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Abstract

Electroencephalograms (EEGs) are non-linear and non-stationary biosignals

that measure electric activity in the brain, and are very useful in the diagnosis and

monitorization of different neurological disorders. In long term EEG acquisitions,

the recordings are affected by different types of artifacts, which affect the quality of

the signals and limit their use in clinical research. Although a variety of techniques

have been developed to remove the noise from EEG signals, the majority of them

offer only partial removal of noisy artifacts or are too computationally expensive to

be used in real-time scenarios.

The automatic learning of complex characteristics and noise removal capabili-

ties, as well as their capabilities to work in real-time over data streams, make Deep

Learning Neural Networks (DLNNs) a promising alternative to EEG signal pre-

processing. However, algorithms that are trained using multiple channels can only

be applied to recordings that use the same exact channels. Thus, the aim of this

study was the development of automatic single-channel (SC) Deep Learning (DL)

architectures capable of removing noisy artifacts and reconstruct clean EEG signals.

Two approaches were followed in the construction and training of the architec-

tures. The first approach utilized 10-minute segments from patients with epilepsy in

the EPILEPSIAE database to train and test a simple Deep Convolutional Autoen-

coder (DCAE), which was compared to a previously trained multi-channel (MC)

Deep Convolutional Neural Network (DCNN). The second approach used the same

signals, but divided into 5-second windows. A DCAE with an incorporated BiLSTM

layer (DCLSTMAE) was trained, along with two other SC architectures retrieved

from literature - an One-Dimensional Residual Convolutional Neural Network (1D-

ResCNN) and a DCNN. DCLSTMAE’s performance was compared to the other

trained SC models, as well as the results from the previous approach.

Results showed that the models from the two approaches behaved similarly,

being capable of reducing the noise from different types of artifacts in a fast and

vi



automatic manner. They outperform the other SC models, obtaining smaller re-

construction errors and higher correlation to the target segments, but still present

limitations in signal reconstruction when compared to MC algorithms. However,

this research further cements the potential of automatic SC DL models to be used

in EEG signal pre-processing without acquisition limitations and paves the way for

future works to explore different models and training setups in order to address the

limitations that were encountered.

Keywords: Electroencephalogram, Artifact Removal, Signal Reconstruction,

Pre-processing, Deep Learning, Neural Networks.
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Resumo

Electroencefalogramas (EEGs) são biossinais não lineares e não estacionários

que medem a atividade elétrica no cérebro e são muito úteis no diagnóstico e mon-

itorização de diferentes distúrbios neurológicos. Nas aquisições de EEG de longa

duração, os sinais são afetados por diferentes tipos de artefactos, que contaminam

a qualidade dos sinais e limitam o seu uso em investigação cĺınica. Embora várias

técnicas tenham já sido desenvolvidas para remover o rúıdo de sinais de EEG, a

maioria garante apenas uma remoção parcial dos artefatos ruidosos, ou são demasi-

ado computacionalmente pesadas para ser utilizadas em tempo real.

As capacidades de aprendizagem automática de caracteŕısticas complexas e de

remoção de rúıdo, bem como a a aplicação rápida, tornam as redes neuronais de

Deep Learning (DL) uma alternativa promissora no pré-processamento de sinais de

EEG. No entanto, os algoritmos multicanal, treinados utilizando vários canais, só

podem ser aplicados a aquisições de EEG com exatamente os mesmos canais. Assim,

o objetivo deste estudo foi o desenvolvimento de arquiteturas de DL automáticas e

unicanal, capazes de remover artefatos ruidosos e reconstruir sinais de EEG limpos.

Duas abordagens foram seguidas na construção e treino de arquiteturas. Na

primeira abordagem, foram usados segmentos de 10 minutos de doentes com epilep-

sia do repositório EPILEPSIAE no treino e teste de um simples Deep Convolutional

Autoencoder (DCAE), que foi comparado a uma Deep Convolutional Neural Net-

work (DCNN) multicanal treinada anteriormente com os mesmos dados. A segunda

abordagem utilizou os mesmos sinais, mas divididos em janelas de 5 segundos. Foi

treinado um Deep Convolutional Autoencoder ao qual foi incorporado uma camada

LSTM Bidirecional (DCLSTMAE), juntamente com duas outras arquiteturas uni-

canal retiradas da literatura - uma One-Dimensional Residual Convolutional Neural

Network (1D-ResCNN) e uma DCNN. O desempenho do DCLSTAME foi com-

parado com o dos outros modelos unicanal treinados, bem como os resultados da

abordagem anterior.
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Os resultados mostraram que os modelos das duas abordagens apresentam com-

portamentos semelhantes, conseguindo reduzir os ńıveis de rúıdo de diferentes tipos

de artefactos de forma rápida e automática. O seu desempenho é superior aos out-

ros modelos unicanal, obtendo erros de reconstrução menores e ńıveis de correlação

maiores com os segmentos alvo, mas ainda apresentam algumas limitações quando

comparados aos algoritmos multicanal. No entanto, esta pesquisa cimenta ainda

mais o potencial dos modelos automáticos unicanal de DL para serem usados no

pré-processamento de sinais EEG sem limitações na aquisição, e abre caminho para

trabalhos futuros de exploração de diferentes modelos e configurações de treino, de

modo a solucionar as limitações encontradas.

Palavras-chave: Electroencefalograma, Remoção de Artefactos, Reconstrução

de Sinais, Pré-processamento, Deep Learning, Redes Neuronais.
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Introduction

In this chapter, the motivation of this thesis is presented. Section 1.1. briefly

introduces the overall theme of this project, with its context being explained in

Section 1.2. Section 1.3 describes the main goals and contributions of the thesis,

and Section 1.4 presents the structure of the remaining of this document.

1.1 Motivation

Electroencephalogram (EEG) is a non-linear and non-stationary biosignal that

measures the electrical activity generated by the brain. Electrodes measure the sum

of the potentials originated by the synapses in different brain cells [1]. Nowadays,

EEG recordings are of great utility in the diagnosis and monitorization of many

neurological disorders, such as epilepsy, sleep disturbances, encephalopathies and

other mental disorders [2–4].

Several artifacts may rise in EEG acquisitions, especially in scalp acquisitions

and in the ones that occur during longer periods of several hours in which patients

maintain daily activities such as moving, sleeping and talking. The overlap with the

neural signals hampers the analysis and usefulness of the recording, and specialists

often have difficulties identifying these artifacts. As such, the development of a

model capable of rapidly and effectively process the EEG signal, identifying and

removing the different types of artifacts while maintaining all the relevant brain

information, will facilitate and expand the use of EEG recordings in the assessment

of several pathologies [5].

1.2 Context

EEG signals were firstly discovered, recorded and analysed during the 1930s.

Since then, the evolution of this technique has been a continuous process. Today,
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1. Introduction

EEGs are being recorded using fully computerized systems, with enough memory

for long-term recordings of several hours. They are also equipped with many signal

processing tools and accurate measurement electrodes. The varied applications of

EEG recordings include [6]:

monitoring alertness, coma, and brain death;

locating areas of damage following head injury, stroke, and tumour;

testing afferent pathways (by evoked potentials);

monitoring cognitive engagement (alpha rhythm);

producing biofeedback situations;

controlling anaesthesia depth (servo anaesthesia);

investigating epilepsy, locating seizure origin and distinguishing epileptic seizures;

testing drugs for reduction of convulsive effects;

assisting in experimental cortical excision of epileptic focus;

monitoring the brain development;

investigating mental disturbances, sleep disorders and physiology;

providing a hybrid data recording system together with other imaging modal-

ities.

