenotypic
response, while, at its current stage of development, our MIF-
based method can only perform binary classification (susceptible
or resistant) of input sequences.

Taken together, these aspects render the comparison of our
algorithm with existing, sequence-trained, multi-classification
predictors non-trivial to say the least. Further developments
of our methodology, aiming at a more exhaustive exploration
of specific MIF areas around the mutated binding sites, may
enable stratification of classification into multiple drug classes
by detecting the determinants of resistance to specific PIs.
For the time being, we center the analysis of differentiation
of our method on the answer to a recurrent question in the
mind virologists or physicians who prescribe HIV-1 medications:
would it be possible to accurately predict whether a new, unknown
HIV-1 strain will be susceptible to known PIs?
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TABLE 3 | Performance metrics for exemplary sequence-based prediction tools tested against the datasets compiled in this work.

PI-resistance predictor Sensitivity(A) Sensitivity(B) Specificity FN(A)
‡ FN(B)

‡ FP‡

HIV-GRADE 07/2019 1.0000 0.1471 0.9809 0 580

12

120

8

ANRS 29_11/2018 1.0000 0.1868 0.8493 0 553

14

945

61

HIVdb 8.9.1 1.0000 1.0000 0.8818 0 0 741

21

Rega 10.0.0 1.0000 0.0838 0.9804 0 623

7

123

10

MIF-based Drug Resistance Classifier
†

0.9941 0.9941 0.9922 4

1

4

1

49

11

†The proposed MIF-based drug resistance classifier is shown in the last row for comparison purposes.
‡False negatives (FN) corresponds to the number of sequences belonging to the Resistant* dataset (withdrawn of extreme outliers) that were predicted susceptible to all PIs. False

positives (FP) corresponds to the number of sequences belonging to the Susceptible* dataset (withdrawn of extreme outliers) that were predicted resistant to at least one PI. In italics

are indicated the number of viral isolates to which the sequences misclassified as FP belong. Rules for sensitivity analysis in (1) benchmark A [Sensitivity(A) ]: resistance to one or more

PIs is considered a correct prediction; and (2) benchmark B [Sensitivity(B) ]: resistance to all PIs is considered a correct prediction.

In order to answer to this question, we first converted our
test set containing susceptible and resistant HIV1-PR sequences
withdrawn of extreme outliers (N = 6,269 [[Susceptible∗]]
and N = 680 [[Resistant∗]], respectively) into codon code,
using the EMBOSS Backtranseq online tool (Madeira et al.,
2019a,b), and then submitted it to the HIV-GRADE web server
(Obermeier et al., 2012a,b) for comparison with the sequence-
based algorithms ANRS-rules (Brun-Vézinet et al., 2003), HIVdb
(Rhee et al., 2003; Tang et al., 2012) and Rega (Van Laethem
et al., 2002; Camacho et al., 2017). Unexpectedly, we were not
able to obtain predictions from geno2pheno via HIV Grade due
to a technical issue of the web platform. To eschew this problem,
we tried to submit the test set directly through geno2pheno’s web
server, but the interface is limited to an unpractical maximum of
20 sequences per run.

Because the existing sequence-based interpretation systems
try to predict phenotypical susceptibility or resistance to the
individual drugs for a given genotype, whereas our approach only
performs binary classification (susceptibility or resistance to all
PIs), in order to draw comparison between the methods we tried
to “level the playing field” by converting the predictions made by
sequence-based algorithms into simpler binary classifications. In
a first benchmark (benchmark A), the prediction outputs were
converted into (i) susceptibility to all PIs ([Susceptible]) or (ii)
resistance to any PI (Resistant). In a second, more challenging
benchmark (benchmark B), the outputs were encoded as either
(i) susceptible to all PIs (Susceptible) or (ii) resistant to all PIs
(Resistant). The full list of criteria applied to the conversion
of multiple classifiers into binary classification is given in
Supplementary Table S2. The full raw output of HIV-GRADE is
available in Supplementary Datasheet S2.

The ability to accurately predict the susceptibility of the input
sequences to all PIs was assessed by determining the rate of
correct predictions, with reflection into the calculated methods’
Sensitivity (Equation 5) and Specificity (Equation 6). Table 3
lists calculated performance metrics for the sequence-based
algorithms on both benchmarks A and B, contrasted with the

performance of our sequence-to-structure-, MIF-based algorithm.
Sensitivity(A) and the number of detected false negatives FN(A)
translate the methods’ ability to classifying a HIV1-PR sequence
known to be resistant to all PIs as Resistant to at least one PI. In
contrast, Sensitivity(B) and FN(B) translate the methods’ ability
to correctly predict the same sequences (known to be resistant
to all PIs) as resistant to all PIs. From the methods’ sensitivity
viewpoint, the assessment of the results of both benchmarks
A and B has been important to counterbalance the crudeness
of the conversion of a multiple classifier of resistance toward
specific PIs into a binary classification. Benchmark A clearly
biases sensitivity in favor of a multi-classifier by considering any
resistance prediction (in number or kind of PI) for sequences
known to be resistant to all PIs as correct, whereas benchmark
B offers a more stringent evaluation of sensitivity wherein only
resistant-to-all-PIs predictions for the same set of fully resistant
sequences are considered as correct.

As expected the discriminatory power of the methods
in benchmark A is in stark contrast with that calculated
for benchmark B. Sensitivity(A) suggests that sequence-based
methods slightly outperform our sequence-to-structure-, MIF-
based classifier, with 100% correct predictions of Resistant
sequences vs. a Sensitivity(A) value of 0.994 obtained by our
method. By contrast, benchmark B shows a considerable drop in
performance by sequence-based methods at correctly predicting
HIV1-PR sequences resistant to all PIs—aside HIVdb, which
retains a Sensitivity of 1.000.

