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Abstract The Schwinger-Dyson quark equation (SDE)
combined with results from lattice simulation for the prop-
agators are used to obtain information on the quark-gluon
vertex, taking into account the recent full QCD lattice results
for the soft-gluon limit. Its inclusion leads to a clear enhance-
ment of the infrared quark-gluon vertex. We also find that the
relative contribution of the quark-ghost kernel to the quark-
gluon vertex in the infrared region does not follow the rules
from the perturbative analysis of the ultraviolet region. This
shows that for QCD the intuition based on perturbation theory
does not apply to the full momentum range. The framework
developed in the current work provides analytical expres-
sions for all the longitudinal components of vertex taken into
account.

1 Introduction and motivation

The interaction between quarks and gluons is described
by Quantum Chromodynamics (QCD). If at high energies
asymptotic freedom allows the use of perturbation theory, at
low energies QCD becomes strongly coupled and other type
of techniques are needed to solve the theory. Confinement and
chiral symmetry breaking are two important non-perturbative
outcomes of QCD associated with its infrared (IR) properties
[1,2]. In particular, confinement impacts on the computation
of hadronic transitions elements also at high energies.

Lattice QCD simulations is a successful ab initio approach
to study the non-perturbative regime. The use of continu-
ous methods, such as Schwinger-Dyson equations (SDE),
Bethe—Salpeter, Faddeev equations, functional renormalisa-
tion group techniques and Holographic models complement
our catalogue of non-perturbative tools for quantum field the-
ories.
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The gluon, the ghost and the quark propagators have
been thoroughly studied within the non-perturbative regi-
me of QCD and, nowadays, one has a fair understanding
and description of these two point correlation functions. On
the other hand, our level of knowledge on the three particle
vertices is much poor when compared to the two point func-
tions. Among the QCD three particle vertices is the quark-
gluon vertex that plays a major role in our understanding of
hadrons.

Herein we pursuit the efforts initiated in [3] and devel-
oped further in [4,5] that combine results from lattice sim-
ulation in the Landau gauge, for the propagators, and the
quark gap equation, together with an exact solution of the
Slavnov—Taylor identity for the vertex, to get information on
the quark-gluon vertex. The exact solution of the Slavnov-
Taylor identity for the vertex calls for the quark-ghost ker-
nel, a four point Green function, that is described in terms
of four form factors [6], our unknowns. The main novelty in
the present work is the inclusion of the lattice results for the
soft-gluon limit of the quark-gluon vertex, that translate into
normalisation conditions for the quark-ghost kernel form fac-
tors. In practice, this was achieved by building an ansatz that
is inspired on the analysis of the lattice data for the quark-
gluon vertex [4] and the gap equation is solved for the form
factors, written as Padé approximants. We stress that all other
quantities in the gap equation are known from lattice simu-
lations, including the quark propagator in the Landau gauge.
The resulting quark-gluon form factors are identical to those
computed previously [5] with the exception of the infrared
region, where it is observed a clear enhancement. Further-
more, a detailed analysis of the relative contribution of the
quark-ghost kernel form factors to the quark-gluon vertex
does not comply, in the infrared region, with their ultraviolet
(perturbative) behaviour.

This paper reports on results for the quark-gluon vertex
as outlined above and it is organized as follows. In Sect. 2,
we set our notation for the quark gap equation and the quark-
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gluon vertex, where as usual we consider only the longitudi-
nal components, written in terms of the quark-ghost kernel
form factors, which are parametrized by Padé approximants
constrained by the soft-gluon limit results from lattice simu-
lations. In Sect. 3, the Schwinger—Dyson equation is decom-
posed for the vector and scalar parts of the quark self energies,
and the minimal requirements for the ultraviolet behaviour of
the quark-ghost kernel are discussed together with its anzats.
Also, the explicit form of our anzatsé€ for the longitudinal
form factors are provided. In Sect. 4, we built our anzats such
that the soft-gluon limit from QCD lattice simulations of A1
is incorporated. In Sect. 5, we present the results from the
inversion of the Schwinger—-Dyson equations to get the coef-
ficients of the Padé approximants for the quark-ghost kernel
relying on simulating annealing to minimize the sum of the
relative error of the scalar and vector equations. In Sect. 6
we present our results for the form factors of the longitudinal
components of the quark-gluon vertex and also analyze their
contribution of the quark-ghost kernel separately. In Sect. 7
we provide a discussion of our results to put in the perspec-
tive of some previous studies. This section is closed with a
summary of our work.

2 The Quark gap equation and the Quark-Gluon Vertex

The quark propagator is color diagonal and its spin-Lorentz
structure reads, in Minkowski space,

S7Hp) = =i (AW - BOY)
=—i Zy(f —m®™) + Z(p) M
where Z(p?) = 1/A(p?) is the quark wave function,

M (p?) = B(p?)/A(p?) the renormalisation group invariant
running quark mass, Z; is the quark renormalisation constant
and m®™ the bare current quark mass. The quark self-energy
is given by

S(p) =74 / T4 pav ) (i g17)
(2m)4 T Y
xS(p—q) I)(=p, p—4q, q), (2)

where Z1 is a combination of several renormalisation con-
stants and the Landau gauge gluon propagator is

. qudq
D (q) = —i 8 (g,w — ;2) D(q%). 3)

The quark-gluon vertex is defined with incoming momenta
p1+ p2 + p3 = 0, where p; is the incoming quark momen-
tum, — p; the outgoing quark momentum and p3 the incom-
ing gluon momentum. Our notation follows that used in [4,6].
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The one-particle irreducible quark-gluon Green function is
depicted as

Iy (p1, p2. p3) = g t“ Tu(p1, p2, p3) “4)

where g is the strong coupling constant and ¢ are the gener-
ators of the color SU(3) group in the fundamental represen-
tation.