However, even nowadays, these recordings are still affected by different artifacts,

with their origins varying from environmental, such as electrical interference, to

experimental, usually related to the setup of the acquisition system, to physiological,

such as ocular, muscular and cardiac activity. These artifacts contaminate the

quality of EEG data, interfering with neural information and potentially imitating

cognitive or pathologic activity, and therefore distorting the visual interpretation

and diagnosis in clinical research [5].

Either by identifying morphological features or by examining frequency bands

associated with different mental activities/conscious states, EEG signals allow for

a better understanding of brain activities. As such, several signal processing tech-

niques to aid clinicians in their EEG interpretation have been developed, each with

their own advantages and limitations. These include linear regression, filtering meth-

ods (linear, adaptive, Weiner and Bayes filters), Empirical Model Decomposition

(EMD), wavelets, and Blind Source Separation (BSS) methods, which are based on
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unsupervised algorithms that separate multi-channel (MC) EEG signals in a set of

independent sources, such as Independent Component Analysis (ICA) [5].

Despite the benefits presented by these methods, most of these are only able to

partially remove the artifacts, or are too computationally complex to be successfully

used in real time scenarios, since they are not automatic (require the manual evalu-

ation of a specialist to remove the noise). As such, Deep Learning Neural Networks

(DLNNs) are promising algorithms in EEG signal cleaning, since they have shown to

be able to automatically learn the complex characteristics of the signals, eliminate

the artifacts, losing less valuable information and, once trained, are fast to apply,

requiring less EEG channels than other methods [7–15]. Additionally, advances in

long term EEG acquisition technology are allowing recordings using a lower number

of electrodes (i.e., sub-scalp EEGs). MC models are limited to EEG recordings

with the exact number of channels with which they were trained, whereas single-

channel (SC) models can be used regardless of the number of channels present in

the acquisition system.

1.3 Goals and Expected Contributions

This project aims at advancing the state of the art of EEG signal process-

ing by developing an automatic SC model using DLNNs that is able to clean and

reconstruct noisy EEG signals. To this end, a set of goals is proposed:

Development of a pipeline preparing a preliminar dataset and training SC

Deep Learning (DL) approaches with different hyperparameters.

Comparison of the trained SC model with previously trained DL approaches

developed from MC data, to verify if the new models are able to clean EEG

signals without losing information, making this approach usable in any EEG

acquisition system.

Reducing the sample size, by segmenting samples in smaller portions. Ten-

minute segments make the samples too heavy for DL models with dozens of

layers. A reduction of sample size would allow an increase in the complexity

of the models, and consequently an enhancement in the ability to learn the

different patterns of EEG signals, leading to better results.
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1.4 Structure

After the introduction, this document is composed of five more chapters. Chap-

ter 2 introduces the main concepts used in this project, from EEG montages and

characteristics to the more usual artifacts and a few DL architectures. In Chap-

ter 3, the current state of the art regarding EEG signal processing techniques is

reviewed, with an emphasis on DLNNs used to clean EEG signals. Chapter 4 de-

scribes the data and methods used in the course of this study. Results are discussed

in Chapter 5 and conclusions are presented in Chapter 6.

4



2

Background Concepts

In this chapter, the relevant concepts for a better understanding of this thesis

are introduced. Section 2.1 introduces the Electroencephalogram (EEG) biosignal.

Section 2.2 describes the rhythmic waves and potentials available in neural activity.

Section 2.3 presents various noisy artifacts that are usually present in EEG. Section

2.4 describes Deep Learning (DL) architectures, which will be used in this work,

and Section 2.5 describe the metrics used to assess the performance of the developed

models.

2.1 Electroencephalogram

EEG is a non-linear and non-stationary biosignal that measures the electrical

activity generated by the brain. Specifically, EEG electrodes measure the sum of

the potentials originated by the synapses of populations of neurons [1, 6]. EEG is

commonly used in the diagnosis and monitorization of brain related pathologies that

alter brain activity, such as brain tumors, encephalopathies, sleep disturbances, and

epilepsy [2–4].

EEG signals may be classified according to the type of acquisition system into

invaisve or non-invasive. In a non-invasive EEG, scalp EEG or simply EEG, the

electrodes are placed on the scalp of the patient. In an invasive EEG or intracra-

nial Electroencephalogram (iEEG), also referred to as Electrocorticogram (ECoG),

the electrodes are placed directly onto the surface of the brain, during a surgical

procedure [17].

2.1.1 Scalp Electroencephalogram

Scalp EEG is a non-invasive technique that allows a continuous monitorization

of a patient for a determined period of time. Since it covers several areas of the
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2. Background Concepts

Figure 2.1: Synaptic potentials measured in an EEG. From [16].

scalp, it can also be used to study neural mechanisms that take place in different

areas of the brain.

There are a few different types of architectures when it comes to placing the

electrodes, with their names referring to the way the electrodes are distributed.

The International 10-20 System [18], composed of up to 21 electrodes, is the most

commonly used. The numbers 10-20 represent the way the electrodes are placed

across the scalp, from Inion (Iz) to Nasion (Nz), at 10%, 20%, 20%, 20%, 20% and

10%. Following a similar logic, there is also the International 10-10 System, usually

composed of of 64 to 85 electrodes, and the International 10-5 System, composed of

up to 300 electrodes [18, 19]. These three architectures can be seen in Figure 2.2.

2.1.2 Intracranial Electroencephalogram

To acquire iEEGs, the electrodes are placed directly onto the patient’s brain,

and there is not an IS one can follow. As seen in Figure 2.3, the electrodes can be

subdural electrodes [20], consisting of strips or grids placed on the surface of the

brain, or depth electrodes, which are very thin and flexible, making them suitable

to be implanted inside the cerebral cortex. Consequently, these electrodes are able

to capture electrical activity from both superficial and deeper brain areas.

Comparing to scalp EEGs, iEEGs are acquired with lesser number of layers

between the sensors and the signal sources [22]. Therefore, it presents a better

Signal-to-Noise Ratio (SNR) and lesser noisy artifacts. However, being an inva-

sive technique, it presents some risks such as hemorrhage, intracranial hematomas,
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Figure 2.2: Three International System (IS) ways for electrodes’ placement in
EEG: International 10-20 System (electrodes in black), International 10-10 System

(electrodes in black and grey), and International 10-5 System (all electrodes).
From [19].

Figure 2.3: Different types of iEEG electrodes. From [21].

infection, and death [17, 22].
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2.1.3 Electroencephalogram Montages

There are different ways to represent an EEG, in what is termed a montage or

arrangement.

In bipolar montages [23], each channel usually results from the difference be-

tween two adjacent electrodes, in a specific order so that they are covering the entire

scalp. In the bipolar parasagittal montage, channels can be created by connecting

adjacent electrodes in two lines (anterior to posterior), with the midline electrodes

also linked to each other, whereas the bipolar transverse montage links adjacent

electrodes in a chain going from left to right.

Monopolar or referential montages compare the signal of each of the electrodes

to a common electrode, designated as reference. To avoid distortion of the signals,

the ideal reference electrode would have no potential (null reference). Thus, central

electrodes - between Fz and Nz - are usually used as reference [24], as is the difference

between electrodes placed below or behind the ear lobes (mastoids) [25]. Several

common montages are shown in Figure 2.4.

