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Resumo

As protéınas reguladoras são macromoléculas complexas essenciais para o funciona-

mento biológico. A literatura recente tem mostrado grandes lacunas na caracterização

de protéınas reguladoras, principalmente relacionadas com a falta do ião zinco nas es-

truturas dos cristais e à ausência de informações sobre seu papel. Assim, uma melhor

caracterização molecular é essencial para aumentar a nossa compreensão das protéınas

reguladoras dependentes de metais, uma vez que estas têm grande valor em áreas como a

biomedicina e biotecnologia. Por este motivo, implementamos abordagens in silico para

prever reśıduos com ligação ao ião zinco em fatores de transcrição.

Primeiro, constrúımos o nosso próprio conjunto de dados com fatores de transcrição

e, em seguida, extráımos um conjunto de caracteŕısticas heterogéneas contendo carac-

teŕısticas baseadas na sequência e estrutura das protéınas. Três modelos do estado da

arte foram implementados e otimizados com nossos dados, Convolutional Neural Net-

works (CNN), Long-Short Term Memory Neural Networks (LSTM) e Gated Recurrent

Units (GRU), bem como validados com um conjunto de dados de benchmark.

As caracteŕısticas baseadas na sequência relacionadas aos reśıduos cistéına e histidina,

bem como a estrutura secundária onde o reśıduo está localizado são as caracteŕısticas com

maior correlação linear com o alvo. Os modelos LSTM e GRU sofrem overfitting obtendo

os mesmos valores em F1-Measure para o treino 65% e em F1-Measure em teste 43%. O

modelo CNN reporta os menores valores F1-Measure em teste de 41%. Portanto, GRU é

o nosso melhor modelo com valores de F1-Measure de 65,165%-treino, 52,926%-validação
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CHAPTER 0. RESUMO

e 42,898%-teste.

Neste projeto usamos a sequência de aminoácidos completa em vez de apenas reśıduos

de ligação espećıficos, o que é uma vantagem sobre os modelos implementados do estado

da arte. Além disso, os nossos resultados de treino abrem as portas para melhorias quando

as sequências de aminoácidos são usadas em tarefas semelhantes.

Palavras Chave: Fatores de Transcrição, Locais de ligação de zinco, Estrutura de

protéınas, Coordenação ao zinco, Aprendizagem computacional, Qúımica computacional
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Abstract

Regulatory proteins are complex macromolecules essential for biological functioning.

Recent literature has shown large gaps in regulatory proteins characterisation, mainly

pertaining to the lack of zinc ion in the crystal structures and the absence of informa-

tion about its role. Thus, an improved molecular characterisation is essential to increase

our understanding of metal-dependant regulatory proteins since they have great value in

biomedical and biotechnological fields. Therefore, we implemented in silico approaches

to predict zinc-binding residues in transcription factors.

First, we constructed our own dataset with transcription factors, and then we ex-

tracted a set of heterogeneous features containing sequence and structure based features.

Three state of the art models were implemented and optimised with our data, Convolu-

tional Neural Networks (CNN), Long-Short Term Memory Neural Networks (LSTM) and

Gated Recurrent Units (GRU), as well as validated with a benchmark dataset.

The sequence based features related do the cysteine and histidine residues and the

secondary structure where the residue is localised are the features with higher linear

correlation with the target. The LSTM and GRU models overfitted obtaining training

F1-Measure of 65% both and low test F1-Measure of 43% both. The CNN model reports

the lowest values with test F1-Measure of 41%. Therefore, GRU is our best model with

F1-Measure values of 65.165%-training, 52.926%-validation and 42.898%-testing.

Here we used the complete amino acid sequence instead of just specific binding residues,

which is an advantage over the state of the art implemented models. Also, our training
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CHAPTER 0. ABSTRACT

results opened the doors for improvement when amino-acid sequences are used in similar

tasks.

Keywords: Transcription factors, Zinc binding-sites, Protein structure, Zinc coordina-

tion, Machine Learning, Computational Chemistry
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Chapter 1

Introduction

Bioinformatics is the branch of computer science that analyses large collections of bi-

ological data. It is a interdisciplinary field that combines computer science, mathematics,

statistics, physics and biology [1].

The cornerstones of bioinformatics were settled in the 1960s with the development of

computer techniques for protein sequence analysis. First, the de novo peptide sequence

assembler was developed [2], followed up by the first protein sequence database [3] and

then the amino acid substitution model for phylogenetics [4]. At the beginning of the

new millennium, the use of the Internet associated with next-generation sequencing led

to an exponential increase in data and a rapid proliferation of bioinformatics tools [5].

Currently, bioinformatics faces numerous challenges, including dealing with Big Data and

ensuring reproducibility of results.

Computational chemistry is the branch of chemistry that solves chemical and biological

problems. It relies on quantum mechanics or classical molecular mechanics calculations

[6] to compute the structures and properties of molecules and solids [6, 7]. Computa-

tional chemistry frequently requires the assistance and validation of experimental setups.

Along with bioinformatics, computational chemistry has emerged as a reliable method for

unravelling the complexities of macromolecules, such as proteins, carbohydrates, nucleic
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CHAPTER 1. INTRODUCTION

acids, and lipids [7]. These techniques make the bridge between raw biological data to

specific knowledge about a given biological process. However, understanding the results

and models provided by bioinformatics remains a barrier to the development of other

areas or the complete application of the findings produced by these experiments [7].

Proteins are macromolecules composed of a sequence of amino acids. They perform

essential functions in organisms, such as storage, transport, catalysis of metabolic reac-

tions, DNA replication, stimuli response, and structure support to cells and organisms [8].

Recent studies have shown that 30%-40% of proteins require one or several metal cofactors

to tune their biological function, stability, structure, and regulation [9]. These proteins

are designated as metal-biding proteins or metalloproteins [10]. The most common metal

ions found in proteins are: calcium (Ca2+), cobalt (Co2+), copper (Cu2+), iron (Fe3+ or

Fe2+), manganese (Mn2+), magnesium (Mg2+), potassium (K2+), sodium (Na2+), nickel

(Ni2+), and zinc (Zn2+) [9]. Zinc ion is the second most abundant transition metal in

living organisms after iron. Zinc is a common catalytic cofactor because of its chemical

properties: Lewis acid strength, lack of redox reactivity and fast ligand exchange [11].

In eukaryotes, most zinc proteins function in the regulation of gene expression, such

as regulatory proteins [11]. Regulatory proteins, such as transcription factors (TF) play

a critical role in the biology of microorganisms. TF repress, de-repress or activate gene

transcription through a tightly regulated direct interactions mediated by various unique

domains or motifs such as helix–turn–helix domains, helix–loop–helix domains, zinc fin-

gers, homeodomains, leucine zippers and β-sheet DNA-binding proteins [12, 13]. The

transcriptional control results from an interplay between regulatory DNA sequences and

site-specific DNA-binding proteins. Therefore, the TF acquire a tertiary shape compati-

ble with the surface of the DNA. When the TF and the DNA are close enough, the TF

establish numerous atomic interactions, such as hydrogen bonds, ionic interactions, and

hydrophobic interactions, which allow the regulation of that gene [14].

The traditional methods that are used to identify metal-binding conformation or bind-

2



1.1. MOTIVATION

ing residues include biochemical and biophysical experiments, such as mass spectrometry,

X-ray crystallography, high-throughput X-ray absorption spectroscopy, surface Plasmon

resonance, and isothermal titration calorimetry [9, 15]. However, these technologies are

too costly and time-consuming. So computational tools have been developed to predict

metal-binding residues [15]. There are several algorithms to predict zinc-binding sites, Nan

Ye et al. classified them according to their basic design and scheme. Therefore, the mod-

els can be divided into four categories learning−, docking−, template− and meta−based

methods [9]. In this work, we aim to use learning-based models to predict zinc-ion binding

residues by implementing deep learning algorithms to construct a prediction model.

To reach the goal of our project, we focus on predicting zinc-ion binding residues using

features extracted from the protein sequences and their respective structures. We studied

the implemented state of the art methods and applied them to our specific problem. As

a final result, we implemented three deep learning classification algorithms that are able

to predict zinc-binding sites.

1.1 Motivation

The most accurate way to detect zinc-binding residues still through biological tech-

niques, such as the ones mentioned above. However, due to the huge amount of proteins it

is not possible to do experiments for all. Therefore, in silico approaches predict a higher

amount of interactions per unit of time, although the results are sometimes inaccurate

[9]. Recent literature has shown large gaps in regulatory proteins characterisation, mainly

pertaining to the lack of zinc ion in the crystal structures and the absence of information

about its role [16, 17]. This misleading information can be a reflection of the crystallo-

graphic conditions or due to the molecular analysis complexity.

Regulatory proteins when inducible by small molecules or drugs, have a great value in

the biomedical and biotechnological fields [18]. Thus, an improved molecular character-
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isation can be helpful to increase our understanding about metal-dependent regulatory

proteins. To fulfil this lack of information, it is important to study new models able to

better understand the features extracted from the protein’s sequence and structure.

1.2 Objectives

This project aims to develop a computational model to detect zinc in TF, using the

proteins tridimensional structure and amino acid sequence composition. To reach this

goal, several steps were followed:

1. The study of Machine Learning approaches to predict zinc-binding in proteins.

2. Study of protein and amino acid properties to be selected as features.

3. Dataset, feature selection, and feature engineering.

4. Study of Deep Learning models and their different variations.

5. Model training, tunning and testing.

6. Analysis of the model with benchmark dataset.

These steps described in the following chapters show the workflow of this thesis.

Our main goal is to achieve a set of models that can predict zinc-ion binding residues,

Scikit-learn [19] and Keras [20] were used as the principal resources, among other libraries.

4
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1.3 Outline

The rest of this document is organised as follows: Chapter 2 contains background

knowledge and the state of the art. Chapter 3, contains the methods used and Chapter

4 the results and discussion. Finally in Chapter 5 the conclusion of the work and future

perspectives are presented

5





Chapter 2

State of the Art

In this chapter, we introduce the concepts necessary for predicting zinc ions in pro-

teins.

We start with biological background, and then we formally define our problem and

present various classification methods that have been used in similar tasks [21–24]. Sub-

sequently, we present and analyse the different feature extraction techniques for proteins.

This state of the art analysis provides a better understanding of previous strategies, al-

lowing us to build a better classifier in an easy and efficient way.

2.1 Biological Background

2.1.1 Proteins - Brief Overview

Proteins are essential organism components and play a role in nearly every process

within cells [8]. Some proteins, enzymes, catalyse biochemical reactions and are essential

for metabolism. Other proteins play critical roles in cell signalling, immune responses,

cell adhesion, cell cycle, and cell shape [25].