Assuming that the gluon propagator and I';f are known,
from the gap equation (2), one can get the quark propaga-
tor. If Z (pz) and M (p2) are known, it is possible to use
(2) to extract information on the quark-gluon vertex. From
the mathematical point of view, computing I’/ from the gap
equation means solving an ill-defined problem. The introduc-
tion of a prior, that can be accommodated by regularising the
integral equation or introducing a basis of functions, allows
to exactly and unambiguously solve the modified equation
for the vertex. The solution depends on the prior and one
should check its (in)dependence on the prior.

The vertex function I, see Eq. (4), can be decomposed
in a longitudinal F,EL) and a transverse FPET) component,
relative to the gluon momenta, as

Tu(pt, p2. p3) = LP(p1. p2. p3) + TV (p1. pa, p3)
Q)

and, by definition,

Py TV (p1. pa. p3) =0. (6)

Asisusual in the analysis of the Dyson-Schwinger equations,
in the current work we will focus on the longitudinal compo-
nent of the ', and will ignore F,ET). If a tensor basis for FIEL)
and F;T) is given, then I, is a sum of scalar form factors
that multiply each of the elements of the tensor basis. The
full vertex requires twelve form factors, with four of them
being associated with the longitudinal component and eight
with the transverse one. In the Ball-Chiu (BC) basis [7], the
longitudinal vertex is written as:

Iy (pr. pa. p3) = —i (M Yu + 22 @1 —p2) (p1 — p2),

+ 23 (p1 — Py + raou (p1 — p2)’ )
(N
where 0y, = %[yﬂ, wland A; = )Li(p%, p%, p%). The trans-
verse component of the BC vertex is written as

8

IYpr. pa. p3) = =i Y tlp1, p2. p3) T (p1, p2) . (8)
i=1
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where the operators associated to the transverse part of the
vertex are

T (pr. p2) = [p1p (P2 - P3) — P2 (p1 - p3)]Ip
T2 (p1, p2) = =TV (p1. p2) (h — 1)

T (p1, p2) = p3vu — Poulf3 »

T (1. p2) = TV (pr. p2) oup PSS

T (1, p2) = o Py »

T(p1. p2) = vu (PT — P3) + (P1 — P2)u 13 -

1
T,y)(m, p2) === (pt = p3) [y @1 —12) — (1 — P2), I ]

2
—(p1 = p2),, 9ap PY o
T (1. p2) = —vu 0up P Ph + (P1utz — P2uih) - ©)

The discrete symmetries of QCD constraint the quark-
gluon vertex. For the longitudinal form factors, charge con-
jugation invariance [6] requires

Ai (pf 3, p%) =X (P% i, P%) li=1,2.3,

Ay (p%, P3. p%) =) (pg, Pt p%) - (10)

These properties under interchange of quark momenta imply
that when p]2 = p% the form factor A4 = 0 as happens for
the soft-gluon limit where p3 = 0.

The Slavnov-Taylor identity (STI) for the quark-gluon
vertex,

Py Tu(p1, p2. p3) = F(P%)[S_l(—Pl)H(PI, p2. p3)

—H(p2 p1o p S 0], (D)

relates the longitudinal vertex form factors, A;’s (i = 1 —
4), with the quark propagator, the quark-ghost kernels that
are define by H and H, see [6] for notation and definitions,
and the ghost dressing function F( p%), related to the ghost
propagator by

D (p*) = —i8° F(p*)/p* . (12)

The quark-ghost kernel can be written in terms of four
formzfact(z)rs [26], called X; = X; (plz, p%, p%) and X; =
Xi(p3, p1» P3),as

H(p1, p2, p3) = Xolp + X1 p1 + X2 p2 + X3 00p P?Pg,

H(p2, p1, p3) = Xolp — X2 p1 — X1 p2 + X3 00p Y Pzﬁ .

(13)

The STI (11) can be solved exactly for the A;’s [8] resulting
in

F 2
A = %{A(P%) [Xo + (P12 —pi- Pz) X3]
+B(PD) X1+ X2l { + (p1 <> p2) .
_ F(Pg) N
Ay = W{A(m)_(m + 1 Pz) X3 — XO]
+B(p]) [X2 — X1] { + (p1 < p2) .
F 2
Az = %{A(P%) [P% X1+p1-p2 Xz] + B(p}) Xo}
PT — P>
F(p2
A= — (r3) {A(plz) X2 + B(p}) X3} —(p1 < p2).

(14)

These expressions comply with the symmetries under inter-
change of quark momenta listed in (10). Moreover, as dis-
cussed in [5] all A; are regular functions.

The tree level perturbative solution of QCD for the quark-
ghost kernel form factors gives Xo = 1 and X123 = 0
[6] and, in this case, the longitudinal quark-gluon vertex
is uniquely determined by the quark wave function Z(p?)
and the running quark mass M (p?). On the other hand, the
non-perturbative solutions of QCD [4,9-12] resultin X 23
that deviate significantly from their tree level values, spe-
cially at infrared mass scales. These non-perturbative solu-
tions for X return a function that hardly deviates from its
tree level perturbative value [3,4,9,12,13] and X ~ 1 seems
to be a good approximation for this form factor. We call the
reader’s attention that so far we only have approximate non-
perturbative solutions for QCD. At a qualitative level, the
various approaches seem to produce compatible results. See
also [14-17] for other recent studies of the quark-gluon ver-
tex.