Other types of montages include the average reference montage, which compares

the signal of an electrode to the average of all electrodes, usually excluding electrodes

such as Fp1 and Fp2 for being susceptible to head and/or eye movements; the

Laplacian montage [23], which compares the signal of an electrode to the average of

the electrodes closest to it; and the Reference Electrode Standardisation Technique

(REST), a method that transforms a scalp point or the average reference to an

approximate zero reference, basing the transformation on the common origin of the

two potentials before and after transformation, i.e. the actual neural sources or their

equivalent sources [26, 27].

2.2 Neural Activity

EEG signals comprise two different types of activity: rhythmic and transient.

Rhythmic activity [2, 29], caused by brain cells’ excitability, is usually divided into

frequency bands, which are represented in Figure 2.5:

Delta waves (0.5 to 4 Hz): the slowest waves with the highest amplitudes,

most predominant in children up to one year of age and in sleep stages 3 and

4. In adults, they occur most frequently in the frontal area of the brain, as

opposed to posterior areas in children.
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Figure 2.4: Common EEG montages. From [28].

Theta waves (4 to 8 Hz): usually found in children, during sleep, or in medi-

tating adults.

Alpha waves (8 to 13 Hz): occur more frequently in posterior areas of the

brain, with higher amplitudes on the dominant hemisphere. They happen

while relaxing and with eyes closed, stopping once the eyes are open or there

is mental exercise. As such, they are predominant in relaxed adults.

Beta waves (13 to 30 Hz): occur more frequently in the frontal area of the

brain, being predominant when patients have their eyes open, or in states of

high alert, anxiety, or focus.

Gamma waves (above 30 Hz): are correlated with large scale brain network,

usually in order to execute and achieve a certain motor or cognitive task.

Transient potentials are divided into normal (associated to sleep stages) and

abnormal (which can represent interictal activity or an epileptic seizure).

2.3 Artifacts

As stated previously, scalp EEG recordings are acquired using non-invasive

systems. Non-invasive systems, in addition to neural activity, usually capture data

which are not related to data of interest, thus called noisy artifacts. These artifacts,
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Figure 2.5: (From top to bottom) Gamma, Beta, Alpha, Theta, and Delta waves.
Adapted from [29].

whether periodic or aperiodic, reduce the utility of the results and must be minimised

when possible. They can be divided according to their source into environmental,

experimental, and physiological [5].

2.3.1 Environmental Artifacts

Environmental artifacts originate from energy sources that surround the patient

in their daily life, or directly from the acquisition system. These sources can create

electrical, magnetic or electromagnetic interference, generating noisy signals in the

form of, for example, power line interference with frequencies of 50-60 Hz [30, 31].

In addition, instrumental artifacts resulting from the different components of the

acquisition system, are a type of environmental artifact that can be observed in

the form of thermal noise (caused by changes in the temperature of the system’s

components), or pink noise (small variations of the condensed-matter materials)

[32].

These artifacts can usually be eliminated almost completely, using digital fil-

ters, since they are confined to a small and fixed interval of frequencies [32]. Figure

2.6 shows signals affected by different artifacts, including power line noise, an envi-

ronmental artifact.
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2.3.2 Experimental Artifacts

Experimental artifacts are usually caused by human errors in the setup of the

acquisition system, such as incorrect electrode placement [33], poor adhesion of the

electrodes or a bad cleansing of the scalp, or by movements of the patient, which can

cause the electrodes to change their position and consequently cause the occurrence

of electrical impedance, leading to the distortion of the signal.

These artifacts are deemed uncontrollable and unpredictable. Although they

can be reduced with a correct and careful setup of the acquisition system, it is almost

impossible to completely avoid them, especially in uncontrolled environments. These

artifacts cannot be eliminated using filtering techniques, since they do not have a

characteristic interval of frequencies, regularly intersecting with the spectra of the

signals of interest [30].

2.3.3 Physiological Artifacts

Physiological artifacts are caused by physiological processes happening in the

patient’s body [5], such as eye blinks, swallowing, chewing, cardiac activity, or even

breathing.

Due to the proximity of the eyes to the brain, ocular related artifacts are the

most prejudicial to EEG recordings. The change in potentials in the retina, caused

by blinking or eye movement, is propagated and captured by the acquisition system

(as seen in Figure 2.6), mostly in the frontal lobes, having higher amplitudes than

the signals of interest [7]. However, these artifacts overlap with the frequencies of

interest, preventing their removal using simple filtering techniques.

Muscle movement is one other source of physiological artifacts. These artifacts

can originate from head muscles, especially when talking, chewing, and swallowing,

being close to some of the electrodes. On account of their great diversity, these

artifacts can encompass a big range of frequencies, overlapping mostly with beta

waves (13 to 30 Hz). Since they can be caused by distinct groups of muscles, the

signals they originate can have different shapes and amplitudes and are less repetitive

than other artifacts, which hampers their removal [34]. Figure 2.6 shows examples

of signals affected by muscular artifacts.

The electrical signal induced by cardiac activity can also constitute an EEG

artifact. This artifact is usually repetitive and comprises a characteristic pattern

which is visually easy to identify. However, normal pulse artifacts are non-stationary,

meaning that even though they usually have a frequency of 1.2 Hz, that could change
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depending on the patient’s cardiac activity [35]. Their amplitude is usually very low

on the scalp, unless an electrode is placed over a blood vessel, which demonstrates

how their positioning is fundamental in removing pulse artifacts.

Other less common physiological artifacts are the ones related to breathing and

perspiration. Their frequency spectrum is very close to 0 Hz, and as such, they can

be easily eliminated using a high pass filter.

Figure 2.6: Amplitudes and Power Spectral Densities (PSDs) of signals with
different kinds of artifacts: (a) a clean signal; (b) a signal with power line

interference; (c) a signal with ocular artifacts; (d) a signal with muscular artifacts.
From [36].

2.4 Deep Learning Architectures

DL architectures are based on Artificial Neural Networks (ANNs), which try

to imitate the biological process of the human brain cortex. These architectures

consist of advanced Machine Learning (ML) models which can automatically learn

how to classify data without human support. This learning can be supervised, semi-
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supervised or unsupervised. The increase of data, hardware, and software availabil-

ity in the last decades has allowed a sudden raise in development and popularity of

these models, which are already being used in image classification and bioinformatics

[37]. There are several different types of DL architectures.

2.4.1 Feed Forward Neural Networks

Feed Forward Neural Networks (FFNNs) are the simplest deep learning archi-

tecture, mimicking the way our neurons are connected [37]. In each artificial layer of

a FFNN, several different neurons, modulated by weights (dictating the strength of

the response), are part of a sum function, which goes through an activation function

and is then transmitted to the neurons in the following layer, thus imitating the

synapse process in a human neuron. These activation functions can either be linear

or non-linear (the latter are preferred since they allow models to learn more complex

patterns).

Neural Networks (NNs) of this kind are usually made up of an input layer,

multiple hidden layers of neurons, and an output layer (see Figure 2.7). The input

layer transmits the initial data to the first hidden layer, in which all neurons transmit

responses to the neurons of the second hidden layer (again, modulated by weights),

passing through each hidden layer until the output layer is reached, gathering the

responses, and producing a certain classification. The role of the hidden layers is to

perform transformations to the data and try and learn, if possible, discriminative

behavior within it.