Protein synthesis can be divided into two steps: first, the transcription of the DNA

into RNA, and second, the translation of the RNA into proteins. There are 20 amino

7
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acids commonly found as residues in proteins; however, other less common amino acids

also occur [25]. These proteins can be free metabolites or constituents that have had com-

mon amino acid residues modified after protein production. An amino acid contains an

α-carboxyl group, an α-amino group, and a side-chain or specific R group, as represented

in Figure 1. They can be classified into five groups on the basis of the polarity and charge

(at pH 7) of their side-chains, namely the aliphatic with apolar R groups, the non charged

with polar R groups, the aromatic, the positively charged and the negatively charged [25].

Figure 1: Amino acid structure. An amino acid has an α-carbon (orange), an α-amino
group (green), an α-carboxyl group (blue) and a specific R group (pink).

Protein structure is classified in four different levels of complexity: primary, secondary,

tertiary, and quaternary, Figure 2. The primary structure consists of the linear polypep-

tide chain with one-dimensional information, Figure 2A. In the secondary structure, hy-

drogen bonds are formed within the polypeptides, originating a three-dimensional ar-

rangement, such as an α-helix or β-sheet, Figure 2B. Then the overall three-dimensional

structure of a polypeptide is called its tertiary structure, Figure 2C. It is primarily due

to interactions between the side-chains of the amino acids. When a protein is composed

of several polypeptide chains, the arrangement of these chains is called the quaternary

structure of the protein, Figure 2D [25].

8



2.1. BIOLOGICAL BACKGROUND

Figure 2: Four levels of protein structure. (A) Primary structure - constituted by an
amino end and a carboxyl end; (B) Secondary structure - the first scheme represents an
alpha helix, in which the dots represent the hydrogen bonds between residues at different
locations; in the second scheme, the alpha helix it is shown in a pleated sheet schematic
view. (C) Tertiary structure and (D) Quaternary structure. (Adapted from Ritika Gupta,
2017[26])

2.1.1.1 Primary Structure

The primary structure, as defined previously, is the ultimate determinant of the overall

conformation of a protein. The primary structure of any protein in its current state results

from mutation and selection over the evolutionary time [25]. During the synthesis of the

protein, the order in which the amino acids are connected defines a set of interactions

between amino acids [25]. Therefore, the order of the side-chain structures and resulting

interactions are very important since early interactions affect later interactions. Thus,
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the primary structure is essential for the other features that a protein possesses, and the

following structures depend on these properties [25].

2.1.1.2 Secondary and Tertiary Structure

The secondary structure derives from the hydrogen bonds formed between the back-

bone amino acids atoms. They are formed between the partially negative oxygen atom

and the partially positive nitrogen atom [27]. It is important to refer that the hydrogen

bonds that compose secondary structure do not include the ones involving the amino

acid side-chains. The hydrogen bonds can coil or fold the polypeptide chain, generat-

ing patterns that contribute to the protein shape. As a result of the often repetition of

some patterns, they have been identified [27]. The Hydrogen Bond Estimation Algorithm

(DSSP) defines eight types of secondary structure:

• G - 3-turn helix

• H - 4-turn helix (α helix)

• I - 5-turn helix (π helix)

• T - hydrogen bonded turn

• E - extended strand in parallel and/or anti-parallel β-sheet conformation

• B - residue in isolated β-bridge

• S - bend

• C - coil

The tertiary structure is the overall three-dimensional shape formed by the interactions

of the side-chains of the various amino acids. As an example, amino acids with polar

properties are hydrophilic and can be in contact with water, whereas nonpolar amino

acids are hydrophobic, so they will cluster at the core of the protein, avoiding contact

with the surrounding water [28]. Therefore, the properties of the R groups will highly

influence the protein’s tertiary structure and global shape [28].
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2.1. BIOLOGICAL BACKGROUND

2.1.2 Role of the Zinc Ion in Regulatory Proteins

Due to the filled d-shell orbital, Zn2+ has ligand-field stabilisation energy of zero in

all ligand geometries. Therefore, no geometry is inherently more stable than another.

This property can be used by zinc metalloproteins to alter the reactivity of the metal ion.

Hence, it is an essential factor for the ability of this ion to catalyse chemical transforma-

tions accompanied by changes in the metal coordination geometry without destabilising

the structure. [10, 11].

Zinc sites have several functions, Andreini C. et al. in 2011 [11] shows that in Zn-

superfamilies 58% of the zinc sites have a structural role, 18% have a catalytic role, 4%

have a regulation role, 2% have a substrate role, and 18% have an unknown role. In non-

redundant zinc proteins, 55% of the zinc sites have a structural role, 35% have a catalytic

role, 2% have a regulation role, 1% have a substrate role, and 7% have an unknown role

[11].

Cysteine, histidine, aspartic acid, and glutamic acid residues are the most common

residues that coordinate with zinc ions. Moreover, the characteristic spacings between

the ligands defines different zinc motifs in proteins. These motifs can be annotated in

sequences of proteins that do not have their three-dimensional structure determined [29].

As an example, in zinc fingers, where zinc plays a structural role and has tetrahedral

geometry, three coordinations spheres occur: (i) two cysteines and two histidines, (ii)

three cysteines and one histidine, or (iii) four cysteines. These coordinations can occur

with any permutation in the order of the ligands, as shown in Figure 3. Therefore, the

arrangement of the zinc interacting with the ligand can be linear, Figure 3A, intertwined,

Figure 3B, clustered, Figure 3C, or interleaved, Figure 3D [29].
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Figure 3: Zinc/sulfur coordination in protein domains. (A) Linear arrangement; (B)
Intertwined arrangement; (C) Clustered arrangement; (D) Interleaved arrangement (S/N
indicates that histidine can replace cysteine as a ligand in some members of these protein
families.) (Adapted from Wolfgang Maret, 2005 [29])

Thus, it is possible to predict zinc-binding sites with the primary structure of a pro-

tein. However, the predictions are problematic when the spacing between the ligands is

highly variable, ligands are shared by zinc ions, or ligand stem from different interacting

proteins or subunits [29]. Then, it is also important to analyse features of the secondary

and tertiary structure to improve performance of the prediction algorithms.

Figure 4A shows an example of a regulatory protein with zinc fingers, where the zinc

ion has a structural function, and the Figure 4B presents an example of a protein where

the zinc site has a regulatory function.
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Figure 4: Zinc Ion in Regulatory Proteins (A) Schematic representation of the ZIF268
zinc finger-DNA complex (1AAY) and a close-up view of the Zn2+ binding site. (B)
Schematic representation of structure of the transcriptional repressor Atu1419 (VanR)
from Agrobacterium fabrum in complex a palindromic DNA (C2221 space group) (6ZA3)
and a close-up view of the Zn2+ binding site. Zinc ion is represented by the grey sphere.

2.2 Classification Problem

This work intends to improve prediction of zinc ions in regulatory proteins, which is

a binary classification problem. Therefore, our problem can be defined by the following

function (1):

pi = ZincIonDetector(xi, yi), where xi ∈ P ⊆ RN (1)

ZincIonDetector is the algorithm that will detect zinc ion-binding to a residue i, by

giving his prediction pi. xi represents the features of a single amino acid i that belongs

13
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to a protein P , and yi represents the desired output of the classification algorithm, where

yi ∈ [0, 1], y = 0 defines the non-binding to zinc ion class and y = 1 defines the zinc

ion-binding class. RN is the dataset of regulatory proteins and their respective features.

The algorithm uses feature-target training data, (xi, yi), in such a way that ZincIonDe-

tector correctly predicts the classification of new data, test data, that was not supplied

to the algorithm. The problem of metal ion-binding site prediction, particularly zinc ion-

binding site prediction, has been the object of many approaches. Therefore, it is essential

to make a brief description and analysis of some classifiers used for similar tasks. During

this project, some of the analysed models were implemented to evaluate their performance

on our specific problem.

2.2.1 State of the Art for Detection of Zinc Ion in Proteins

The computation-based methods for the prediction of metal-binding sites can be di-

vided into four categories, learning-, docking-, template- and meta-based methods, as

shown by Ye N. et al.[9]. Learning-based methods consider the detection of metal-binding

residues as a classification problem, and use machine learning techniques. The docking-

based methods have the objective of finding the appropriate binding conformation to-

gether with the appropriate target binding residues by examining the surface of the protein

and then, with the help of a scoring function assess the binding pose. The template-based

methods compare the structure of a given unknown protein with an optimal known tem-

plate structure. Finally, the meta-based algorithms aim to build more accurate classifiers

by combining existent predictors [9]. However, the focus of this project is on learning-

based algorithms, specifically the study of machine learning approaches.

To solve problems similar to our project, different Machine Learning algorithms where

tested, such as Random Forest (RF) algorithms [22], Support Vector Machine (SVM) [21,

23], Convolutional Neural Networks (CNN) [23, 24], Long-Short Term Memory Neural

Networks (LSTM) [24], and Gated Recurrent Units (GRU) [24].
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2.2.1.1 Random Forest Classifiers

A Random Forest (RF) [22, 30] based classifier is a supervised machine learning

method, structured by an assemblage of decision tree classifiers, where each tree casts

a unit vote for the most popular class, the class that they have predicted. Then, based

on that polling, the prediction is made upon the class that had more ”votes” [22, 30].

The use of RF classifiers has its advantages, such as effective handling over missing data,

does not need hyper-parameter tuning to produce an acceptable prediction, and it also

contours some issues of overfitting in decision trees [31].

Jiangning Song et al. [22] proposed the MetalExplorer [32], an RF based classifier and

correctly classified eight different types of metal-binding sites (Ca2+, Co2+, Cu2+, Fe2+/3+,

Ni2+, Mg2+, Mn2+ and Zn2+) in proteins. They used heterogeneous features, sequence-,

structure-, and residue contact network-based features. This model has prediction metrics

calculated for each type of metal having a general precision of 60%, and a recall value

that ranges from 59% to 88% depending on the specified metal. In particular for the zinc

ion, this model has a prediction of 60% and a recall of 62.2% [22].

2.2.1.2 Support Vector Machine

A Support Vector Machine (SVM) [33, 34] is a supervised machine learning algorithm

that can be used for prediction or regression problems, yet it is frequently used for classi-

fication problems [33]. SVMs aim to find a hyperplane in an N-dimensional space, where

N is the number of features. The hyperplane is the decision boundary between classes,

and its position is supported by the data points that are closer to it. These data points

structure the support vectors [34]. SVMs have good performance when the margin of

separation is evident and have low computational cost since the decision function is the

subset of training points. However, the performance is low when working with large sets

of data and when the dataset is noisy [33].