There are now results from full QCD lattice simulations
for Al(pz) in the soft-gluon limit [18]. This information
should be incorporated in the inversion of the gap equation
to compute the quark-gluon vertex. The longitudinal form
factors X1 in this limit [5] is given by

F(0)

r(p?) =
1(p?) Z07D)

{1 +2X1(p") M(p?) + 2p? X3(p2)} :

15)
where p is the quark momentum. This kinematical configu-
ration is interesting also because it gets no contribution from

the transverse form factors. This can be easily checked using
the transverse basis considered in [19].
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3 Decomposing the Schwinger-Dyson equation

In the current study we use only the longitudinal compo-
nents of the quark-gluon vertex; see Eq. (7) and Sec. 3.2 for
detailed expressions for all the form factors. By taking traces
of (1) one accesses either its scalar or vector part. In order to
include inputs from lattice simulations, we perform a Wick
rotation in the Schwinger—Dyson equations, writing them
in the Euclidean space (see e.g. [4] and references therein)
as

B(p?) = Zym™
d*q  Z(k*) D(g%
Q)4 k2 + [M(k2)]2

+CrZig* {As +M(k2)Bs},

(16)
PPADY) = Zo p?
d*q  Z(k*) D(g%

—CrZ1g° G s M) {AU + M(K*) B, }
(17)
with
As(p? K2, q%) =2 23 <p2 - “%2)

+ g [9(pq)—z(’;"2)2—4p2—3q2}, (18)
Bo(p? K2 q%) =301 +4 1o [(’;?2 - pz} .9
AP H gD = [p2+2 (”q ar _ 3<pq>}

12 |:p2q2 +2 (’;%)3

- (25—2 + 1) (pq)* —2p*(pg) + 2p4} (20)
Bu(p* K2 qP) =223 [zﬂ - (pq ?2]

+ 4 [4 PP +2 (’; ‘]2)2 -3 (pq)] , 1)

where k = p — g, Cr = 4/3 is the Casimir invariant asso-
ciated to the SU(3) fundamental representation and we used
ri = A (p?, k2, ¢?) to simplify the notation.

3.1 Results from 1-loop perturbation theory

The full set of X;’s were computed in [20] in perturbation
theory to one-loop for arbitrary linear covariant gauges. The
authors report full expressions for the various form factors
at several kinematic configurations. For the symmetric limit

@ Springer

where p?> = k* = ¢2, the leading behaviour for the non-
vanishing form factors are

(PP o 1, aa(p? and A3(p*) o 1/p? (22)

up to logarithmic corrections. The solution of the STI for A
reads

5
M(pH = F(P2){A(P2)[X0 +3 P’ X3} +2B(p?) X, }
and X2 = X;. (23)

At large quark momentum A1 (p2), F(p?), A(p?) and B(p?)
become constants and this expression suggests that Xo ~ 1,
X1 ~ 1 and X3 ~ 1/p?. These are minimal scaling laws in
the sense that some of the form factors can behave as larger
negative power of p2. A similar analysis of the symmetric
limit for A, and A3 returns minimal scaling laws compati-
ble with the above ones. The tree level expressions for the
quark-ghost kernel form factors are Xo = 1 and X123 =0
and these results should be recovered in the UV limit. This
suggests that the minimal scaling law for X is not that pre-
viously reported but, instead, a larger negative power of p>
ase.g.
Xo~1, X/ ~1/p* and X3~1/p>. (24
This results are in good agreement with the scaling analysis
performed in [4] and are compatible with the minimal scal-
ing laws derived directly from one-loop perturbation theory
quoted above.

3.2 The longitudinal Quark-Gluon vertex

In order to compute a solution for vertex from the SDE we
assume functional forms for the X;’s. As in [4] the gluon,
the ghost [21] and the quark [22] propagators are taken from
lattice simulations and modelled to reproduce its correct UV
perturbative behaviour. Exact expressions can be found in
App. A. Moreover, as discussed in [4], following the analysis
of the lattice data for soft-gluon limit performed in [5], an
ansatz for the quark-ghost form factors is

Xo(p*, K, ¢*) = Xo(g?), (25)
2 2
+k
X1(pP k2. %) = Xa(p2 kA g = D (” : ) Y1(g?).
(26)
2 2
+k
X3(p2. k% g% = D(” _ ) Y3(g?) . 27)

This ansatz solves the SDE with a relative error smaller than
4% - see [4] for further details.
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The parameterisations (25) - (27) have to comply with the
exact results derived in [9]

Xo(p%, p%, 0) =1 and X (p?, p* 0) = Xa2(p?, p*, 0).
(28)

The second condition is already built in the ansatz. Further,
the ansatz (25)—(27) should be compatible with the scaling
laws Eqgs. (22) and (24). Recall that the gluon propagator
D(g?) scales as 1/g? at large ¢2 and, therefore, Y} (¢?) and
Y3(g?) should approach a constant or scale, at large g2, with
a negative power of ¢ for large gluon momentum.

The explicit expressions for the longitudinal quark-gluon
vertex form factors are derived from Egs. (14), (25), (26) and
(27). We can write the longitudinal components of the form
factors as

F2 2+k2
Al::45243{2B(p2>L>(fi754—) Y1(g%)

24 k2
+A(?) [Xo(qz)+(P2—P'k)D<p - )w%“
+Hp b,

F(g%)

A,:i
T2k = p?)