Figure 2.7: Representation of a FFNN, showcasing the different layers, with each
circle representing a neuron. From [38].
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2.4.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) divide the input data into small subre-

gions and analyse each of them individually, trying to learn characteristic patterns,

before merging them. This process emulates the visual cortex, as is shown in Figure

2.8, and as such, is applied to complex data, such as 1D, 2D, or 3D data. These

networks have:

Convolutional layers: they create feature maps, by applying several filters

that move through the input data at a certain rate (this rate is called the

stride), transforming it, and passing every feature map through an activation

function. To normalize the output, a Batch Normalization (BN) layer can be

used [39]. The higher the stride and the lower the padding (kind of frame used

to keep spatial information), the lower the number of values and the faster the

computational time.

Pooling layers: down-sampling layers with no weights which also go through

the data at variable strides. They can be of different kinds, the most common

being maximum (retrieves a feature map with the maximum values in each

subregion) and average (retrieves a feature map with the average values in

each subregion). Global pooling layers transmit only one value per feature

map [38].

Dense layers: also called fully connected layers, since all neurons are connected

to all neurons from the previous and next layers (something that does not occur

in convolutional or pooling layers). They are used at the end of the network to

merge the information, reduce the number of features, and classify the data.

2.4.3 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) use information from either the past or

the future to learn about the current data, by keeping an internal memory that en-

ables them to create sequential rules. Simple RNNs have two main disadvantages:

firstly, when training using gradient-based learning methods, the gradient may van-

ish; secondly, since the information from past samples does not go away, they gain

a long-term dependency problem. Therefore, different types of RNNs have been

developed to overcome these issues.

Long Short-Term Memory (LSTM) [41] is a more complex type of RNN, in

which the memory, or cell state, is influenced by a forget gate (which modulates

how much information in memory will be kept), an input gate (modulating how
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Figure 2.8: Visual cortex (a) vs. CNN (b). From [40].

much of the new information will be kept in the cell state) and an output gate

(modulating how much information from the hidden and input states will be used

to form the new hidden state). This means that LSTM networks can control how

much of the information flows to the next time sample, at the cost of a higher

complexity and computational time.

Gated Recurrent Unit (GRU) [42] is a simpler and faster version of LSTM

networks, using only a reset gate to modulate the flow from past information and

an update gate to modulate what new information should be added. RNNs can also

use information from the future, when using bidirectional layers. LSTM and GRU

architectures are represented in Figure 2.10.

2.4.4 Autoencoders

Autoencoders (AEs) are a specific type of neural networks with unsupervised

learning that can be used to learn a compressed representation of data. An AE

is composed of both an encoder and a decoder (see Figure 2.11). The encoder

comprises a non-linear function that compresses the input into a lower-dimensional

space (latent space), whereas the decoder attempts to recreate it to the original

as closely as possible. Thus, the input and output must have the same number
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Figure 2.9: Representation of RNNs. From [43].

Figure 2.10: Representation of RNNs: LSTM and GRU. From [43].

of dimensions. The latent space is used to learn features which contain relevant

information of the observed data [44]. Simple AEs are comprised of fully connected

layers. However, there are other types of AEs, such as Convolutional Autoencoders

(CAEs) and even AEs using LSTM layers.

Beyond basic AEs, there are regularized and variational AEs. The former use

regularization methods to keep the AE from learning the identity function, thus
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Figure 2.11: Representation of an AE architecture. From [44].

sometimes having a latent space that is larger than the input space. Some examples

are:

Sparse Autoencoders (SAEs): restrict the number of activated hidden neurons

by introducing sparsity-constraints on the hidden units, so that only a fraction

of the neurons presents nonzero values (active neurons). This regularization

is therefore achieved by adding a penalty term to the loss function that forces

the autoencoder to represent each input as a combination of a small number

of neurons, making the extraction of relevant features more efficient.

Denoising Autoencoders (DAEs): created by adding partially corrupt inputs

(obtained, for instance, by setting values to zero for a small proportion of

input nodes) or introducing a noise term. The goal is to recover the original

noise free data while making sure that the AE does not simply copy the input

to its output. Using noisy inputs helps to prevent overfitting and enables the

construction of more robust feature representations.

Contractive AEs: similar to DAEs but use a regulariser instead of corrupting

the input data, making the model robust to small variations of the input.

Variational AEs are different from regularized AEs, since they aim to create

samples out of the latent space instead of creating a latent space out of the data, to

avoid overfitting. This is achieved by encoding each input as a normal distribution

over the latent space. Then, a point from the latent space is sampled from that

distribution and decoded, enabling the calculation of the reconstruction error which

is then backpropagated through the network. This ensures a better organisation of

the latent space, allowing a good generative process [45].
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(a) Sparse AE (b) DAE

Figure 2.12: Regularized AEs. From [44].

2.5 Evaluation Metrics

The evaluation of an EEG signal cleaning model is made through statistical

validation. Metrics normally used include the Root Mean Squared Error (RMSE),

which is the standard deviation of the residuals (prediction errors), measuring how

concentrated the data is around the line of best fit (Equation 2.1); Relative Root

Mean Squared Error (RRMSE), which divides the RMSE by the Root Mean Square

(RMS) of the target EEG segment (Equations 2.2 and 2.3), and is used to mea-

sure normalised reconstruction error; Pearson Correlation Coefficient (PCC), to test

the linear correlation between the reconstructed signals and the clean target sig-

nals (Equation 2.4); and Signal-to-Noise Ratio Difference (SNRDiff ), which is the

difference between input SNR - the difference between the original noisy segment

and the respective clean target segment - and output SNR - the difference between

the reconstructed segment and the clean target segment - used to quantify noise

attenuation (Equations 2.5 and 2.6).

RMSE(x,y) =

√√√√ N∑
i=1

(xi − yi)2

N
(2.1)

RMS(x) =

√√√√ N∑
i=1

x2
i (2.2)

RRMSE(x,y) =
RMSE(x,y)

RMS(y)
(2.3)
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PCC(x,y) =
Covariance(x,y)

σxσy

(2.4)

SNR(x,y) = 10 × log10

∑N
i=1 y

2
i∑N

i=1(xi − yi)2
(2.5)

SNRDiff = SNR(ŷ,y) − SNR(x,y) (2.6)

In the equations above, the x represents original noisy segments, the y repre-

sents the clean target segments, the ŷ the segments reconstructed by the model, and

N is the number of samples.
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Related Work

This chapter will review the state of the art related to pre-processing and con-

sequent artifact removal in Electroencephalogram (EEG) recordings. Since com-

pletely removing segments from EEG signals affected by artifacts can cause the loss

of important information, different methodologies have been developed in order to

remove the noise from the signal while maintaining the maximum of relevant infor-

mation. As such, Section 3.1 regards linear regression; Section 3.2 discusses filtering

methods; Section 3.3 reviews Empirical Model Decomposition (EMD); Section 3.4

focuses on wavelets; Section 3.5 presents techniques based on Blind Source Separa-

tion (BSS); and Section 3.6 describes approaches developed to remove artifacts from

EEG recordings using Neural Networks (NNs).