The results in Table 3 indicate that our workflow outperforms
all other algorithms at identifying sequences susceptible to
all PIs, with a Specificity of approximately 0.992, while its
sequence-based counterparts display Specificities ranging from
approximately 0.849 to 0.981. Still, it is worth noting that the large
number of FP from the other sequence-based methods mostly
come from the same isolates, similarly as mentioned above
for FN(B). This fact highlights the advantage of accounting for
structural information besides genotypic data. While MIFs allow
searching for differences in the structural and physicochemical
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environment of proteins, which might not be significantly
affected by mutations for similar amino acids, sequence-based
approaches will consistently search for mutations at positions
of interest and consistently assign them the same classification.
At an early-stage of development, our workflow’s performance
is quite satisfactory, considering that the ability of correctly
classifying a sequence as susceptible to all PIs is a highly relevant
step at the beginning of antiretroviral therapy—where a false
positive weights more on the flexibility of first-line therapy
regimens and, consequently, quality of life of the patient.

CONCLUSION AND FUTURE
PERSPECTIVES

In recent years, the availability of data in the form of
matched HIV genotype–resistance phenotype has expanded
greatly, enabling further training of statistical learning methods
relating genotype to different levels of phenotypic resistance
and against specific drugs. However, in spite of the increased
access to and routine sequencing of HIV’s genome in many
countries, as well as the constant evolution of machine learning
(ML)-based techniques, HIV’s high mutation rate (estimated
in 3 × 10−5 per nucleotide per replication) will continue
to pose significant challenges: not only in terms of the
constant demand for curation of genotypic and phenotypic
data to be fed into ML algorithms, but also from the
viewpoint of the interpretability and translation of said data
into knowledge to assist the design of novel anti-microbial
agents. Therefore, the exploration of innovative structure-
based in silico approaches to the prediction of drug resistance,
focusing at the molecular interface that bridges to drug
design, holds clear interest and appeal as alternative or
complement to some of the most developed sequence-based
statistical methods.

In this contribution, we propose a novel approach to
drug resistance prediction, which captures structural and
physicochemical modifications induced by mutations in the
binding site of an extensively studied viral target, HIV1-PR. We
demonstrate that, even at an early, proof-of-principle stage of
development, our methodology can identify HIV1-PR sequence-
structure pairs belonging to three levels of increasing resistance—
with impressively high accuracy—thus anticipating, on a purely
structural basis, whether a given HIV1-PR sequence will translate
into phenotypic resistance or susceptibility to PIs. Since our
sequence-to-structure-based classifier does not rely on training
from genotypic data and only uses an individual input sequence
to derive the corresponding viral enzyme structure and yield a
prediction, its potential real-world value in supporting clinical
decision is clearly relevant. Due to the fact that the proposed
workflow produced predictions of complete drug susceptibility to
the HIV1-PR datasets with high predictive accuracy, said results
highlight this methodology as a potential valuable resource on
clinical practice. Being able to use the clinical isolate sequence
data to accurately predict susceptibility to known PIs, before
starting a therapeutic regimen, is of paramount importance to
allow the initiation of PI-based therapy with the less expensive 1st

generation PIs, resulting in an economic benefit to the healthcare
systems. Importantly, even though the method performs analysis
on thousands of structural data points (atomic coordinates and
MIF points), classification into susceptible or resistant takes place
in a couple-of-minutes time scale.

It is worth emphasizing, nevertheless, that there is obvious
room for methodological improvement and expansion. The
upgrade to multi-classification functionality, where target
structures known to be susceptible to specific inhibitors and
drugs are used as template for structural modeling, is a critical
milestone that will pave the way to predicting resistance to
those specific anti-microbial agents. The growing amount of
three-dimensional structural data on microbial target-inhibitor
complexes, coupled with more elaborate use of sequence data,
fuels our belief in that an improved sequence-to-structure -, MIF-
based drug resistance classifier, will be able to combine the
strengths and overcome the shortcomings of current approaches.

Claims of greatness must be backed by adequate validation
designs. While the current version of our workflow does not
allow drawing comprehensive and direct comparisons with more
advanced sequence-based predictors of resistance to specific
HIV1-PR inhibitors, further developments to our method will
also be accompanied by the assembly and sharing of stratified
benchmark sets of susceptible and resistant microbial target
sequences—enabling fairer comparisons to be made both by
ourselves and the scientific community.

As implied in our concluding words, a clear expectation
around this work involves extending the application of our
method to other targets, other than HIV1-PR, with inherent and
multiple patterns of genetic variation. We realize, however, that
this expectation may only be fulfilled if workable amounts of
data are shared among the scientific community. Undoubtedly,
one of the most critical aspects facing drug resistance prediction
is the development of community-wide efforts to prepare and
share useful datasets and tools to facilitate improvement and
performance evaluation of existing and novel methodologies—
which should be a clear priority for researchers working in the
field. By basing its development on the use of freeware, our
method is freely-available for non-commercial use.

To conclude, we see the results presented here as a promising
example of the potential application of combined sequence- and
structure-based in silico methods to achieve a more detailed
interpretation and prediction of the impact of mutations in drug
resistance. The ever-increasing emergence and widespread of
drug-resistance calls in for the development of more efficient
strategies to combat microbial threats in several fronts—be that
in the drug discovery research setting or the clinical and medical
therapeutic decision realm.
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