Xiuzhen Hu et al. in 2016 proposed the IonSeq model. IonSeq predicts nine metal ions
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(Zn2+, Cu2+, Fe2+, Fe3+, Ca2+, Mg2+, Mn2+, Na+, K+) and four acid radical ion ligands

(CO3
2-, NO2

2-, SO4
2-, PO4

3-) [21]. The model is based on a modified AdaBoost algorithm

[21] that creates a set of multiple training datasets to contour the issue of class imbal-

ance. Then, with each dataset an SVM predictor model is created, and a final classifier

is assembled by combining all the models [21]. This model uses sequence-based features.

The prediction metrics where calculated for each individual metal/ligand, therefore sen-

sitivity values of this model range between 5.57% and 77.14%, and the specificity value is

99%. Specifically for the zinc ion, this model has a sensitivity of 43.56% and specificity

of 99.75% [21].

Ismail Haberal and Hasan Ogul, in 2017, proposed an SVM based model to predict

zinc ion-binding to histidines and cysteines. This model uses sequence-based features,

such as Point Accepted Mutation (PAM) [23, 35], that measures the rate at which point

mutations that swap out one amino acid residue for another have been incorporated in a

gene lineage over the course of evolution [36]. The model reached a precision of 65% and

81% recall [23].

2.2.1.3 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a deep neural network with a mechanism

inspired by the biological visual cortex. This network is feed-forward since the informa-

tion flows only in one direction in the model; therefore, there are no feedback connections

[24, 37]. Convolutional layers extract features from the input training data outputting

abstracted feature maps. The first layer extracts simpler features, and subsequent convo-

lutional layers extract more complex features [24]. CNNs are a remarkable innovation for

computer vision. They are helpful for problems with image data, such as image classifi-

cation, object detection and segmentation. However, these networks also can be applied

to problems with text data, time series data, and sequence input data [38].
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Ismail Haberal and Hasan Ogul proposed, in 2017, the DeepMBS an CNN based model

to predict zinc ion-binding to histidines and cysteines, claiming that their model was one

of the first applications of deep learning models in the prediction of metal-binding sites

[23]. This model uses sequence-based features, such as PAM [39], explained earlier. The

model reached a precision of 79% and 82% recall [23].

Later, in 2019, the same authors proposed another model based on CNNs [24]. The

model uses sequence-based features, such as PAM [35, 36], Protein Composition Server

(ProCos [40] that obtain parameters useful for the functional characterisation of the pro-

teins), and the binary representations of amino acids. A classifier was made for each of

these feature groups, therefore, the prediction metrics were also calculated for each fea-

ture group. Precision values range between 67% to 79% and recall values range between

81.2% and 82% [24].

2.2.1.4 Recurrent Neural Networks

Recurrent Neural Networks (RNN) are deep learning algorithms. RNN have as ob-

jective to work with sequence prediction problems, such as text data, speech data, clas-

sification problems, regression problems, and generative models [38]. Unlikely traditional

deep learning models, the output of a RNN depends on the preceding elements of the

sequence; in our context RNNs process one residue after the other [41]. RNNs, in con-

trast with feedforward algorithms, share parameters from one layer to another, such as

weight parameters. However, these networks have short-term memory, which can cause

the loss of information when exposed to sequences that are long enough [42]. Therefore,

Long-Short Term Memory Neural Networks (LSTM) and Gated Recurrent Units (GRU)

are the created solution for this problem.

Long-Short Term Memory Neural Networks (LSTMs) are a special type of

RNN. They were designed to overcome the problem of short-memory on RNNs. The key
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to LSTMs is the cell state, which is responsible for ”remembering” values along the data

sequence. Therefore, the cell state transports relevant information from start to finish.

This information can be changed by the gates, which are different neural networks that

learn which information is pertinent to keep or forget during training [42, 43]. LSTMs

have four gates, the input gate, the forget gate, the output gate, and the update gate.

Ismail Haberal and Hasan Ogul in 2019 proposed an LSTM based model to predict

zinc ion-binding to histidines and cysteines, with sequence-based features, that are ex-

plained in the above section [24]. Once again the classifiers were tested for each feature

group obtaining precision values that range between 66% to 73.2% and recall values that

range between 80.8% and 81% [24].

Gated Recurrent Units (GRUs) are identical to LSTMs but have fewer parame-

ters, because they have only two gates, and do not have the cell state [42]. Therefore,

this models may train faster and may not need the same amount of data as LSTM to

generalise. However, LSTMs may have better performance in large datasets [42, 44].

Ismail Haberal and Hasan Ogul proposed an GRU based model to predict zinc ion-

binding to histidines and cysteines. this model is based on sequence-based features, that

are explained CNN section [24]. The model was tested for each set of features having

precision values that range between 68.8% to 74.6% and recall values that range between

78% and 81% [24].
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2.3 Feature Extraction

In machine learning (ML), features are the independent variable acting as an input

for the system, and the prediction by the model is the dependent variable. Therefore,

features represent the protein for the model. Feature extraction is the most crucial step

when working with any classifier because the quality of the features will highly influence

the model’s results. In this section, we will explain some of the techniques used to extract

features from proteins.

2.3.1 Sequence-based Features

The majority of the models implemented for the detection of zinc ion-biding use

sequence-based features. These features are obtained directly from the protein’s primary

structure. Therefore, the most used feature is the amino acid composition of the protein,

followed by the physiochemical properties of the residues, then the evolutionary profile of

the protein, using Position Accepted Mutations (PAM) [9, 36], Position Matrix Scoring

(PMS) [9], Position Weight Matrix (PWM) [9], Evolutionary Matrix Scoring (EMS) [9]

or Position Specific Scoring Matrix (PSSM) [9, 22], the calculation of the conservation

score, the analysis of the amino acid pairs, and finally, position related features, such as

sequence length [9, 22].

Since these features derive from the primary structure, they are extracted from FASTA

files. FASTA format is the most standard way to represent a sequence of a protein [45].

It is a text-based format to represent sequences of nucleotides or sequences of peptides,

where the amino acid or the nucleic acid are represented by a single-letter code [45]. This

format begins with the symbol ”>” in the first line followed by a brief description of

the sequence, followed by lines of sequence data [45]. The Table 1 presents the accepted

amino acid codes by FASTA format.
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Table 1: Accepted amino acid codes by FASTA format

Single-letter code Three-letter code Amino acid name

A ALA Alanine

B ASX Aspartate or Asparagine

C CYS Cysteine

D ASP Aspartate

E GLU Glutamate

F PHE Phenylalanine

G GLY Glycine

H HIS Histidine

I ILE Isoleucine

K LYS Lysine

L LEU Leucine

M MET Methionine

N ASN Asparagine

P PRO Proline

Q GLN Glutamine

R ARG Arginine

S SER Serine

T THR Threonine

U Selenocysteine

V VAL Valine

W TRP Tryptophan

Y TYR Tyrosine

Z GLX Glutamate or Glutamine

X any

* translation stop

- gap of indeterminate length
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2.3.2 Structure-based Features

Structure-based features are obtained from the secondary and tertiary structure of the

protein. These types of features are less used since most proteins do not have a determined

structure. Therefore, the most used structural feature is the secondary structure of the

residue, followed by solvent exposure of the residue, then the solvent accessibility of the

residue, the B-factor, and the residue spatial cluster properties [9, 22].

These features are extracted by specific software from PDB data. The PDB data

can have several formats, such as PDB, mmCIF and XML files. These files include the

experimentally determined 3D crystal structure or Nuclear Magnetic Resonance (NMR)

of the protein by listing the atoms that compose it. They can also include citation

information and more details of the structure in the header of the file [46].

21





Chapter 3

Dataset & Methods - Detection of

zinc ion in regulatory proteins

After the analysis of the state of the art, we decided to focus on deep learning meth-

ods since these approaches are the latest in the field. Therefore, we tested with a dataset

generated by us the models proposed by Ismail Haberal and Hasan Ogul in [24].

Despite the number of features that can be collected from a protein, there is not an

optimal set of features for the prediction of zinc ion-biding residues. The models created

to solve this problem have some differences, such as distinct algorithms ranging from

linear regression models, where the obtained results are good and computational costs

keep low, to deep learning approaches that are showing improvement with higher perfor-

mances. Various sets of features are also chosen, being the ones related to the sequence

of the protein easier to obtain, although the structure based ones can offer more complex

information to the algorithms. Therefore, it is not easy to make a direct comparison

between them and find an optimal set. However, the majority of the models uses only

sequence-based features. Hence, our approach is based on choosing sequence-based fea-

tures as well as structure-based features to produce a model with heterogeneous features.

Therefore, we chose the binary representation of the aminoacid sequence, PSSM and its
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conservation score, secondary structure features as well as solvent accessible surface area

related to tertiary structure.

A typical ML model workflow consists of the following processes: raw data collection,

raw data preprocessing, feature extraction, feature preprocessing and selection or reduc-

tion, model training and classification, postprocessing, and performance evaluation [47].

In this chapter, we will describe the workflow of our methods.

3.1 Generating Dataset

Due to the specificity of our problem, we created a dataset of regulatory proteins with

zinc-binding sites. To achieve that, we made two approaches. In the first approach TF

databases were searched and then filtered for the proteins with zinc-binding sites. The

second approach was by searching for databases with zinc-binding proteins and filter the

proteins with regulatory functions.

3.1.1 First Approach

In the first approach, we searched for the latest databases with TF. Therefore, we

chose three databases, the HOCOMOCO database [48, 49], the TransmiR database [50,

51], and the Jaspar 2020 database [52, 53].

The HOCOMOCO database contains TF represented by their amino acid sequence

and the belonging species. The TransmiR database contains the nucleotide sequence of

the TF, as well as the belonging species. The Jaspar 2020 database contains only the

amino acid sequence of the TF. Subsequently, by using the UniProt [54], ID mapping [55]

and entry retrieving [56] we programmatically extracted the proteins structure IDs for the

HOCOMOCO, Jaspar 2020, and TransmiR databases. Moreover, for the TransmiR data,

we also extracted the protein sequence IDs, ending up with a total of 21,233 proteins,
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described by the gene ID, sequence ID and structure ID. In the Table 2 we present a brief

summary of this process.

Table 2: First approach database processing

Database Year Present data Extracted data Nº Proteins
HOCOMOCO [48] 2017 Specie & AA Sequence ID Structure ID 6,793

TrasmiR [50] 2018 Specie & N Sequence ID AA Sequence ID & Structure ID 10,704
Jaspar 2020 [52] 2020 AA Sequence ID Structure ID 3,736

Total 21,233

AA - Amino acid; N-Nucleotide

Then, the next step was the overlapping of the information of the three databases.

First, we overlapped the trio gene ID, sequence ID and structure ID, reducing the set of

proteins to 16,669 entries. Secondly, we overlapped only the structure IDs reducing even

more the set to 13,260 entries. Finally, when downloading the PDB files programmati-

cally, we excluded more 6,139 proteins due to the lack of PDB files in the RCSB PDB [57].