3.1 Linear Regression

Up until the last decade of the twentieth century, linear regression algorithms

were the technique most often used for artifact removal in EEG recordings, due to

their low computational complexity [46]. These algorithms need channels that can

be used as a reference for the artifacts to be eliminated - e.g. Electrooculogram

(EOG) or Electrocardiogram (ECG) - which are subtracted to the EEG signal after

the artifact propagation coefficients have been calculated [47]. This constitutes

one of the main disadvantages of this method, since it is only efficient if reference

signals can be obtained (which only happens for some types of artifacts and always

requires more equipment) [30]. One other drawback of linear regression algorithms

is that, since EEG is a non-linear and non-stationary biosignal, the linear nature of

the algorithm is not the most suitable for removing artifacts, possibly eliminating

relevant information from the EEG recording. As a result, these methods have been

replaced by others developed more recently [35, 48].
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3.2 Filtering Methods

To remove EEG signal components in specific frequency bands, linear filters

can be used. Linear filters can be divided into low-pass, high-pass, band-pass, band-

stop, and notch filters. These can be either Finite Impulse Response (FIR) or Infinite

Impulse Response (IIR) filters, the latter being the ones more frequently used since

they do not introduce a zero phase distortion [49].

An EEG signal is usually filtered using both low-pass and high-pass filters,

which reduce the noisy data introduced by high frequencies and eliminate low-

frequency components such as breathing-related artifacts and the Direct Current

(DC) component, respectively. The type of filters and their respective cutoff fre-

quencies are usually chosen by the authors of each study. The main disadvantage

of linear filters is that they are not able to dissociate signals in the same frequency

bands, thus being incapable to remove all types of artifacts [35].

More complex filtering methods can adapt their weights to produce a filtered

signal with a better Signal-to-Noise Ratio (SNR) [35]. Adaptive, Wiener, and Bayes

filters are the ones more commonly used.

3.2.1 Adaptive Filtering

In adaptive filtering, the EEG signal and the artifact to be removed are assumed

to be uncorrelated. These filters estimate the artifact signal from a reference, re-

moving this estimation from the EEG signal [35, 50]. The parameters of the filter

are adjusted in accordance with the optimization algorithm used, meaning that both

the choice of the reference signal and of the optimization algorithm are of extreme

importance, with the latter determining the efficiency and computational complex-

ity of the filter. Some of the algorithms more often applied are the Least Mean

Square (LMS), which keeps on adjusting a coefficients vector aiming to reduce the

mean square error [32], and the Recursive Least Square (RLS), which minimizes a

weighted linear least squares cost function, having a higher computational cost but

being more efficient than the previous [51].

These filters are easy to use since no calibration is required, and can be imple-

mented online, but are limited in the sense that they depend on reference signals

for the artifacts.
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3.2.2 Wiener Filtering

Wiener filters are linear and time-invariant filters that result from a statisti-

cal approach, using the Power Spectrum Density (PSD), a representation of the

distribution of signal frequency components which normalizes the amplitudes by

the frequency resolution [52], to estimate a signal that is the closest possible to an

artifact-free signal [32, 53]. Thus, these filters do not require a reference signal, over-

coming the limitation of adaptive filters. However, Weiner filters must be calibrated

before being used and cannot be used in real-time, because PSDs are not known a

priori and can only be estimated once there is information about the system [32].

3.2.3 Bayes Filtering

Bayes filters utilize a probabilistic method based on the dynamic of a Marvok

system, allowing them to be applied in real-time scenarios and without a reference

signal [32, 54]. Due to their computational complexity, it is only possible to use

methods that solely implement approximations of Bayes filters, such as Kalman and

particle filters. Kalman filters are efficient and can accomplish a great ratio between

computation time and memory usage [55], but need exact sensors and a detailed

model of the process and measurements taken. If these are not available, particle

filters are a viable option since they are flexible and relatively easy to implement

[56].

3.3 Empirical Model Decomposition

EMD is a one-dimensional heuristic method suitable for non-linear and non-

stationary signals. It divides the signal into Intrinsic Mode Functions (IMFs), which

are calculated over multiple iterations until a convergence criterion is fulfilled [57, 58].

The main limitations of this method are its high computational complexity,

hampering its use in real-time scenarios, and its high sensitivity to noise. An En-

semble Empirical Model Decomposition (EEMD) has already been developed. In

EEMD, different white noise time series are added to the signal, allowing a better

scale separation aptitude than the standard EMD, and thus presenting a higher level

of robustness [59, 60].
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3.4 Wavelet Decomposition

Wavelets are wave-like oscillations located in time, with two basic properties:

scale or dilation, which is related to frequency and defines how “stretched” or

“squished” a wavelet is, and location, which defines where the wavelet is positioned

in time or space [61]. Wavelet transforms are generated by calculating the internal

product of the signal to be cleaned and versions of a base function (a mother wavelet)

with different values of the scale and location properties, resulting in several coeffi-

cients that represent the similarity between the signal and each wavelet transform

[62, 63]. After this, a threshold is applied to these coefficients, and only the com-

ponents that are not considered artifacts are kept and used in the reconstruction of

the signal.

Since there is a wide variety of mother wavelets that can be chosen to best

match the signal, this is a versatile tool that allows one to build different models

that best suit each situation [35]. However, wavelet transforms are normally used

alongside other techniques, due to their inability to completely remove artifacts that

overlap the signal in the frequency spectrum, such as physiological artifacts.

3.5 Blind Source Separation

BSS methods are based on unsupervised algorithms that consider the recorded

signal to be formed by a linear mixture of independent sources, following Equation

3.1.

X = AS + N (3.1)

In this equation, the X represents the measured signals, the A the mixing

matrix, the S the independent sources and the N the noise and error values [30, 64].

The main objective of BSS methods is to estimate, through a number of iterations,

an unmixing matrix able to separate the different independent sources (assuming

the noisy data is contained within these sources), following Equation 3.2.

Ŝ = WX (3.2)

Here, the Ŝ represents an approximation of the independent sources and the

W the unmixing matrix [30, 64]. These techniques have the advantage of using
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only the information in the recorded data, thus not needing reference signals of

the artifacts. However, the number of independent sources is never higher than the

number of EEG channels available, meaning that, if the number of channels is small,

the yielded results might be unsatisfactory.

Different BSS algorithms calculate the unmixing matrix using different statis-

tical methods. These can be divided in four different classes: high-order statistic

methods, second-order statistic methods, second-order statistic methods with non-

stationary properties and methods that use temporal and spectral information to

separate the sources [65]. In these algorithms, the data is assumed to be station-

ary, both temporally and spatially. As such, it is essential to divide the signal in

quasi-stationary segments and to maintain the configuration of the system over the

totality of the acquisition time. It is also assumed that each source is statistically

independent from all the others. To ensure this, the signal can be previously submit-

ted to Principal Component Analysis (PCA), an algorithm that uses an orthogonal

transformation to convert the data in a number of linearly uncorrelated variables

[35, 66].

3.5.1 Independent Component Analysis

Independent Component Analysis (ICA) is one of the most used methods of

BSS in EEG signals. After an algorithm is used to calculate the unmixing matrix,

signals from several EEG channels go through it, which returns the independent

components. Then, through the observation of the frequency, time series, and to-

pographic map of each independent component, one can identify which components

represent artifacts, and remove them. The remaining components go through the

inverse of the unmixing matrix, returning the EEG signal clear of artifacts [67].

Since the number of EEG channels must be equal to or higher than the number

of independent components, ICA does not return satisfactory results when only

a few EEG channels are used, and cannot be applied to only one EEG channel.