2 k2
42| (7 + p- 0 0 (255 v

—xo«ﬁ)} +(p <k,

FZ 2 k2
x3=pff;{Aw%[ﬁ+qu]D(p ; ) Yi(g%)

+B@%xafﬁ+wpekx

F 2 2 k2
= — (zq)D<p_2F ){A(pz)Y1(42)+B(p2)Y3(612)}

—(peh, (29)

where A(p®) = 1/Z(p®), B(p®) = M(p*)/Z(p*) with
Z(p?) from Eq. (34) and M (p?) given in Eq. (35). The form
factors Xo(g?), Y1(¢%) and Y3(g?) are given later by Eq. (31).
As written explicitly in Egs. (29), all the symmetries coming
from charge conjugation invariance [6] written in (10) are
satisfied by our longitudinal form factors ansatz.

The use of the above ansatz with the gluon propagator as
given in Eq. (32), of the ghost propagator as in Eq. (33) and
of the quark functions given in (34) and (35) together with
the longitudinal quark-gluon vertex (see Sect. 3.2) and the
exact solution (14) of the Slavnov-Taylor identity (11) allows
for the computation of a solution of the Schwinger—Dyson
Equations, whose results will be discussed in the following
sections.

4 Incorporating the Soft-Gluon Limit

To take into account the full QCD simulations results for the
soft-gluon limit of A; reported in [18] we insert (25)—(27)
into (15) obtaining, after rotation to the Euclidean,

F(0)

M=~ o0

{1 +2M(pH D(pH Y1(0) — 2 p* D(p?) Y3<0)} :
(30)

A correlated fit of (30) to the lattice data using the ensemble
with a pion mass of 295 MeV and a 8 = 5.29 [18], relying
on the expressions for D(p?) and M(p?) given in [4], see
also App. A, returns Y1 (0) = 0.1726£0.0074 GeV, Y3(0) =
—0.0806 £ 0.008944 and F(0)/Z(0) = 1.211 &£ 0.029 for
a x2/d.o.f. = 0.15. In Fig. 1 we show both the lattice
data and the fitted function (30). The above numbers for
Y1(0) and Y3(0) provide a normalisation at zero momentum,
that depends on the renormalisation scale j, for Y} (¢?) and
Y3(g?).

For the comparison of the fitted value for the ratio
F(0)/Z(0) with the expression given in [4] and reproduced
in Appendix A one has to consider the normalisation fac-
tor that comes from the renormalisation of A;. The fit was
performed using bare lattice data and a gluon and ghost prop-
agators renormalised in MOM-scheme at © = 3 GeV. This
should be corrected before doing any comparison. One can
estimate this global normalisation factor for A from the plot
by demanding that A (u?) = 1. The quark renormalisation
constant can be computed after setting Z (%) = 1. These
renormalisation constants allows the rescaling of the fitted
ratio F'(0)/Z(0) and only then estimate the value of F'(0) that
corresponds to a renormalised ghost propagator F(u?) = 1.
It is this value, for © = 3 GeV, that should be compared with
the ghost fitting function at zero momentum considered in

)
o (M =295MeV;B=529)
3 Fit 7
25 $ -
3
20 = —
: ;
< +3
L5+ K%Y -
- LT
L ni&li&w%
1 __________________________________________
0.5+ —
l l l
801 0.1 1 10
p* [GeV]

Fig. 1 Lattice data for A from full QCD simulations [18], in lattice
units, and the fit to (30)
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[4]. It turns out that the fitted ghost propagator function used
in [4] and that computed from the fit to the soft-gluon limit
are compatible within one standard deviation. This gives us
further confidence that the ansatz (25)—(27) for quark-ghost
kernel form factors is able to capture the essential of the QCD
dynamics.

5 Inverting the Schwinger-Dyson equations

The SDE are a set of two coupled equations that depend,
for our ansatz, on three form factors. Furthermore, we would
like to take into account the normalisation for X given in
Eq. (28), the corresponding UV limit and the normalisations
for Y1(0) and Y3(0) from the fit to the soft-gluon limit of
the lattice data, after appropriate rescaling to comply with
the renormalisation scale. We recall the reader that in [4] we
used u = 4.3 GeV as renormalisation scale and it will also
be used here to solve the SDE. All these constraints can be
taken in the calculation if all the functions are parametrised
by Padé approximants

1 +an q* + aps g*

Xo(q?) = :
og”) 1+ bo2 g% + aoaq*
Yi(g®) = Y1(0) + a2 + a1a q* + a6 ¢° + a1s ¢°
1+ b12g? +biag* + bi6q° + bis ¢®
5 Y3(0) + az2 ¢> + aza ¢* + aze ¢° + azs ¢°
Y3(q°) = .

14 b33 + b3s q* + b3s q% + b3 ¢®
(3D

The coefficients in (31) were computed relying on simulat-
ing annealing to minimize the sum of the relative error of
the scalar and vector equations. The numerical experiments
show that it is relative easy to produce “solutions” whose
maximum relative error for the SDE is of the order of 15%.
However, for errors below the 10% value we found a single
solution. As seen in Fig. 2 we found a solution that solves
the SDE equations with a relative error, on each equation,
below the 4% level. In the minimisation and to avoid poles
on the Euclidean momenta real axis it was assumed that all
the coefficients in the denominator are positive real numbers.
We also report in Fig. 3 the quark wave function and the run-
ning quark mass, computed using our vertex solution, for the
r.h.s. of the Schwinger—Dyson equations.