Thus, the final set of proteins was composed of 7,121 TF. This number is very high due

to the fact that, sometimes , the set contains the same protein in different conformations,

and for that reason, the same sequence can have many structure IDs.

The following stage was filtering the proteins with zinc-binding sites from the ones

that did not have zinc-binding sites. For this task, we used the library BioServices [58]

from Python, to search for the monomers bounded to the protein. Thus, we end up with

1,052 entries with zinc-binding residues and 6,069 entries without zinc-binding residues.

The last step was the feature extraction from the proteins. However, during this pro-

cess, we encounter some issues with the labelling of the class of the residues (zinc-binding

or non-zinc-binding). Since a vast part of the files were older entries, some of the fields

of the PDB files were not correctly filled. Hence, we were not able to label the sequences

programmatically. After the feature extraction and labelling of a part of the dataset

we decided to analyse it, concluding that it did not have the quality expected since the

length of the sequences with zinc-binding residues was very low, between 30 and 200, with
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a majority of lengths lower than 50 amino acids. Moreover, the Linear Pearson’s corre-

lation coefficient between the features and the target vector was analysed. The Figure

5A presents the values of the correlation coefficients between the sequence based features

and target showing a strong correlation between zinc-binding sites with the amino acids

cysteine and histidine. The Figure 5B shows the correlation coefficient between evolu-

tionary based features and target presenting again the strong correlation with the amino

acid cysteine. However, the structure based features presented shallow values, as shown

in Figure 5C. For these reasons, we decided to go for a different approach to construct

our dataset.

Pearson’s Linear Correlation Coefficient is the most popular linear correlation coeffi-

cient and it is defined as [59]:

rho(a, b) =

∑n
i=1

(
Xa,i − X̄a

) (
Yb,i − Ȳb

)√∑n
i=1

(
Xa,i − X̄a

)2∑n
j=i

(
Yb,j − Ȳb

)2 (2)

where X and Y are matrices with columns Xa e Yb, having means X̄a =
∑n

i=1 (Xa,i) /n

and Ȳa =
∑n

j=1 (Yb,j) /n. The result of the correlation coefficient ranges between -1 and 1.

When the value is 0, there is no linear dependency between the variables, i.e., the feature

has no linear dependency with the target. A positive correlation coefficient means that

Xa and Yb are simultaneously higher or lower than their respective means. Thus, when

the correlation coefficient is negative, Xa and Yb are on opposite sites of their respective

means. In conclusion, the greater the absolute value, the stronger the relation between

the variables [59, 60].
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A B

C

Figure 5: Feature correlation with the target vector of the first approach. (A) Presents
the correlation with the sequence-based features. (B) Presents the correlation with
evolutionary-based features. (B) Presents the correlation with structure-based features.
The features are detailed bellow in Table 3

3.1.2 Second Approach

In the second approach, we searched for the most recent databases with zinc-binding

proteins. We chose the ZincBindDB [39], which was released in 2019 and has 24,992

zinc-binding sites, this database uses the structural data from the RCSB PDB [57] and
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identifies every detail about the binding site in the protein. This database presents an

API [61] for programmatic access.

The first step was filtering regulatory proteins from the database. Therefore, we query

for regulatory proteins with the following keywords: transcription, transcription factor,

regulatory proteins, and regulation site. Obtaining for each query 8, 586, 85, and 1 entries,

respectively, making a total of 662 entries. Before the next step, we removed repeated

entries. Then, we query for the chains with zinc-binding sites with the structure IDs,

obtaining a set of files with structure ID, chain ID, and zinc ion ID.

In the following stage, we finally constructed our set of proteins by arranging a table

with the columns Structure ID, Chain ID, Zinc ion ID, and Sequence. Subsequently, we

produced the FASTA files for each chain, as well as we downloaded the PDB files for each

protein. After removing entries without PDB files, we accomplished our dataset with the

positive class, proteins with zinc-binding residues, composed of 507 proteins, 1037 chains,

and 1732 zinc-binding sites.

To add negative class examples (proteins without zinc-binding sites), we chose 3000

random proteins from the the set without zinc-binding sites obtained in the first approach.

From this set, we excluded the proteins with sequence length bigger than 5000 and lower

than 30 amino acids. Finally, we chose 1725 random chains and added to our dataset the

respective FASTA and PDB files.

3.1.3 Validation Dataset

The dataset that we used to validate our model was the benchmark dataset proposed

by Passerini et al. [62] adopted by Haberal et al. [24].

This dataset contains 2,727 unique protein chains with 640 zinc-binding sites. How-

ever, it covers eight metal ion or complex binding sites, such as zinc, heme, iron/sulfur,

copper, cadmium, iron, nickel, and others. Thus, due to the difference in the number of

proteins with and without zinc-bing sites, we chose only 640 chains without zinc-binding
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residues to constitute the validation dataset. This dataset has 0.33% of residues that bind

to zinc and 99.67% that do not.

3.2 Feature Extraction & Engineering

After obtaining the final dataset, we proceed to the feature extraction. In contrast

to Haberal et al. [24], which only used sequence-based features, we find it interesting to

experiment with their proposed models, a set of heterogeneous features, with sequence

based features as well as with structure based features.

3.2.1 Sequence based features

To extract sequence based features, we used two methods, the binary representation

of the amino acids, and the Position Specific Scoring Matrix (PSSM) as well as the

respective conservation score. The binary representation of the amino acid consists in the

representation of each amino acid by a 27-vector one-hot vector. Hence, each amino acid

has the assigned value of 1 in its position in the list of amino acids, and the remaining 26

values are 0, as shown in Figure 6.

The PSSM is generated from the Position-Specific Iterative Basic Local Alignment

Search Tool (PSI-BLAST). This tool builds alignments generated by the BLASTp, that

it is a sequence similarity search method for proteins [63]. Briefly, BLASTp reports

alignments that score above a specified threshold. These alignments are identified by

comparing a protein sequence with a specified database. Therefore, the PSSM, by storing

the scores of each position of the alignment in a matrix, catches the conservation pattern

of the alignment [63]. Due to the iterative nature of PSI-BLAST, this algorithm has a

bigger capacity to detect distant sequence similarities. Therefore, has been demonstrated

that PSI-BLAST is capable of detecting conservation even in the three-dimensional struc-
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Figure 6: Binary representation of an amino acid sequence

ture of the proteins by sequence searches [63–65].

To calculate the PSSM, we used the BLAST program from NCBI [64] services pro-

grammatically with the BioPython library [66], using the default E-value = 0.005 cutoff,

with three iterations, and the pdb database [67] since we are working only with proteins

with documented tridimensional structure. Hence, for each protein we obtained matrices

of features with Lx20 size, where L is the sequence length.

The conservation score was calculated for each residue from the values of the PSSM

and is defined as:

Scorei = −
20∑
j=1

pi,jlog2pi,j (3)

where pi,j is the frequency of amino acid j at position i. The PSSM and conservation

score can also be designated as evolutionary based features.

3.2.2 Structure based features

Structure based features were obtained with two algorithms, the hydrogen bond esti-

mation algorithm (DSSP) [68, 69] and the Fast Newton-Raphson Torsion Angle Minimizer
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(FANTOM) [70–72].

With the DSSP program, we obtained the secondary structure in which the residue

is involved. Therefore, we extracted 12 features: secondary structure, relative accessible

surface area, protein backbone torsion angles PHI and PSI, and eight other features that

describe the hydrogen bounds, giving their location and energy.

The FANTOM program has a fast routine, GETAREA [72], to calculate the Solvent

Accessible Surface Areas (SASA) of individual atoms and their gradients. Hence, we ob-

tained the total SASA, the apolar area, the contribution for the SASA from the backbone

and from the side-chains, the ratio of side-chain and surface area to ”random coil”, as

well as an classification of if the residue is exposed to the solvent or if it is buried in the

protein structure.

Table 3 summarises the features extracted from the protein’s sequence and structure.

Having features derived from the primary, secondary and tertiary forms.

After cleaning the data from the feature extraction process, we ended up with a dataset

that contains:

• 1037 chains and 1724 zinc-binding sites (507 proteins)

• 1701 chains for the class of non-zinc-binding sites

The new values for the correlation coefficients, showed in Figure 7, are better than

the values from the data in the first approach. The overall absolute values are larger,

showing a better relation of the features with the target. Specifically, cysteine and his-

tidine amino acids have the most significant values showing their strong relation with

zinc-binding sites since they are the most abundant residues in these sites, Figure 7A,

the same property about cysteine is presented in Figure 7B. The third most significant

feature is the secondary structure, Figure 7C third bar, demonstrating that the residues
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Table 3: Summary of the extracted features

Features Nº

Binary representation
of the amino acids

A, R, N, D, C, Q
E, G, H, I, L, K
M, F, P, O, S
U, T, W, Y, V
B, Z, X, J, NoSeq

27

PSSM
A, R, N, D, C, Q,
E, G, H, I, L, K, M,
F, P, S, T, W, Y, V

20

Conservation Score Scorei = −
∑20

j=1 pi,j log2pi,j 1

DSSP

Secondary Structure
RASA
PHI
PSI
Hydrogen bound 1 (energy and location)
Hydrogen bound 2 (energy and location)

12

SASA

Total SASA
Apolar area
Backbone Influence
Side chain Influence
Ratio
In/Out

6

Total 66

that form zinc-binding sites may have a prefered secondary structure.

During the process of collection of the dataset, we tried to balance the number of

sequences for both classes of this problem. However, since we are classifying residues, our

dataset is extremely unbalanced, having 0.51% of residues that bind to zinc and 99.49%

that do not.
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A B

C

Figure 7: Feature correlation with the target vector of the second approach. (A) Presents
the correlation with the sequence-based features. (B) Presents the correlation with
evolutionary-based features. (C) Presents the correlation with structure-based features.

3.2.3 Feature Selection

In deep learning algorithms, it is not usual to apply methods for feature selection

since the model has the capacity to work with the features that have more impact on the

prediction. However, we made an approach of feature selection to analyse the behaviour

of the model with the complete dataset and with a reduced dataset. We realise that the
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chances of the performance enhancement of the model with a smaller dataset are low.

However, if the performance is not impaired, it is an advantage to work with a smaller

dataset since we can shorten memory usage and time consumption, resulting in lower

computational cost while training.

There are three types of feature selection methods: the filters, the wrappers and

the embedded. The filters preprocess the features independently from the classifier, the

wrappers select the features depending on a given classifier, and the embedded methods

are integrated into the classification algorithm [73].

Since feature selection may not have a big positive impact on the performance of the

algorithm, we followed a very simple approach by choosing the Boruta algorithm [74, 75],

which is a wrapped filter based on RF classifier. The Boruta algorithm starts by creating

random copies of all features, the shadow features. Then, it trains the RF with the

extended set of features applying a measure to calculate the importance of each feature,

the default measure is mean decrease accuracy. Therefore, in each iteration, the algorithm

checks if the real feature is more important than the shadow feature, removing the ones

that do not have importance [74, 75].