Furthermore, its computational complexity limits its use in real-time contexts [32].

A few different algorithms can be used for the calculation of the unmixing matrix

with the objective of trying to bypass previous limitations and obtain better results:

Infomax ICA [68]: high-order statistic method that calculates the unmixing

matrix through maximum likelihood estimation. It can be divided into two

types: the restricted version, able to separate only leptokurtic sources (signals

that are more concentrated on the mean, and thus more tapered than the

normal distribution), such as physiological artifacts; and the extended version,
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able to separate both leptokurtic and platykurtic sources (less concentrated

on the mean than the normal distribution), such as electrical artifacts.

Adaptative Mixture Independent Component Analysis (AMICA) [69]: an en-

hanced version of Infomax ICA that computes the Probability Density Func-

tion (PDF) and spatial projection for each component, and can combine dif-

ferent ICA models to obtain a better approximation of each source.

FastICA [70]: high-order statistic method, faster than the aforementioned in

cases where all components are non-Gaussian sources, and that maximizes the

negentropy (negative entropy) of the source distributions.

Second-Order Blind Identification (SOBI) [71]: second-order statistic method

that reduces the correlation between time-lagged versions of the sources in

order to compute the unmixing matrix. It is ideal for real-time applications,

due to its low computational time.

Hybrid methods: they combine ICA with other techniques, such as wavelet

and EMD based methods. Even though these methods improve the separa-

tion of Independent Components (ICs), by combining the advantages of linear

and non-linear algorithms, and can be applied to single-channel (SC) EEGs,

their high computational complexity makes them too slow to use in real-time

contexts [32].

3.5.2 Canonical-Correlation Analysis

Canonical-Correlation Analysis (CCA) is a second-order statistic method that

searches for uncorrelated components using a weaker statistic condition than the

one used by ICA algorithms. However, CCA takes into account temporal corre-

lations within each component. Just as in ICA, noise removal is done by zeroing

the components that correspond to artifacts before the reconstruction of the signal.

Unlike ICA, CCA is deterministic - always returns the exact same results if the same

dataset is used [30, 72].

3.5.3 Morphological Component Analysis

Morphological Component Analysis (MCA) decomposes the signal in compo-

nents with different morphological characteristics, with each component represented

in a dictionary [73]. It can only be used to remove artifacts that are available in the

used database, meaning that a reference signal of the artifact is required in order to

be effective.
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3.5.4 Automatic Blind Source Separation

The aforementioned BSS methods are not automatic. This means that the dis-

tinction between the sources representing neural activity and the ones representing

artifacts must be done through manual observation. To further enable the use of

BSS techniques in real-time scenarios, a few methods have been developed to attemp

to make them autonomous [74–81].

A few studies have already been done using automatic BSS methods. Shoker

et al. [74] combined technologies, using SOBI to separate the signals into different

ICs and support Support-Vector Machines (SVMs) to classify the sources that cor-

respond to artifacts and remove them. Mognon et al., Nolan et al. and Chaumon et

al. [75–77] developed Automatic EEG artifact Detection based on the Joint Use of

Spatial and Temporal feature (ADJUST), Fully Automated Statistical Thresholding

for EEG artifact Rejection (FASTER) and Semi-Automated Selection of Indepen-

dent Components of the electroencephalogram for Artifact correction (SASICA)

respectively, which divide the segments into ICs (with the Infomax algorithm) and

then use threshold-based approaches to search for different artifact-specific spatial

and temporal features, enabling the identification of ICs that represent different

artifacts. Winkler et al. [78] constructed a model that uses Temporal Decorrela-

tion source SEParation (TDSEP), an ICA method that takes temporal correlations

into account, for separating the signal into ICs and the weight vector of a Lin-

ear Programming Machine (LPM) to select the best features from the ICs to be

used by different classifiers - a LPM, a SVM and a Regularized Linear Discrimi-

nant Analysis (RLDA), obtaining viable performances using the latter with only 6

features. Radüntz et al. [79] developed a pipeline divided into 3 distinct phases:

a pre-processing phase, where filtering and ICA were performed; a feature genera-

tion phase, where image processing algorithms were used to obtain feature images;

and the classification phase, where different classifiers - Linear Discriminant Analy-

sis (LDA), logistic regression, SVMs and Artificial Neural Networks (ANNs) - were

trained using the feature images as input and classified them either as artifacts or

EEG components, with ANNs outperforming the remaining classifiers. Tamburro et

al. [80] formed IC-fingertips from 14 temporal, spatial, spectral, and statistical fea-

tures of ICA-resulting sources that served as input for different SVM models, each

able to automatically classify a different type of artifact, and reconstructed the EEG

signals with the components that were not deemed artifacts. Finally, Pion-Tonachini

et al. [81] trained classifiers using median PSD and autocorrelation fucntions, scalp

topographies, single and bilaterally symmetric Equivalent Current Dipole (ECD)
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model fits, and features from [75–77], calling it the ICLabel classifier, which is freely

available on MATLAB.

Most of these methods classify each component considering temporal, spatial,

and spectral features. After this classification, the components classified as artifacts

are removed, and the signal is reconstructed.

Table 3.1: EEG Pre-Processing Models using Automatic BSS

Authors Technique Databases Artifacts

Shoker et al. [74] SOBI-SVM
London King’s College
Hospital EEG Database

Eye Blinking

Mognon et al. [75]
Infomax ICA

Threshold-based Model
Two Personal Databases

Eye Blinking
Eye Movement

Generic Discontinuities

Nolan et al. [76]
ICA Threshold-based

Model

Personal Databases with
simulated and real data

(47 subjects)

Eye Blinking
Eye Movement

Muscular Artifacts
Discontinuities
Linear Trends
White Noise

Chaumon et al. [77]
Extended Infomax ICA
Threshold-based Model

Personal Databases

Eye Blinking
Eye Movement

Muscular Artifacts
Bad Channel
Rare Events

Non Dipolar Components

Winkler et al. [78] TDSEP-LDA
Personal Database

(12 subjects)
Every type of artifact

Radüntz et al. [79] ICA-ANN
Personal Database

(57 subjects)

Eye Blinking
Eye Movement
Cardiac Pulse

Muscular Artifacts
Impedance

Tamburro et al. [80] ICA-Nonlinear SVM
Personal Database

(62 subjects)

Eye Blinking
Eye Movement
Cardiac Pulse

Muscular Artifacts

Pion-Tonachini et al.
[81]

ICA-wConvolutional
Neural Network (CNN)

Personal Database Every type of artifact

3.6 Deep Learning Neural Networks

In the last few years, several Deep Learning (DL)-based studies have been

published with the goal of automatically removing artifacts from EEG signals.

A few studies focus mainly on using autoencoders to clean EEG signals. Yang

et al. [7] used Stacked Sparse Autoencoders (SSAEs) to remove ocular artifacts,

with an offline stage where they identify noiseless segments and feed them to the

model, and an online stage, where the trained DL architecture is used to construct

27



3. Related Work

a clean EEG segment from a noisy one. The authors used PSD and the Root Mean

Squared Error (RMSE) as performance metrics and compared the architecture to

other four EEG signal processing methods: a shallow network, Sparse Autoencoder

(SAE), ICA, Kurtosis ICA (K-ICA) and SOBI. They concluded that the deep neural

network had a variety of advantages, such as not needing additional EOG recording

as reference, being suitable for fewer number of electrodes, being fast and able to

be applied in online systems, and having a good generalization ability. Leite et al.