Our parametrisation for X (qz) is the simplest Padé
approximant that is compatible with the normalisation condi-
tions X (0) = Xo(+00) = 1 and allows for small deviations
from unity as found in previous investigations [4,10,11].
Furthermore, taking as guide these previous calculations
we expected a maximum of Xo(g?) below 1 GeV. Given
that for small qz, the function Xo(qz) is expected to grow,
then by, < aqp. If Xo(qz) has a maximum above 1 for
g < 1 GeV, this demands apy, < 1 GeV—2. All these con-

@ Springer

— EPJCSol. 1
0.06 T T T T T T T T T T T —— EPIC Sol. IT
Lkl R Rl RN RARAY WA R WA bk LELL R A RN B | New Sol

0.04

0.02

0.00

ASca/B(p)

-0.02

0.04 B

0,06 [t

0.04 -

0.02

00t Ro==———=———————————————————— — — — —

AVec/A(p?)

-0.02
-0.04

N |
0.06 9 10 11 12 13 14 15 16 17 18 19 20

p [GeV]

Fig. 2 Relative error for the Schwinger—Dyson equations for the solu-
tions I and II reported in [4] for oy = 0.22 and the new solution consid-
ered here, computed using Padé approximants and taking into account
the soft-gluon limit. In both solutions the propagators were renormalised
at u = 4.3 GeV using the MOM-scheme

straints for X were taking into account in the minimisation
process.

In the minimisation of the error we also changed the pow-
ers of the numerator and denominator in the Padé approx-
imants for Y (qz) and Y3 (qz) but only with those reported
above we were able to find a solution of the SDE with a
relative error below 4%. During the minimization process
we observed that the first function to stabilize was Y (qz),
followed by Yo(¢g?) and then by Y3(g?).

In Fig. 2 we show the relative error for the solution of the
Schwinger—Dyson equations based on Padé approximants
and the solutions reported in [4] computed with oy = 0.22.
In all cases the relative error is below 4%.

Figure 3 shows Z(pz) and M (pz) computed from the
r.h.s of the SDE when our vertex solution is used. The quark
wave function follows very closely the original parameterisa-
tion used as input for the calculation, see App. A, with small
deviations for momenta in the range 1 — 3 GeV but repro-
ducing the lattice data in the infrared region and the correct
lattice data for larger momenta — see the discussion on the
usage of the lattice quark propagator data in [4]. On the other
hand, the running quark mass computed from the r.h.s. of the
SDE is on top of the parameterisation for the same function
used as input in the calculation.

The results reported in Fig. 3 help us to understand how
the relative errors shown in Fig. 2 translate into the functions
that describe the quark propagator. We recall that in Fig. 3
we are not solving the SDE for Z(p?) and M (p?) but are
performing a consistency check of our approach and also on
the ansatz (25)—(27) that we plug in into the solution (14) of
the Slavnov—Taylor identity. Full expression for the quark-
gluon form factors ansatz are given in (29).
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B=529 Kk=0.13632 32°x 64 M, =295 MeV

Z(p?)

Table 1 Coefficients of the Padé approximant in (31) in powers of GeV.
For each function, the upper line refers to the numerator coefficients in
increasing power of ¢2, while in the lower line are the coefficients for
the denominator polynomial in increasing powers of g2

Xo(g?) 1.00000 8.3505 20.2310
1.00000 3.8906 20.2310

Y1(¢?) 0.14961 9.4208  —23.2416 10.3067 —0.1379
1.00000 0.005153  21.7996  15.7754 3.2950

Y3(g%) —0.06986 —1.0907 3.8888 —5.7121 3.6823
1.00000  17.4524 6.6828  19.7787  17.7508
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Fig. 3 The quark wave function and the running quark mass as given
by the r.h.s. of the Schwinger-Dyson equations for our vertex solution,
compared with the fit functions that parametrise Z( pz) and M ( pz) and
the lattice data for the quark propagator. For comparison the quark wave
function was renormalised in the MOM-scheme at i = 4.3 GeV. The
lattice data from Ny = 2 full QCD simulation in the Landau gauge
[18,22] for B = 5.29, k = 0.13632 and for a 323 x 64 lattice was
rescaled using the parameterisation reported in Appendix A. See [4] for
the discussion on the parameterisation of the lattice quark propagator

6 Results

In Table 1 the coefficients for the solution that minimise
the relative error of the SDE are reported. The correspond-
ing form factors Xo(g?), Y1(¢?) and Y3(g?) are shown in
Fig. 4 and compared to the solutions computed in [4] with a
completely different method, where the original SDE were
replaced by Tikhonov regularised equations. All the repre-
sented solutions were computed using the same set of param-
eters, namely an UV hard cutoff of A = 20 GeV, oy = 0.22
and all propagators renormalised at u = 4.3 GeV. Moreover,
for the various integrations, angular and momentum, we used
exactly the same number of Gauss—Legendre points as in [4].

For Xo(¢?) the new solution is enhanced compared to
those computed in [4], it has a maximum of ~ 1.35 to be
compared with ~ 1.10 for the old solutions. The maximum
of the new solution occurs at slightly larger g ~ 450 MeV
for the Padé based solution and ~ 350 MeV for Tikhonov
regularised solutions. The outcome of the one-loop dressed
perturbation theory reported also in Fig. 4 have maxima that
are similar to those of the Tikhonov regularised solution but
occurring at a much larger scale, i.e. forg ~ 1 GeV. The Padé
based solution does not show any minima with X (g% <
1, as seen on the Tikhonov solutions, and approaches the
UV normalisation condition Xo(4+00) = 1 in a smoother
way than the Tikhonov ones. In this respect the new solution
follows closer the behaviour observed for the predictions of
one-loop dressed perturbation theory.

The Y (¢?) seen in Fig. 4 are quite similar up to ~ 1 GeV.
The maximum of the Padé solution being slightly smaller
than those of [4] and its deep infrared values, i.e. forg < 200
MeV, being larger to accommodate the lattice soft-gluon
limit. For ¢ = 1 GeV, the various curves have similar struc-
tures, i.e. the same number of maxima and minima, but differ
in UV. Here the Padé based solution approaches a negative
constant value, while the Tikhonov solutions approach a pos-
itive constant value.