Python has the Boruta library [74, 76], with very useful methods that simplify the task

by retrieving a list with the ranks of each feature (where 1 means best feature). Thus,

the model determined that the least important features are the binary representation of

N (asparagine), Q (glutamine), M (methionine), O (pyrrolysine), U (selenocysteine), B

(aspartate), Z (glutamate), X (any), J (leucine) and NoSeq (no sequence). In conclusion,

the method excluded 10 features, hence, we can train the models with a datatset of 66

features or a dataset with 56 features, and compare their performances.
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3.3 Implemented Models

3.3.1 Convolutional Neural Networks

As referred earlier, CNN are very powerful neural networks for image analysis. They

are composed by multilayer feedforward, with many hidden layers as well as different

types of layers [37, 77]. The number of weights to be learned in CNN algorithms can be

reduced since some layers may not be fully connected. Although this algorithm is not

the most appropriate for sequential data problems, there are some adaptions that can be

performed to the data to make this application possible for CNNs [77].

The CNN model proposed by Haberal et al.[24] is composed of four convolution layers

(2D CNN layers), two pooling layers and two multi-layers perceptron layers, like the

following:

• 2D Convolutional 1 with input of 280, output of 128, and kernel size of 3x3

• 2D Convolutional 2 with input of 128,output of 96, and kernel size of 3x3

• 2D Convolutional 3 with input of 96, output of 64, and kernel size of 3x3

• 2D Convolutional 4 with input of 64, output of 32, kernel size of 3x3 and ReLU

activation

• 2D Max Pooling with input of 32 and output of 64, with a pooling window of 2x2

• Dropout layer with a rate of 0.15

• Dense layer with output of 64 and Rectified Linear Unit (ReLU) activation

• Dropout layer with a rate of 0.15

• Classification layer (dense layer) with output of 2 and Softmax activation

The convolution layer creates a tensor of outputs by convolving a created convolution

kernel with the layer input. Therefore, with this process, the input image is turned into

an abstracted feature map, designated as an activation map. The input for this layer is

the (number of inputs) x (input height) x (input width) x (input channels) and returns

an output of (number of inputs) x (feature map height) x (feature map width) x (feature
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map channels) [77].

Max Pooling layers reduce de dimensions of data by dividing their input into rectan-

gular pooling regions and then computing the maximum of each region for the output

feature map [77].

Fully connected layers, such as dense layers, are multilayer perceptrons that flatten

the input matrix to an output vector. All of the neurons of these layers are connected to

the neurons of the previous layer. In classification problems, the output size of the last

fully connected layer is the number of classes of the problem.

Dropout layers set random input elements to zero with a given probability [77].

ReLU activation function applies a threshold operation where all the negative values

are set to zero, R(z) = max(0, z). This function is especially useful in CNNs because

these neural networks were developed for image processing, where the data is presented

in the range between [0, 1], characterising the pixel’s intensity. Therefore, does not make

sense to have negative values in the feature map, and ReLU activation rectifies the values.

However, this activation function is not useful in all applications [77].

Softmax activation function takes as input a vector of raw outputs from the previous

layer and returns a vector of probability scores [77]. With x as the input vector and y as

the output vector, the rth component of the output is:

yr (x) =
ear(x)∑k
j=1 e

aj(x)
where ar(x) = ln(P (x, θ|cr)P (cr)) (4)

where k is the number of classes, and the sum of the probabilities of each class in the

prediction is equal to 1. This function is particularly useful for classification problems in

the classification layer, returning the probability distribution of each class, therefore is

highly adopted in multi-label problems.

CNNs models require specific pre-processing. Therefore the first step is to normalise
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the values of the features between 0 and 1, to mimic the greyscale pixel’s intensity [37].

The normalisation was made with the Min-Max Scaling approach [37], where the feature

values are scaled between 0 and 1.

Then finally, we constructed our images by extracting windows from the data. Haberal

et al. [24] experimented their models with various windows size and concluded that win-

dows of 15 amino acids were the best size. Therefore, to classify each amino acid, we

made a window of size 15, where we classify the amino acid in the middle position. To

simplify the process, we ignored the first and last seven amino acids since they do not

influence on zinc-binding sites. The Figure 8 shows the scheme of the process:

Figure 8: Schematic of window extraction

3.3.2 Long-Short Term Memory Neural Networks

LSTMs are RNN created to solve the memory problems of RNNs. They have a high

number of serial blocks that constitute the long term memory, but each block only uses

the state of the previous block, which defines the short term memory [42, 77].

Haberal et al. [24] proposed an LSTM model with four LSTM layers, one dropout

layer, and one fully connected layer, such as:
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• LSTM 1, 2, 3, and 4 with an output of 50

• Dropout layer with a rate of 0.2

• Classification layer (dense layer) with output of 2 and Softmax activation

The core of the LSTM block, as presented in Figure 9, is the cell state c, and the

parameters to be learned are the input weight matrix (5), the recurrent weight matrix (6)

and the bias (7).

W = [Wi Wf Wg Wo] (5)

R = [Ri Rf Rg Ro] (6)

b = [bi bf bg bo] (7)

First, ct−1, the previous cell state, passes through the forget gate, where it is multiplied

by ft function (8). Where xt is the input features, ht−1 is the previous hidden state, and

σg is the sigmoid activation function (9), that returns values between 0 and 1.

ft = σg(Wixt +Riht−1 + bi) (8)

sigmoid(x) =
1

1 + e−x
(9)

Then, in the input gate, the cell candidate (10) where σc is the tanh activation function

that returns values between -1 and 1, is multiplied by it function (11). The obtained

result is summed in the update gate with the cell state generating the new cell state ct.

Finally, ct passes through the tanh activation function and is multiplied by ot function

(12), in the output gate generating a new hidden state. The new cell state and the new

hidden state will be the input of the next block, and so on.

gt = σc(Wgxt +Rght−1 + bg) (10)

it = σc(Wixt +Riht−1 + bi) (11)
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ot = σc(Woxt +Roht−1 + bo) (12)

Figure 9: LSTM block (Adapted from António Dourado [77])

3.3.3 Gated Recurrent Units

GRU are the new generation of RNNs. They are very similar to LSTMs, however,

they lack the cell state and some gates [42, 44]. The last model proposed by Haberal et

al. [24] was a GRU model with three GRU layers, one dropout layer, and one dense layer,

like the following:

• GRU 1, 2, and 3 with an output of 256

• Dropout layer with a rate of 0.2

• Classification layer (dense layer) with output of 2 and Softmax activation

A GRU block has an update gate that has the same function as the forget and input

gates from the LSTM. The second gate is the reset gate that, with a sigmoid activation

function, decides which information passes or not. The cell state was substituted by the

hidden state, and all the operations are made in the hidden state [42, 44].

For these two models, the pre-processing of the data was made by standardisation,
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where the features were transformed by subtracting the mean and then divided by the

standard deviation. This transformation creates a dataset with features that have a mean

of zero and unit standard deviation.

LSTMs and GRUs accept sequential data. Therefore, two approaches for the length

of the sequence were made. The first approach was by expanding all the sequences to

a length of 2143, which represents the longest sequence in the dataset. And the second

approach was setting the length of the sequences to 500 amino acids, with an overlap of

50 amino acids. Therefore the sequences with a lower length were filled with zeros to

reach the ideal length, and the sequences with higher length were divided into windows

with an overlap of 50 amino acids.

3.4 Experiments

The dataset split was made with the following proportions: 60% for training data,

20% for validation and the remaining 20% for testing. The division into these three sets

was made taking into account the original proportions of the classes of the dataset to not

aggravate the imbalance.

To adapt the explained models to our problem, we changed the activation function

in the CNNs from ReLU to the sigmoid activation function, sigmoid(x) = 1
1+e−x , which

also transforms negative values into positive, as needed in CNNs. The classification layer

in the three models was substituted by a dense layer with output 1 and sigmoid activa-

tion function. We defined the loss function the binary cross-entropy, which calculates the

cross-entropy between true and predicted labels. We also chose the Adam optimiser.

All three models were trained with 100 epochs and batch size of 100 for CNN and LSTM,

for GRU the batch size was 1000.
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Due to the unbalanced dataset, we helped the algorithms by setting the bias of the

output layer as the logarithm of the proportion of positive examples in the dataset, in our

case log(0.0051) and for the validation dataset log(0.0033). The models were trained with

5-fold cross-validation, where the test dataset from the dataset split was always preserved

for the testing, while the model was trained and validated with the rest of dataset (80%).

We used the Stratified K-Folds from scikit learn, to ensure the proportion of the data in

the folds. The same strategy was used for the benchmark dataset, however, since this

datatset has fewer samples we used 3-fold cross-validation instead.

3.4.1 Experiment 1

The first experiment, had the aim to evaluate the model with the parameters explained

earlier, the same used in the state of the art model. Therefore, we intended to examine

which feature set and sequence length would bring better results, as well as analysing the

model’s general performance to outline the path to the second experience. In summary,

we will test:

• CNN model with sequences with window size of 15 and with 66 and 56 features.

• LSTM model with sequences of length 2143 and 500 with 66 and 56 features.

• GRU model with with sequences of length 2143 and 500 with 66 and 56 features.

Table 4 presents the implemented models.
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Table 4: Summary of Experiment 1

Model Layers

CNN

2D Conv1(input shape, 128, (3,3))

2D Conv2(128, 96, (3,3))

2D Conv3(96, 64, (3,3))

2D Conv4(64, 32, (3,3), sigmoid)

2D MaxPool(32, 64, (2,2))

Dropout(0.15)

Dense(64, sigmoid)

Dropout(0.15)

Dense(1, sigmoid)

LSTM

LSTM 1(input shape, 50)

LSTM 2(50)

LSTM 3(50)

LSTM 4(50)

Dropout(0.2)

Dense(1, sigmoid)

GRU

GRU 1(input shpe, 256)

GRU 2(256)

GRU 2(256)

Dropout(0.2)

Dense(1, sigmoid)

Adam optimiser, binary crossentropy loss

3.4.2 Experiment 2

The second round of experiences was conditioned by the results of the previous experi-

ence and by the computational resources since the networks already have great complex-

ity. Therefore, here we tried different hyperparameters to enhance the performance of the

models. For the CNNs we tested the dense layer with outputs of 32 and 96, the dropout

layer was tested with the rate of 0.1. The LSTM model was tested with the output of 20
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and 30, and the dropout layer was tested with 0.1 and 0.3 rates. GRU model was tested

with the output of 64 and 128, and the dropout was lowered to 0.1.