[8] proposed a method using deep Convolutional Autoencoders (CAEs) to remove

eye blinking and jaw clenching noise from EEG signals, inspired by methods used in

music and voice processing. They settled for a structure with 8 hidden layers, using

convolutional, max pooling and upsampling layers. The used evaluation metrics

were the Peak Signal-to-Noise Ratio (PSNR) and the Mean Squared Error (MSE).

The results were compared to those of a Butterworth IIR passband filter, with cutoff

frequencies of 4 Hz and 40 Hz. The authors confirmed that the NN always obtained

a higher PSNR, having better efficiency than Butterworth filters. Ghosh et al. [9]

proposed a novel combination of a SVM and an Autoencoder (AE) to automatically

identify and remove eye blink artifacts in EEG signals. The signal within the window

is firstly fed to the SVM classifier, which classifies it either as non-artifact and slides

the window forward, or as artifact and feeds it to a trained AE. This AE corrects

the specific window and returns a clean EEG signal. The authors used five metrics

to evaluate the performances: RMSE, SNR, Correlation Coefficient (CC), Mean

Absolute Error (MAE), and Mutual Information (MI) and compared it to wavelet

and Adaptive Noise Cancellation (ANC) methods. The proposed method performed

better than the others in every metric, showing that it could correct the EEG signal

while preserving a good correlation between the EEG before and after correction.

Other studies focused on the development of Deep Learning Neural Networks

(DLNNs). The paper by Sun et al. [10] proposes a new One-Dimensional Resid-

ual Convolutional Neural Network (1D-ResCNN) that can automatically learn the

non-linear and discriminative features of noisy and clean EEG signals. Batch Nor-

malization (BN) layers are used after the convolutional layers to speed up training,

optimize results and provide faster convergence. The authors based their perfor-

mance evaluation of the architecture on SNR and RMSE. They also used PSD, Ap-

proximate Entropy (ApEn) and autocorrelation function to measure the influence of

the method on the non-linear characteristics of the EEG. They compared these met-

rics against ICA, FastICA, RLS filter, wavelet transforms and DLNNs. In regards

to ECG and Electromyography (EMG) artifacts, the proposed model outperformed

all other techniques in all evaluation metrics, performing similarly to DLNN in the
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presence of EOG artifacts. Lopes et al. [11] used long-term data acquired from pa-

tients with epilepsy in presurgical monitoring (previously inspected by two experts

that removed independent sources corresponding to artifacts) to develop and train

an EEG artifact removal model based on Deep Convolutional Neural Networks (DC-

NNs), with the NN consisting of convolutional layers with 32 to 128 filters and using

the leaky Rectified Linear Unit (ReLU) function in all activation layers. The model

was evaluated using RMSE, Relative Root Mean Squared Error (RRMSE), Pearson

Correlation Coefficient (PCC) and Signal-to-Noise Ratio Difference (SNRDiff ), and

it was compared to the 1D-ResCNN model and to an automatic ICA model based

on extended Infomax ICA and Multiple Artifact Rejection Algorithm (MARA) clas-

sifier. The DCNN performed the best out of the tested approaches, and the authors

also concluded that their model was faster than the other artifact removal models.

This combination of minor reconstruction error with fast computation means the

method may be used to remove artifacts from signals in real-time scenarios. How-

ever, this multi-channel (MC) approach presents a limitation, since it requires the

EEG signals to have 19 channels. Jurczak et al. [12] developed a CNN with the

objective of eliminating eye blink artifacts from EEG signals. The adopted architec-

ture was composed of two convolutional layers, with 20 and 10 filters respectively,

with ReLU as activation function. The authors used real EEG data that served as

reference to generate artificial EEG signals with eye blink artifacts that were used to

train and test the architecture. They compared this pre-processing approach to ICA

and regression methods, using statistical coefficients that measure the correlation

between the same channels in the clean and the noisy signal (Ckk) and between the

reference electrode of the noisy signal and each electrode of the clean signal (CFp1),

as well as Mean Absolute Percentage Error (MAPE), RMSE and Skewness. The

CNN performed better in the removal of eye blink artifacts, especially in central

and parietal electrodes, but also requires multiple channels of EEG signal. Mathe

et al. [13] proposed a One-Dimensional Convolutional Neural Network (1D-CNN)

that uses a new hybrid algorithm named Spider Monkey-based Electric Fish Op-

timization (SM-EFO) to tune the model parameters of the network and optimize

the results. As evaluation metrics, the authors utilized Source-to-Distortion Ra-

tio (SDR), Cumulative Squared Euclidean Distance (CSED), CC and MAE. They

compared their approach to both SVM and DLNNs, achieving better results in all

the aforementioned metrics. Zhang Z. et al. [14] developed a Multi-Module Neural

Network (MMNN) using multiple parallel denoising modules, each constructed by 4

1D convolutional layers with ReLUs, a residual connection, and two full connected

layers. They synthesized noisy EEG epochs using clean, EOG and EMG epochs to
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train the model, and used Temporal Relative Root Mean Square Error (T-RRMSE),

Spectral Relative Root Mean Square Error (S-RRMSE), and CC in order to compare

its performance to different DL architectures, as well as conventional models such as

regression and ICA. The authors concluded that their model achieved higher signal

reconstruction accuracy than the other methods, while also using less training data.

Finally, Zhang W. et al. [15] constructed a Gated Recurrent Unit based Multi-type

Artifact Removal algorithm for Single-Channel (GRU-MARSC), using an encoder-

decoder approach to employ an adaptive artifact pattern concentration to separate

the noise and clean EEG signals. They trained the model using semi-simulated

data and applied it to 2000 real signal segments, comparing its CC and RRMSE to

Surrogates-based Artifact Removal (SuBAR) (an approach based on wavelet analy-

sis) and EEMD-CCA, concluding that their model is more effective and efficient at

multi-type artifact removal than the compared approaches.

Tables 3.2 and 3.3 summarize the reviewed work regarding the use of NNs in

EEG artifact removal. Some findings have shown that the use of NNs in EEG

processing and artifact removal have both advantages and disadvantages: on the

one hand, they are able to learn complex patterns and characteristics of the signals,

using less channels than other methods and keeping the characteristics of the original

signal, thus losing less information. They are also very fast to apply (once they are

trained). On the other hand, the training phase of these networks can be quite time

consuming, and their generalization capacity highly depends of a large amount of

data.

In summary, Table 3.4 presents a comparison between the different artifact

removal techniques aforementioned.

30



3. Related Work

Table 3.2: EEG Pre-Processing Models using Neural Networks

Authors Architecture Databases Artifacts

Yang et al. [7] SSAEs
Personal Database (3 subjects)

”Data Sets 1” for BCI Competition IV
(7 subjects)

Ocular Artifacts

Leite et al. [8] CAEs
Personal Database for noisy signals
DEAP EEG Dataset for Emotion

Analysis for clean signals (32 subjects)

Eye Blinking
Jaw Clenching

Ghosh et al. [9]
Combination of
SVMs and AEs

ABISSR Project Database (70 subjects) Eye Blinking

Sun et al. [10] 1D-ResCNN CHB-MIT Database (20 subjects)
Ocular Artifacts

Muscular Artifacts
Cardiac Artifacts

Lopes et al. [11] DCNNs
EPILEPSIAE Database

(25 subjects)
Every type of artifact

Jurczak et al. [12] CNN
Combination of real EEG signals
recorded during N-back task and

artificially generated signals
Eye Blinking

Mathe et al. [13] 1D-CNN CHB-MIT Database (22 subjects)
Ocular Artifacts

Muscular Artifacts
Cardiac Artifacts

Zhang Z. et al. [14] MMNN
Clean and artifact epochs from the

EEGdenoiseNet Database
Ocular Artifacts

Myogenic Artifacts

Zhang W. et al. [15] GRU-MARSC
Multiple databases for semi-simulated

data [82–87]
CAP Sleep Database for real data

Ocular Artifacts
Muscular Artifacts
Cardiac Artifacts
Eye Blinking

Motion Artifacts
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Table 3.3: Performances of EEG Pre-Processing Models.