The Padé based solution for Y3 (q2) is different from those
computed in [4]. It has a simplified structure that interpolates
between its zero momentum value dictated by the lattice soft-
gluon limit and a UV constant value that is about the same
found for Sol. I in [4].

In [11] the authors solved simultaneously the SDE for
the quark propagator together with the quark-ghost kernel,
in its one-loop dressed perturbation theory formulation, to
compute the various form factors X;. At the qualitative level,
but not quantitatively, our results point in the same direction.
See [4] also for notation issues.

In Fig. 5 we report the various A;’s, the relevant quark-
gluon vertex form factors, for the new Padé solution and
compare them to the corresponding ones for Sol. I computed
in [4]. Somehow surprisingly the differences between the
two sets of form factors are minimal, with the exception of
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Fig. 4 The solutions I and II found for Xo(g?), Y1(¢?) and Y3(g?)
in [4] and the new solution found with the Padé parameterisation. See
text for details. Also shown are the 1-loop dressed perturbation theory
for X (qz) (dashed lines) using both the tree level gluon-ghost vertex
(H (qz) = 1) and an improved vertex ghost-gluon vertex [23]

A2. These situations also occurs for other values of 0 # 0
(not represented here), the angle between the quark and the
gluon momentum. This is a welcome feature, as the two solu-
tions were computed in completely different and independent

@ Springer

ways, giving confidence in our findings. In general the A;
based on the Padé solution for X and Y; have slightly less
structure as the oscillations observed in the Tikhonov regu-
larised calculation are not present. A for the two solutions is
very similar with the Padé based calculation showing a clear
enhancement in the infrared region. The scale and the region
of the absolute maximum of this form factor is the same for
the two solutions. A similar conclusion holds also for A3. As
Fig. 5 shows (see also the discussion in [4]) the main non-
perturbative tensor structures of the quark-gluon vertex are
associated with A; and A3 and, in both cases, their maxima is
at p ~ Agcp. In what concerns the remaining form factors,
the figure also shows that A4 of the Padé approximation is
similar to that published for Sol. I in [4]. A large difference
occurs for A, that is infrared enhanced by about a factor of 2
and shows a single maximum instead of two for the [4] solu-
tion. For zero momentum, the value of A1(0) in the present
calculation is about 2.1 times the one obtained for Sol. I of
[4].

Our conclusion being that the inclusion of the informa-
tion from the lattice soft-gluon limit in the calculation leads
to an infrared enhancement of the quark-gluon vertex. The
relative importante of the form factors found in [4] is also
observed within the new solution. Our new calculation sup-
ports that the quark-gluon vertex is dominated by the form
factors associated to the tree level vertex y,, and to 2p;, +¢qy,,
with smaller contributions from the higher order tensor struc-
tures 2p +4)(2p +q) and 0,0 (2p + G)a-

To close our study, in Figs. 6, 7, 8 and 9 we illustrate the
relative importance of the various quark-ghost kernel form
factors to the quark-gluon A; reported in Fig. 5 (right). For
the dominant form factors A; and A3 the major contribu-
tion for the infrared enhancement comes from X (~ 72%
and ~ 83%), followed by Xo (~ 20% and ~ 15%) and a
residual contribution from X3 (~ 8% and ~ 2%). The domi-
nance of X in the infrared region for these two form factors
was unexpected. Ay is dominated by the X contribution (~
58%), followed by X3 (~ 30%) and has a smaller contribu-
tion from X;(~ 12%). Finally, A4 is almost entirely built by
the contribution coming from X. It is somehow unexpected
that the various contributions to A; do not follow the relative
importance as suggested by perturbation theory. The terms
proportional X give the major contribution to A3, A1, A4 and
X is responsible for the major contribution only to A;.

7 Discussion and summary

The lattice gluon propagator D(p?) appears as a multiplica-
tive factor in the integral kernels of the Schwinger—Dyson
Egs. (16) and (17). If D(p?) changes, the vertex form fac-
tors need to change to compensate the modification of the
propagator. For example, for a term as D(p?) A1, if the prop-



Eur. Phys. J. C (2020) 80:484 Page 9 of 13 484

25
~ 20 —~
7 7
& 15 &
X X
“g 10 0 Y
3 |08 3
5 15
28 a[6eV]
3
LN LN
> >
[} [
S, S,
=) =)
1] [T}
< &3
N o
X X
) o
2 2
< <
T %
[ [
S S
s s
1 [T}
< &
o~ o
X X
) o
2 ]
[ [
< <
— — 2
3 5 15
o, S 1
’?T ? 0.5
2 < 0
A % 05
o e
<t <t
< 3 < 15 < 3
2
1.
B [GeV]

Fig. 5 Form factors for Sol. I reported in [4] (left) together with those associated with the new solution based on Padé approximantions (right)

@ Springer



484 Page 10 of 13

Eur. Phys. J. C (2020) 80:484

5
— 45
!
= 35
I .8
Nx: '2 0
N 15 0.5
3z 1 ]
~ 05
2 q [Gev]
18
— 16 |
< 14
= 12
g 10|
= 8
¥ el 02
o 4 — .5
o
3 2|
< 0 T 21'5
% e 25 9 [GeV]

05 >
p [GeV]