Finally, the best parameter combination were tested with the learning rate of 0.0001

and 0.00001 since the default rate is 0.001.

Then, the best set of the hyperparameters was tested with the benchmark dataset.

3.5 Metrics

The final step after selecting the models and organising the experiments is the choice

of the evaluation metrics. In our particular problem, the metrics were chosen under the

condition of an unbalanced dataset.

Therefore, the first step is obtaining the confusion matrix of the model predictions,

as shown in Table 5, where ZB is the class zinc-binding residue and NZB is the class non

zinc-binding residue.

Table 5: Confusion Matrix

Predicted

ZB NZB

Real ZB TP FN

NZB FP TN

TP (True Positives) is the number of well classified zinc-binding residues, TN (True

Negatives) is the number of well classified non zinc-binding residues, FP (False Positives)

is the number of non zinc-binding residues classified as zinc-binding residues, and FN

(False Negatives) is the number of zinc-binding residues classified as non zinc-binding

residues.

We must choose the appropriate metrics for models developed with an unbalanced

dataset, such as our case which has the positive outcome as the minority class with 0.51%

of examples. Therefore, we selected the Precision, Recall, F1-Measure and the Precision-
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Recall Area Under the Curve (PR AUC). Although accuracy is the most used metric, it is

not appropriate for unbalanced problems since it calculates the rate of correct predictions

by the total predictions. Hence, it will have a high value even with a no-skill model due

to the high number of correct predictions for the negative class [78].

Precision (13) is the fraction of correctly assigned positive class that belongs to the

positive class. Recall (14) shows the positive rate by summarising how well the positive

class was predicted. The F1-Measure (15) combines precision and recall balancing both

concerns. PR AUC is the calculation of the score of the area under the curve appropriated

for unbalanced datasets, Figure 10.

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

F1−Measure = 2× Precision+Recall

Precision×Recall
(15)

Figure 10: Precision Recall Curve (Adapted from Tour of Evaluation Metrics for Imbal-
anced Classification, 2020 [79])
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In summary, the aim is to achieve the best F1-Measure possible, that it is obtained

with the best values for Precision and Recall, as well as the best PR AUC value, closest

to 1 as possible.
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Chapter 4

Results and Discussion

In the current chapter, we will present and analyse the results of the proposed experi-

ments. As a starting point for the discussion, we present the results from the chosen state

of the art methods [24] applied to the benchmark dataset [62], Table 6.

Table 6: Ismail Haberal and Hasan Ogul Results [24]

Features F1-Measure (%) Precision (%) Recall (%)

CNN

PAM

BR

PC

80.5

75.6

73

79

77.8

67

82

81.2

82

LSTM

PAM

BR

PC

73.6

72

72.6

73.2

66

72.4

80.8

81

81

GRU

PAM

BR

PC

73.6

72,2

72

74.6

68.8

71

81

81

78

PAM - Point Accepted Mutation; BR - Binary representation of amino acids; PC - ProCos
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4.1 Experiment 1

In experiment 1 we implemented the state of the art methods with slight changes for

our dataset, as explained in the previous chapter. Therefore, we present the mean and

standard deviation of the results from the 5-fold cross-validation. The Tables 7-15 show

the results organised by the number of features of the dataset (Nº F.) and window size of

the data (W).

The CNN model, has low performance with our dataset. Table 7 presents the results

for the training stage. The dataset with 66 features presented the highest value for

the F1-Measure with 39.123%. However, the dataset with 56 features presents lower

and stable standard deviation values of the metrics. In Tables 8 and 9, the results of

validation and test are showed, respectively. An opposite behaviour is detected, since the

dataset with 56 has the highest value for the F1-Measure with 32.974% for validation

and with 30.8% for the test set. The metrics for the dataset with 56 features have lower

standard deviation values. This model presents a gap between the values of the metrics

for training and validation/test. However, the loss function for training and validation

with 56 features shows a good fit since validation values keep up with the training values

(Figure 11) (for more information please check Appendix A - Figure A.1). The application

of the algorithm to the dataset with 56 features presents more stable values, with a lower

standard deviation. Thus, the following experiences with CNN model will be made with

only this dataset.

Table 7: Experiment 1 - CNN - Training results

Nº F. W Mean SD

F1 M% Precision% Recall% PR AUC F1 M Precision Recall PR AUC

66 15 39.123 57.782 29.652 0.462 1.655 2.267 1.805 0.089

56 15 38.710 57.822 29.125 0.517 1.247 0.643 1.329 0.013

SD - Standard Deviation
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Table 8: Experiment 1 - CNN - Validation results

Nº F. W Mean SD

F1 M% Precision% Recall% PR AUC F1 M Precision Recall PR AUC

66 15 31.467 57.674 23.808 0.519 15.576 5.877 11.463 0.039

56 15 32.974 62.756 22.574 0.525 3.910 2.102 3.273 0.018

SD - Standard Deviation

Table 9: Experiment 1 - CNN - Testing results

Nº F. W Mean SD

F1 M% Precision% Recall% PR AUC F1 M Precision Recall PR AUC

66 15 29.416 56.864 22.006 0.496 14.689 3.892 10.786 0.029

56 15 30.800 61.292 20.834 0.502 4.713 2.299 3.776 0.012

SD - Standard Deviation

Figure 11: Loss of CNN model, with 56 features
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The LSTM model shows overall better results than the CNN model. During the train-

ing stage, Table 10, the results are closer to those of the state of the art. For the dataset

with the 56 features and window size of 500 residues, we obtained an F1-Measure of

70.115%. Tables 11 and 12 present the highest results for the dataset with 56 features

and with the window size of 2143 residues, with F1-Measure values of 49.614% for vali-

dation and 40.660% for test. The standard deviation of the metrics in this model does

not influence the choice for a better dataset since the values are low as well as scattered

between the datasets, however, in the next experiment we will use the window with 500

residues for the reduction in computational costs. In this model we see an even bigger

gap between the values of training and validation/test. Figure 12 presents the loss curves

showing that the model suffers from overfitting, since the validation set has higher values

for the loss function (for more information please check Appendix A - Figure A.2). In

the next experience we aim to reduce this gap, because for an ideal fit the curves should

almost overlap.

Table 10: Experiment 1 - LSTM - Training results

Nº F. W Mean SD

F1 M% Precision% Recall% PR AUC F1 M Precision Recall PR AUC

66 2143 68.715 76.919 62.410 0.842 1.159 0.881 1.225 0.009

66 500 69.551 78.202 62.985 0.853 0.684 0.873 0.841 0.009

56 2143 69.740 77.732 63.357 0.850 1.899 1.642 1.958 0.018

56 500 70.115 78.517 63.810 0.857 1.376 1.846 1.183 0.012

SD - Standard Deviation
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Table 11: Experiment 1 - LSTM - Validation results

Nº F. W Mean SD

F1 M% Precision% Recall% PR AUC F1 M Precision Recall PR AUC

66 2143 49.252 54.738 45.016 0.559 3.062 2.253 3.473 0.049

66 500 49.547 52.737 46.673 0.515 4.325 4.962 3.197 0.056

56 2143 49.614 52.036 47.199 0.525 2.370 2.485 2.112 0.044

56 500 48.289 52.328 44.941 0.509 4.466 4.254 4.067 0.051

SD - Standard Deviation

Table 12: Experiment 1 - LSTM - Testing results

Nº F. W Mean SD

F1 M% Precision% Recall% PR AUC F1 M Precision Recall PR AUC

66 2143 39.759 43.806 36.207 0.385 1.436 2.762 1.904 0.042

66 500 39.848 41.554 37.702 0.346 2.365 1.934 2.614 0.062

56 2143 40.660 42.584 38.096 0.360 2.492 2.855 2.546 0.076

56 500 38.547 41.384 35.698 0.332 2.047 2.552 1.664 0.071

SD - Standard Deviation

Figure 12: Loss of LSTM model, with 56 features and window size 500 residues
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The GRU model presents the best results so far. Table 13 shows the highest F1-

Measure of 72.251% for the dataset with 66 features and window size of 500 residues.

This dataset has also the lowest values for the standard deviation of the metrics. How-

ever, during the validation and test the dataset with the best performance is the one with

56 features and window size of 500, with F1-Measure of 47.645% and 39.260%, respec-

tively (Tables 14 and 15). Likewise, the previous model we have the same problem with

overfitting when analysing the loss curve, as shown in Figure 13 (for more information

please check Appendix A - Figure A.3).

Table 13: Experiment 1 - GRU - Training results

Nº F. W Mean SD

F1 M% Precision% Recall% PR AUC F1 M Precision Recall PR AUC

66 2143 71.622 78.560 66.029 0.872 1.198 0.497 1.681 0.011

66 500 72.251 78.956 67.013 0.877 0.609 0.889 1.238 0.005

56 2143 71.716 78.546 66.336 0.872 1.716 1.304 2.009 0.013

56 500 72.149 78.800 66.861 0.874 0.759 0.799 1.355 0.007

SD - Standard Deviation

Table 14: Experiment 1 - GRU - Validation results

Nº F. W Mean SD

F1 M% Precision% Recall% PR AUC F1 M Precision Recall PR AUC

66 2143 47.447 52.150 43.627 0.451 2.145 3.180 0.830 0.041

66 500 46.248 51.258 42.254 0.396 4.813 3.855 4.944 0.034

56 2143 46.574 51.553 42.522 0.430 3.495 3.017 3.004 0.045

56 500 47.645 48.813 46.972 0.421 5.107 3.665 5.764 0.026

SD - Standard Deviation
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Table 15: Experiment 1 - GRU - Testing results

Nº F. W Mean SD

F1 M% Precision% Recall% PR AUC F1 M Precision Recall PR AUC

66 2143 37.253 40.263 34.164 0.290 2.244 2.824 1.648 0.073

66 500 37.648 41.327 34.526 0.292 1.648 2.227 1.131 0.084

56 2143 37.953 40.495 34.381 0.291 1.208 2.112 0.732 0.072

56 500 39.260 39.886 38.566 0.294 2.844 2.367 4.251 0.060

SD - Standard Deviation

Figure 13: Loss of GRU model, with 56 features and window size 500 residues

4.2 Experiment 2

The state of the art methods are quite complex, however high complexity does not

mean a better performance. Therefore, in this experiment, we evaluate the performance

of the models with different parameters and sometimes simpler parameters.

First, we start by the CNN model, where we tested this model with different output

sizes for the dense layer, like 32 and 96, and one more dropout rate of 0.1. Since the
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dataset with 56 features presents more stable and higher values we excluded the datatset

with 66 features from the experiments with this model.

In the training process, Table 16, the model with the dense layer with output size of 96

and dropout rate of 0.1 achieved the best result with a value of F1-Measure of 42.460%,

higher than the previous model. During validation, Table 17, and test, Table 18, the

dense layer with output size of 32 and the dropout rate of 0.1 had the best performance

with a F1-Measure of 40.717% and 38.291%, respectively. The difference in performance

between the training and validation/test also decreased.

Table 16: Experiment 2 - CNN - Training results

DLS D Mean SD

F1 M% Precision% Recall% PR AUC F1 M Precision Recall PR AUC

32 0.1 42.162 60.122 32.962 0.552 3.792 3.385 5.254 0.010

32 0.15 37.972 55.888 28.909 0.500 3.129 1.566 3.535 0.016

64 0.1 40.639 57.076 31.552 0.525 3.365 2.099 3.384 0.026

96 0.1 42.460 58.707 33.303 0.541 1.764 0.733 2.071 0.012

96 0.15 39.822 56.440 30.917 0.510 2.194 1.332 3.084 0.010

SD - Standard Deviation; DLS - Dense Layer output size; D - Dropout Rate

Table 17: Experiment 2 - CNN - Validation results

DLS D Mean SD

F1 M% Precision% Recall% PR AUC F1 M Precision Recall PR AUC

32 0.1 40.717 59.714 32.117 0.545 5.129 6.269 7.634 0.036

32 0.15 37.150 58.599 29.102 0.508 9.240 4.858 11.007 0.031

64 0.1 38.666 59.954 29.223 0.538 5.357 4.293 6.241 0.021

96 0.1 34.550 61.921 25.154 0.536 8.115 5.958 8.296 0.031

96 0.15 32.739 61.300 24.119 0.514 9.975 7.751 9.504 0.021

SD - Standard Deviation; DLS - Dense Layer output size; D - Dropout Rate
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Table 18: Experiment 2 - CNN - Testing results

DLS D Mean SD

F1 M% Precision% Recall% PR AUC F1 M Precision Recall PR AUC

32 0.1 38.291 58.477 30.050 0.517 6.593 6.359 9.324 0.034

32 0.15 35.057 54.790 27.475 0.482 9.107 3.171 10.574 0.021

64 0.1 37.498 59.845 27.993 0.516 4.354 6.335 5.191 0.027

96 0.1 33.629 62.046 24.365 0.521 8.239 6.176 8.494 0.018

96 0.15 31.508 60.567 23.161 0.495 9.987 7.151 10.006 0.014

SD - Standard Deviation; DLS - Dense Layer output size; D - Dropout Rate

The LSTM model was tested with two more layer sizes for the LSTM layers, 20 and

30, and two more dropout rates, 0.1 and 0.3. We present the results for the dataset with

56 features and window size of 500 since in the previous experiment was the one with

slightly better results.

During training, Table 19, the model with LSTM layer size of 50 and dropout rate of

0.1 has the highest F1-Measure of 70.199%. However, when validating, Table 20, LSTM

layer size of 20 and dropout rate of 0.1 had the best performance with F1-Measure of

52.342%. During testing, Table 21, LSTM layer size of 30 and dropout rate of 0.3 had

the highest value of F1-Measure of 41.695%. These experiments do not show a big im-

provement from the previous LSTM model as well as do not improve the decrease of the

gap of the results between training and validation/test.
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Table 19: Experiment 2 - LSTM - Training results

LS D Mean SD

F1 M% Precision% Recall% PR AUC F1 M Precision Recall PR AUC

20 0.1 65.539 72.532 59.903 0.789 1.685 1.865 1.376 0.027

20 0.3 64.133 72.867 57.744 0.784 2.201 2.478 2.428 0.035

30 0.1 68.724 74.435 64.138 0.826 2.126 1.802 2.424 0.026

30 0.3 67.520 75.475 61.039 0.817 1.868 1.596 2.016 0.025

50 0.1 70.199 76.082 65.450 0.847 1.836 2.925 1.145 0.022

50 0.3 69.273 76.764 63.465 0.842 1.231 1.806 1.632 0.017

SD - Standard Deviation; LS - LSTM Layer Size; D - Dropout Rate

Table 20: Experiment 2 - LSTM - Validation results

LS D Mean SD

F1 M% Precision% Recall% PR AUC F1 M Precision Recall PR AUC

20 0.1 52.342 60.645 46.214 0.629 4.964 4.451 5.675 0.064

20 0.3 48.828 59.253 42.509 0.618 4.175 6.852 6.504 0.061

30 0.1 49.351 54.253 45.767 0.616 4.547 3.946 4.520 0.053

30 0.3 49.607 55.102 45.845 0.599 4.352 6.485 3.646 0.050

50 0.1 48.985 53.538 45.534 0.544 3.766 5.190 3.243 0.050

50 0.3 48.891 53.793 45.387 0.558 4.885 4.822 6.710 0.038

SD - Standard Deviation; LS - LSTM Layer Size; D - Dropout Rate
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Table 21: Experiment 2 - LSTM - Testing results

LS D Mean SD

F1 M% Precision% Recall% PR AUC F1 M Precision Recall PR AUC

20 0.1 41.314 48.466 36.299 0.499 0.928 3.898 1.895 0.038

20 0.3 40.692 48.829 35.544 0.487 3.513 2.862 4.726 0.045

30 0.1 39.194 42.684 35.883 0.460 2.139 3.108 1.737 0.051

30 0.3 41.695 43.658 39.260 0.435 2.455 1.840 3.356 0.079

50 0.1 38.782 41.830 36.284 0.371 3.161 3.281 3.391 0.088

50 0.3 40.071 43.084 37.271 0.388 2.612 2.771 3.315 0.079

SD - Standard Deviation; LS - LSTM Layer Size; D - Dropout Rate

The GRU model was tested with two more layer sizes for the GRU layers, 64 and 128,

and with the dropout rate of 0.1. We present the results for the dataset with 56 features

and window size of 500, from the same reasons as the LSTM model.

The highest performance during training, Table 22, was from the model with GRU

size of 256 and dropout rate of 0.1 with a F1-Measure of 71.560%. During validation,

Table 23, and testing, Table 24, the highest value was achieved by the GRU layer of size

64 and dropout rate of 0.2. In theses experiments the problem of overfitting kept up.

Table 22: Experiment 2 - GRU - Training results

LS D Mean SD

F1 M% Precision% Recall% PR AUC F1 M Precision Recall PR AUC

64 0.1 69.941 76.819 64.295 0.845 0.976 1.612 1.810 0.011

64 0.2 69.854 77.018 64.140 0.845 1.482 1.651 2.032 0.017

128 0.1 71.200 77.959 66.487 0.863 0.840 1.557 1.204 0.010

128 0.2 71.122 77.654 65.933 0.858 0.729 1.553 1.021 0.012

256 0.1 71.560 79.204 65.790 0.871 0.709 1.934 0.805 0.010

SD - Standard Deviation; LS - GRU Layer Size; D - Dropout Rate
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Table 23: Experiment 2 - GRU - Validation results

LS D Mean SD

F1 M% Precision% Recall% PR AUC F1 M Precision Recall PR AUC

64 0.1 49.643 54.049 46.265 0.607 6.366 5.652 7.322 0.053

64 0.2 50.069 53.081 47.839 0.601 4.302 5.110 4.212 0.037

128 0.1 48.581 52.550 45.518 0.551 4.310 2.966 5.872 0.066

128 0.2 48.985 52.588 46.448 0.561 3.109 3.837 3.913 0.064

256 0.1 47.435 51.714 44.154 0.491 3.833 5.116 3.339 0.036

SD - Standard Deviation; LS - GRU Layer Size; D - Dropout Rate

Table 24: Experiment 2 - GRU - Testing results

LS D Mean SD

F1 M% Precision% Recall% PR AUC F1 M Precision Recall PR AUC

64 0.1 39.128 42.682 35.960 0.449 1.641 2.425 2.567 0.071

64 0.2 40.118 41.968 38.381 0.441 2.797 2.360 3.638 0.091

128 0.1 39.152 42.062 36.484 0.376 2.383 2.434 3.133 0.082

128 0.2 39.120 41.465 36.793 0.363 2.473 2.395 3.164 0.083

256 0.1 37.093 40.409 34.387 0.326 1.936 2.473 2.306 0.072

SD - Standard Deviation; LS - GRU Layer Size; D - Dropout Rate
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Now that we analysed the behaviour of the models with different hyperparameters,

we will analyse the changes in performance due to a different learning rate. Until now

the models were tested with a default learning rate of 0.001. However, LSTM and GRU

models showed overfitting, so we decide to test the learning rate values of 0.0001 and

0.00001. We will only present the results for the learning rate of 0.0001 since that for the

0.00001 the performance of all models was not expected.

To reduce the number of performed tests, we chose the better hyperparameters found

above. Therefore, we tested:

• CNN model with dense layer size output of 96 and dropout rate of 0.1, we also

reduced the number of epochs for 50 during training.

• LSTM model with LSTM layer size of 50 and dropout rate of 0.1.

• GRU model with GRU layer size of 256 and 0.2.

Once again, the dataset tested was the one with 56 features and window size of 500 for

LSTM and GRU, and for CNN with window size of 15.

For the CNN model, Table 25, the change of the learning rate shows improvement.

During training, validation and testing the F1-Measure values increased to 53.685%,

43.072% and 41.015%, respectively. In Figure 14 the loss function shows a slight overfit-

ting (for more information please check Appendix B - Figure B.1), however, the validation

and test values for this model are higher than in the previous ones.

Table 25: Learning Rate Experiment - CNN

Mean SD

F1 M% Precision% Recall% PR AUC F1 M Precision Recall PR AUC

Train 53.685 65.394 45.544 0.673 0.555 0.793 0.832 0.007

Validation 43.072 68.462 31.701 0.629 1.383 6.369 2.511 0.015

Test 41.015 67.997 29.783 0.612 3.043 5.558 4.058 0.005
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Figure 14: Loss of CNN model

For the LSTM model, Table 26, the overall values for training and validation are

lower, with F1-Measure of 64.581% and 53.568%, respectively. However, the test value

for F1-Measure increased for 43.120%. Even though, this model still has the problem

of overfitting the curve is more stable than in the previous model (Figure 15) (for more

information please check Appendix B - Figure B.2).

Table 26: Learning Rate Experiment - LSTM

Mean SD

F1 M% Precision% Recall% PR AUC F1 M Precision Recall PR AUC

Train 64.581 70.995 59.692 0.772 2.610 2.047 2.940 0.037

Validation 53.568 58.351 49.425 0.648 4.373 4.038 4.654 0.065

Test 43.120 46.668 39.537 0.510 2.219 3.242 1.649 0.027
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Figure 15: Loss of LSTM model

The GRU model, Table 27, presentes a similar analysis as the previous one (LSTM

model), where the overall values for training are lower, with F1-Measure of 65.162%. How-

ever, the validation and test values for F1-Measure increased for 52.926% and 42.898%,

respectively. The Figure 16 shows the loss function curve, where the model is still over-

fitting, however, with a more stable curve.