Fig. 6 The contribution proportional to Xq (left) and to Y; to the form
factor Ay

agator D(p?) is replaced by D(p?) f(p?), then A; should
change accordingly and A; — A1/f(p?). As there are indi-
cations that in full QCD D(p?) is IR suppressed [25,26],
meaning that f(p?) should be smaller than 1 in the infrared
region, then the full QCD form factor A1 should increase by
a factor 1/f(p?) to keep the solution of the SDE for the self-
energies unchanged. On the other hand, the gluon propagator
also appears in the ansatzg for the quark-ghost kernel func-
tions (25)—(27). This functional form is tied to the soft gluon
limit of the quark-gluon vertex and the products appearing
in (26) and (27) are fixed by the soft gluon limit. Therefore,
one expects no or little modifications on the ansatz for the
quark-ghost kernel. This seems to be consistent with the per-
turbative analysis of the quark-ghost kernel as the inclusion
of the quark contributions are associated with higher order
diagrams and are expected to be small. Hopefully this rea-
soning can be extended to lower momenta. This analysis of
the contribution of the gluon propagator to the general solu-
tion of the SDE suggests that the form factors given in Fig. 5
underestimate the A;’s.

Our investigation of the solution of the Schwinger—Dyson
equation takes into consideration only the longitudinal part of
the quark-gluon vertex. Of course, the transverse part of the
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vertex also contributes to the dynamics of QCD and, in prin-
ciple, its contribution to the quark gap equation is expected
to be within the level of the errors found in the inversion per-
formed herein. The transverse form factors have been dis-
cussed in the literature, see [27-35] and references therein,
and, typically, they are written in a way to take into account
the constraints coming from multiplicative renormalizability
and gauge invariance.

In our description of the longitudinal form factors, see
Eq. (29), setting Xo = F(g?) = 1, Y, = Y3 = 0 the
vertex reproduces the longitudinal component of the Curtis-
Pennington (CP) fermion-photon vertex [28]. The CP ver-
tex satisfies the Ward-Green-Takahashi identity and is com-
patible with multiplicative renormalizability of the fermion
SDE. The CP vertex also includes a transverse part, associ-
ated with the form factor tg. The CP model was extended
later taking into account the photon propagator SDE leading
to the Kizilersii-Pennington (KP) vertex [30], that requires
in addition to the CP vertex the inclusion of the transverse
form factors 1, 73 and tg. Our calculation shows that A, A3
and A4 are dominated by X against the expectation from the
CP and KP vertex models, that suggests a dominance of X
contribution to the quark-ghost kernel. However, our results
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show, indeed, that the main contribution to A» comes from
Xp, in good agreement with the expectations coming from
the CP and KP vertex models.

The anomalous chromomagnetic form factor, a contribu-
tion associated with the transverse form factor 75 defined in
Eqgs. (8) and (9), was estimated in [31]. In the infrared region,
75 attains a maximum of about 0.20 GeV~! and drops one
order the magnitude for momentum of ~ 1 GeV. This form
factor can be compared with the longitudinal tensor form fac-
tor A4 that, in the infrared region (below 1 GeV), takes values
between — 1 and 1.5 GeV~!. Of the four longitudinal form
factors computed in the current work, the quark-gluon ver-
tex is dominated by the contributions of A1 and A3, with A4
being subleading. However, our estimation of 14 is about 5
times larger than the anomalous chromomagnetic form factor
obtained in [31]. If one takes this calculation as an estimation
of the typical contribution of the transverse vertex to the quark
gap equation, one expects small corrections that are due to
the transverse form factors that, certainly, will decrease the
longitudinal form factors obtained by inversion of the SDE.

Another interesting comparison can be done with the
results for the quark-gluon vertex obtained in [34], were it is
presented a self-consistent solution of the SDE for the quark
propagator and the quark-gluon vertex function equation in a
truncated form, that include only the three-gluon vertex and
the dressed gluon in the decoupling scenario [36]. Although
in their approach only the dependence on the gluon momen-
tum is kept, their A; form factor is comparable in magnitude
to ours. In the infrared region, it attains the maximum value of
about 3.5 in the chiral limit for the coupling constant having
the value of a() = 0.7427 [34].The product of these two
quantities is ~ 2.6 and can be compared to oy A1 ~ 5 at the
peak of Fig. 5 with the two numbers being in the same ball-
park. Recall that in our case the vertex depends on the gluon
momentum, as in [34], but also on the quark momentum and
on the angle between the quark and gluon momentum and,
therefore, the comparison should be taken with care. If for
our results one averages over the quark momentum, the esti-
mation o A1 will drop and the two results become closer.
The differences in Z(p?) at the small- p? between our quark
wave function, see Fig. 3, and that computed in [34] are
overcome by the large vertex enhancements. Moreover, the
lattice gluon dressing function is magnified in the IR with
respect to the decoupling scenario used in the later work.

Our description of the quark wave function and of the the
running mass reported in Fig. 3 should also be compared to
the earlier studies of the quark propagator within the rainbow-
ladder approximation. In [37,38] a coupled set of renormal-
ized Landau gauge truncated DSE’s for the quark, gluon, and
ghost propagators was solved using a bare quark-gluon ver-
tex, the Ball-Chiu and Curtis-Pennington models with and
without nonabelian correction for the vertex. The framework
used has a number of parameters that can be varied and it
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is possible to explore the parametric freedom of the models
to obtain a running quark mass and a quark wave function
that is similar to what is seen in Fig. 3. This is linked with a
strong infrared enhancement of the kernel of the SDE. Our
approach uses a clear grow of the gluon and ghost dressing
functions, taken from recent lattice simulations, that via the
Slavnov—Taylor identity and the modeling of the longitudinal
form factors are fundamental to give the right strength of the
SDE kernel in the infrared region.