Table 27: Learning Rate Experiment - GRU

Mean SD

F1 M% Precision% Recall% PR AUC F1 M Precision Recall PR AUC

Train 65.162 73.259 59.122 0.787 1.371 1.804 1.392 0.022

Validation 52.926 58.001 49.428 0.660 5.281 5.470 5.681 0.062

Test 42.898 47.132 39.661 0.546 1.754 3.532 3.079 0.017
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Figure 16: Loss of GRU model

Since the change in learning rate decrease the gap between the loss functions and

stabilise them, we will test the validation dataset with these hyperparameters. However,

for the LSTM and GRU models we will also test with the dataset with 66 features and

a window size of 500, since we want to analyse the behaviour of these proteins in both

representations.

The CNN model with the validation dataset, Table 28, presents values similar to the

ones with our dataset. The performance for F1-Measure for training, validation and test

is 53.812%, 53.045% and 48.896%, respectively.

Table 28: CNN - Validation Dataset

Mean SD

F1 M% Precision% Recall% PR AUC F1 M Precision Recall PR AUC

Train 53.812 63.156 46.901 0.567 2.266 1.522 2.626 0.028

Validation 53.045 56.936 48.655 0.497 5.229 2.983 6.707 0.036

Test 48.896 56.420 43.881 0.489 3.321 3.245 6.452 0.037
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The LSTM model, Table 29, with the dataset with 56 features, during training and

validation presented values very similar to the ones with our dataset, with F1-Measure

of 63.791% and 52.545%, respectively. However, with the test set the results where not

good with F1-Measure values of 11.061%. The same model applied to the dataset with 66

features had very low F1-Measure values (training-2.946%, validation-0.752% and testing-

0.715%).

Table 29: LSTM - Validation Dataset

Mean SD

F1 M% Precision% Recall% PR AUC F1 M Precision Recall PR AUC

56 - features

Train 63.791 70.297 58.681 0.752 1.571 1.707 1.563 0.024

Validation 52.545 58.117 48.264 0.623 3.015 4.231 3.506 0.056

Test 11.061 36.316 6.772 0.102 2.124 4.487 1.509 0.014

66 - features

Train 2.946 18.771 1.580 0.200 2.095 13.521 1.131 0.048

Validation 0.752 18.254 0.393 0.131 0.551 13.792 0.287 0.042

Test 0.715 11.607 0.376 0.091 0.787 12.264 0.384 0.004

The GRU model, Table 30, for the dataset of 56 features, presents values for the

F1-Measure of 68.002%, 50.473% and 8.613%, respectively, for training, validation and

testing. On the other hand, the dataset of 66 features, presentes the best values of all ex-

periments with F1-Measure of 83.270%, 60.816% and 49.931%, respectively, for training,

validation and testing.
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Table 30: GRU - Validation Dataset

Mean SD

F1 M% Precision% Recall% PR AUC F1 M Precision Recall PR AUC

56 - features

Train 68.002 73.757 63.344 0.809 0.313 0.446 0.268 0.010

Validation 50.473 58.500 44.671 0.633 2.999 4.037 2.376 0.057

Test 8.613 39.846 4.966 0.183 0.588 2.359 0.488 0.005

66 - features

Train 83.270 87.298 79.762 0.930 2.752 1.505 3.834 0.028

Validation 60.816 70.153 55.026 0.656 10.169 3.829 13.546 0.120

Test 49.931 54.512 44.545 0.469 3.718 2.740 5.922 0.016

4.3 Discussion

In experiment 1, we started by evaluating the CNN model that presents low values

compared to those obtained by Haberal [24]. These values, were somehow expected since

we are using a model with strong abilities for image analysis in sequence data. Another

point that justifies these values is the low number of positive examples that the model

has available to learn. For our dataset, the classifier presents low skill since its PR AUC

values range between 0.46-0.53. However, the loss learning curve shows a good fit between

training and validation data. LSTM and GRU models during training present values close

to the ones obtained by Haberal [24], with PR AUC values higher than 0.84. Both mod-

els suffer from overfitting; however, it is not a surprise because this problem is the main

challenge when working with datasets so unbalanced as ours. The classical solution for

unbalanced data is oversampling or undersampling. Due to the specificity of the problem,

we can not just eliminate proteins or create fake positive examples. Therefore, in the next

experiment (2), we analysed the behaviour of these models with other hyperparameters

and regulated the learning rate.
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As we referred earlier, we had no expectation of having positive changes in the per-

formance of the models by testing them with the dataset with 66 features or 56 features.

Therefore, meeting our expectations, the difference in the performance between these two

sets is 1 unit, sometimes higher for the dataset with 66 and other times for the one with

56. However, the standard deviation of the metrics was always lower for the dataset with

56 features, showing more stability of the obtained values when experimenting. The size

of the window, 2143 or 500, has low influence on the performance in the experiment 2, to

decrease computational cost, we choose to use the window with 500 residues.

In experiment 2, for the CNN model, the dense layer output size of 96 and dropout

rate of 0.1 enhanced the performance values. The application of a new learning rate

helped, even more, the algorithm since the loss function reached lower values than before.

However, the loss for the validation set has values slightly higher than the training set.

Analysing the overall values, we were able to improve the skill of the model for our dataset

since the PR AUC ranges between 0.61-0.67. The LSTM algorithm with an LSTM layer

size of 50 and a dropout rate of 0.1 reached the best values for the performance. The

change in the learning rate decreased the performance, but the gap between the loss func-

tion of training and validation was decreased along with the stabilisation of the tendency.

Despite the decrease in training performance, we find this model the best within our ex-

periments since it presents more stability in the loss curve.The GRU model has the best

performance, with a GRU layer size of 256 and a dropout rate of 0.2. The changes in

the learning rate affected the model only during training because the values for validation

and test increased. The conclusions of this model are the same as the ones for the LSTM

model, where the change in the learning rate decreased the gap between the loss functions

and stabilised them.

To validate our models, we tested them with a validation dataset. The CNN model
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presents values similar to the ones with our dataset. With the validation dataset with 56

features, the LSTM and GRU models present similar values to the ones with our dataset.

However, they also present overfitting, with F1-Measure for test bellow 11%. For the

validation dataset with 66 features, the LSTM model presents unexpected values, and

GRU presents the best values of all models.

In summary, the CNN model presents the lower results, however, the more stable ones

since the loss function presents a good fit. LSTM and GRU have equivalent performance.

Due to the conditions of overfitting we can argue about the heterogeneous set of features

that we selected since our values in test are so low that are not comparable with the

results of the state of the art [24]. Moreover, our training results opened the doors for im-

provement when amino acid sequences are used instead of only specific binding residues,

which is an advantage over the state of the art implemented models and for future similar

tasks.
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Chapter 5

Conclusion & Future Perspectives

The present study concerned the development of three deep learning algorithms, Con-

volutional Neural Networks (CNN), Long-Short Term Memory Neural Networks (LSTM)

and Gated Recurrent Units (GRU), for the prediction of zinc-binding residues in regula-

tory proteins, which was our main objective. To achieve this, several steps were taken,

namely:

• The construction of a specific dataset containing transcription factors with zinc-

binding sites, as well as the extraction of features with diverse methods for a het-

erogeneous set containing sequence and structure based properties from the proteins.

• The analysis and implementation of three deep learning models, CNN, LSTM and

GRU, along with their training and hyperparameter optimisation.

• The application of the final models to a benchmark dataset to validate our results.

Moreover, regardless of the computational complexity of the training phase, the pro-

posed methodology is relatively straightforward with quick processes for the feature ex-

traction, basic postprocessing steps and, finally, the implementation of the models for

classification. To comprehend the relation between the features and the target we as-

sessed the linear correlation coefficient concluding that sequence based features related
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do the cysteine and histidine residues, as well as the secondary structure where the residue

is localised are the features that have the higher linear correlation with the target.

The CNN model presents the lowest results; however, they are corroborated by the

validation dataset. Thus, it can be said that the problem may be the application of

a sequence data problem to a network specialised in image classification. The LSTM

and GRU models are both overfitting, therefore is difficult to make an objective anal-

ysis. These models in the training stage present relatively good results with room for

improvement. However, in the validation and testing phase, they present low skills. This

behaviour can have two sources: the first source is the dataset imbalance, second is the

representativeness, as much as we have been careful to maintain the proportions during all

the processes that split the dataset, some coordination patterns have a residual presence

in the dataset, therefore the training set may not contain them and when validating or

testing the model the performance decreases because of the lack of knowledge of these

patterns. The validation dataset is overfitting, either.

In conclusion, the analysis of the training results shows an opening for improvement

when amino acid sequences are used instead of just specific binding residues. This is an

advantage over models implemented with state of the art technology, since when we use

complete amino acid sequences we are dealing with more residues than just the four/five

residues present in the coordination sphere. Which means that we can use much more

information to accurately predict the presence of zinc ion in the TF, and also inspect

other important residues for the coordination sphere. Furthermore, considering that we

only used regulatory proteins with zinc-binding sites, the number of patterns available for

the dataset was highly limited, as there is a small number of annotated proteins to work

with complex machine learning algorithms. To truly evaluate the actual application of

methods such as these, more data is needed to build more comprehensive datasets.

Concerning future perspectives, once this approach is relatively simple, there is space
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for further improvements. In particular, it is important to solve the overfitting problem,

however, options like oversampling or undersampling are not suitable since we cannot

construct fake positive samples or eliminate the negative examples. Although, there are

other strategies that can be implemented, such as hybrid approaches where data- and

algorithm-level approaches can be combined. The use of methods for feature selection,

such as the embedded filter, can also make big improvements since we can analyse the

impact of each feature in the prediction allowing us to discard the ones with no meaning for

the problem, as well as reducing the computational cost by only working with meaningful

features. Another interest approach for metal-binding residue prediction are the Natural

Language Processing (NLP) algorithms that only use the sequence of amino acids for

feature extraction.
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Appendix A

Experiment 1

Figure A.1 - F1-Measure evolution of CNN model, with 56 features and window size of

15 residues
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APPENDIX A. EXPERIMENT 1

Figure A.2 - F1-Measure evolution of LSTM model, with 56 features and window size of

500 residues

Figure A.3 - F1-Measure evolution of GRU model, with 56 features and window size of

500 residues
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Appendix B

Experiment 2

Figure B.1 - F1-Measure evolution of CNN model, with 56 features and window size of

15 residues
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APPENDIX B. EXPERIMENT 2

Figure B.2 - F1-Measure evolution of LSTM model, with 56 features and window size of

500 residues

Figure B.3 - F1-Measure evolution of GRU model, with 56 features and window size of

500 residues
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