The rainbow-ladder approach of Maris and Roberts [39],
further developed by Maris and Tandy [40] proposes a quark—
quark scattering kernel ansatzg, that has a strong IR enhance-
ment to break dynamically the chiral symmetry, in a frame-
work where the the axial-vector Ward-Takahashi identity and
the Gell-Mann—Oakes—Renner relation are exactly satisfied.
In addition the model preserves the one-loop renormaliza-
tion group structure of QCD. This approach was explored in
[41] and a fair description of the Lattice results for the run-
ning quark mass was achieved. Interesting enough, the study
concluded that the dressed-gluon is not enough to obtain the
existing lattice quark dressing data, unless the SDE kernel is
enhanced for infrared momenta through the dressing of the
quark-gluon vertex. Furthermore, the vertex in these works
would correspond to the contribution of A1, which we found
to have a quite strong IR enhancement as seen in Fig. 5; recall
that in our case the form factors are function not only on the
gluon momentum, but also on the quark momentum.

The symmetry-preserving Maris-Tandy model has been
very successful in describing meson and baryon properties
(see e.g. the reviews [42,43]), emphasizing the role of the
IR enhancement of the quark-gluon vertex as necessary to
reproduce the hadron phenomenology.

In summary, the inclusion of the soft-gluon limit infor-
mation in our analysis enhances the infrared region of the
longitudinal form factors of the quark-gluon vertex. Fur-
thermore, the relative contribution of the quark-ghost kernel
form factors to the quark-gluon vertex do not follow in the
infrared region their relative importance found in the ultra-
violet region. Our solution for the longitudinal vertex form
factors given in Eq. (29) together with the parametrization
(31) and the results reported in Table 1, describes analyt-
ically all the components of the vertex considered, allow-
ing easily further applications. It still remains a challenge to
include the transverse components of the quark-gluon ver-
tex. The error observed in the SDE, at the level of 4%, is
expected to be associated not only with the limitation of the
ansatz but also with the missing transverse form factors. The
phenomenological implications of the present findings to the
meson structure is unexplored and will be considered in a
future publication.
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A Lattice ghost, quark and gluon propagators

For completeness, here we report on the fitting expressions
used to model the lattice data for the various propagators.
Note that, in all cases the model function incorporates the
perturbative behaviour at high momenta. Details about how
the model functions were computed and how well they repro-
duce the lattice propagator data can be found in [4].

The lattice Landau gauge gluon propagator and global fits
to the data was published in [24]. In our analysis we use the
following model function for the gluon propagador (see [24]
for further details)

(32)

2 2 2 2 Y
+M +m

D=z L _lom(ZT0) ]
p*+ M5 p* + M; ocp

where the gluon anomalous dimension is y = —13/22,

Z = 136486 =+ 0.00097, M} = 2.510 £ 0.030 GeV?,
M3 = 0.471 £0.014 GeV?, M§ = 0.3621 £ 0.0038 GeV*,
m$ = 0.216 + 0.026 GeV>. In Eq. (32) » = 33 (1) /127
and to reproduce the lattice data Apcp = 0.425 GeV and the
strong coupling constant reads o, (n = 3 GeV) = 0.3837.
We call the reader attention that in the inversion of Dyson-
Schwinger equation the propagator is renormalised, in the
MOM scheme, at a difference scale. This implies the com-
putation of a global renormalisation constant that multiplies
the above D(p?). The same reasoning applies to the ghost
propagator and to the quark wave function.
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For the ghost propagator we take the data reported in [21]
for the simulation using a 80* and use the following func-
tional form to describe the lattice data

F(p?
D) = 187

z p*+ M3 p? + M}
P2 p*+ M p? + Mi
4 Ygh
2 my ‘
P+ )

p2+m0
2

Aocp

w1 . (33)

X | wIn

The fit to the lattice data results in Z = 1.0429 £ 0.0054,
M} = 1824 57GeV*, M? = 33.4 £ 6.4GeV?, Mj =
6.04£2.7 GeV*, M2 = 29.5£5.7Ge V2, m} = 0.23740.049,
m% = 0.09 # 0.42 GeV?. The ghost anomalous dimension
reads ygn = —9/44 and w and Agcp take the same values
as in the gluon fitting function (32).

For the quark propagator we consider the result of a
Ny = 21ull QCD simulation in the Landau gauge [18,22] for
B = 5.29,k = 0.13632 and for a 323 x 64 lattice. For this par-
ticular lattice setup, the corresponding bare quark mass is 8
MeV and the pion mass reads M; = 295 MeV. For the quark
wave function Z( pz) we corrected the lattice data to become
compatible with perturbation theory at high momenta, see
[4] for details, and use the following functional form

p*+ M3 p? + M}
pt+ M; p? + Mj
with Zg = 1.11824 £ 0.00036, M} = 1.41 £ 0.18 GeV*,
M3 = 6.28 +1.00 GeV?, M5 = 2.11 £0.28 GeV*, M =

6.20 £0.98 GeV2. The choice of the functional form for the
running quark mass was

Z(p*) = Zo

(34)

mq(PZ)
[4+1og(p + 2 mg(pZ))]y’"

where y,, = 12/29 is the quark anomalous dimension for
Ny =2and

M(p*) =

(35)

pr+ m%
p*+m3 p?+mj
The parameters in Eqs. (35) and (36) are M, = 349 &+
10 MeV GeV?, m} = 1.09 + 043 GeV?, m3 = 0.92 &

0.28 GeV2, mj = 0.42 £ 0.15 GeV*, mo = 10.34 £ 0.63
MeV and A = —2.98 +0.25 and A = 1 GeV?/MeV?2.

mg(p*) = M, (36)

+ my .
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