Authors Architecture Evaluation Metrics Performance Results

Yang et al. [7] SSAEs RMSE 1.2838

Leite et al. [8] CAEs PSNR 7.810

Ghosh et al. [9]
Combination of SVMs and

AEs

RMSE
SNR
CC
MAE
MI

0.024
1.562
0.892
0.0041
2.307

Sun et al. [10] 1D-ResCNN

SNR
RMSE
ApEn

Autocorrelation

26.472
0.0680
0.61

0.9567

Lopes et al. [11] DCNNs

RMSE
RRMSE
PCC

SNRDiff

4.83
0.52
0.86
8.81

Jurczak et al. [12] CNN

Ckk

CFp1

MAPE
RMSE

Skewness

0.930
-0.027
0.805
2.935
0.037

Mathe et al. [13] 1D-CNN

SDR
CSED
CC
MAE

3.4923
3049.9
0.74923
11.99

Zhang Z. et al. [14] MMNN
T-RRMSE
S-RRMSE

CC

0.273
0.276
0.896

Zhang W. et al. [15] GRU-MARSC
RMSE
CC

0.5
0.88

Table 3.4: Comparison of the Advantages and Disadvantages of various Artifact
Removal Methods

Approach Fast Autonomous
Suited for Real
Time Scenarios

Removes artifacts with frequency
spectrum overlapping neural signals

Does not require
extra electrodes

Segment Rejection ✓ ✓ ✓ ✓

Linear Regression ✓ ✓ ✓ ✓

Simple Filters ✓ ✓ ✓ ✓

Adaptive Filters ✓ ✓ ✓ ✓

Weiner Filters ✓ ✓ ✓

Bayes Filters ✓ ✓ ✓ ✓

EMD ✓ ✓

Wavelets ✓

ICA ✓ ✓

CCA ✓ ✓

MCA ✓

Neural Networks ✓ ✓ ✓ ✓ ✓
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Experimental Setup

In this chapter, the experimental setup is discussed. In Section 4.1, a brief

description of the dataset is provided. Section 4.2 introduces the techniques utilized

along the duration of this study, with Sections 4.2.1 and 4.2.2 explaining the first and

second approaches followed for the construction of the single-channel (SC) models,

respectively.

4.1 Dataset

Electroencephalogram (EEG) signals used in this study were obtained from

the EPILEPSIAE repository [88]. This database is composed of long-term epileptic

EEG signals and seizure meta-data acquired during presurgical monitoring, recorded

over several days and with different sampling rates (250 - 2500 Hz). Data were

recorded at Hôpital de la Pitié-Salpêtrière, Paris (France), Universitätsklinikum

Freiburg (Germany), and Centro Hospitalar e Universitário de Coimbra (Portugal).

Presently, the database contains signals from 275 patients and includes both scalp

EEG and intracranial Electroencephalogram (iEEG) recordings - Table 4.1.

Table 4.1: EPILEPSIAE Database Recordings

Type of Recording Number of Patients

10-20 Scalp EEG 222

iEEG 49

Both 4

This study used 4.5 hours scalp EEG recordings with a sampling rate of 256

Hz and using the International 10-20 System, with 19 available channels - Fp1, Fp2,

F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T7, T8, P7, P8, Fz, Cz and Pz. The data

belongs to 13 male patients and 12 female patients, aged 39.6±16.8 years, and was
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recorded at Universitätsklinikum Freiburg.

These signals had been previously pre-processed [11, 89]. Firstly, a 0.5-100

Hz bandpass 4th-order Butterworth filter and a 50 Hz 2nd-order notch filter were

applied to remove the Direct Current (DC) component, power line interference and

high frequency noise. Experimental errors such as saturated segments, flatlines and

atypical peaks were also removed. Afterwards, signals were then divided into multi-

channel (MC) 10-minute segments (using zero padding in incomplete segments),

and the spherical interpolation method [90] was used to fix experimental errors that

persisted. These signals were subsequently divided into training and testing datasets

(containing, respectively, segments belonging to 20 and 5 patients). They were then

processed using extended-infomax Independent Component Analysis (ICA), which

separated the segments of both datasets into Independent Components (ICs). These

components were in turn inspected by two specialists and removed if deemed noisy.

Finally, signals were reconstructed using only non-noisy ICs. As such, there were

two versions of each segment: before the application of extended-infomax ICA and

after the removal of noisy ICs. That is, the former will be considered as model

inputs and the latter as the desired target output.

It was decided that segments where more than half of their ICs (10 or more)

represented noise were to be removed from the training dataset entirely, since they

would not allow a reliable reconstruction of an EEG segment. Since the data was

comprised of MC segments (with 19 channels) and the aim of this work is to develop

intelligent models able to automatically reconstruct SC EEG signals, the signals were

separated, with each of the 19 channels of a segment constituting a new separate

segment. The details of the training and test datasets can be observed in Table 4.2.

4.2 Methods

Two separate approaches were developed in the construction of an automatic

SC model to clean and reconstruct EEG signals - one using 10-minute segments

- Subsection 4.2.1 - and one using only 5-second segments - Subsection 4.2.2. A

schematic representation of the steps in these approaches can be found in Figure

4.1.

All models were constructed, trained and tested in a computer with an AMD

Ryzen 5 2600 CPU 3.4 GHz, 64 GB of RAM, NVIDIA RTX 2060 Super, and Linux

Ubuntu 20.04 LTS, using Tensorflow 2.4.1 and Keras 2.4.3 from Spyder 3.8 in Ana-

conda Spyder 4. Available resources included 4 GPU NVIDIA Quadro P5000 with
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Table 4.2: Patient’s Data

Dataset Patient ID Number of Segments
Total Number of

Hours

Training Dataset

8902 2831

9183.333 Hours (55100
segments)

30802 4294

32702 2432

46702 2698

53402 2204

56402 2204

58602 2983

59102 2774

60002 3002

64702 2394

75202 4180

80702 2679

85202 2888

93402 2698

93902 2033

112802 2755

113902 608

114902 3781

123902 1444

Test Dataset

402 3059

2881.667 Hours (17290
segments)

16202 3876

23902 2945

50802 2793

55202 4617
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16 GB GDDR5 RAM and 5 GPU NVIDIA Quadro RTX 5000 with 16 GB GDDR6

RAM. Statistical validation was performed in Matlab R2020b.

4.2.1 First Approach

The initial approach utilized full 10-minute segments as input for the con-

structed models, with each segment having 153600 samples due to its sampling

rate of 256 Hz. Initially, a grid search was performed to determine the best architec-

ture, as well as some of its hyper-parameters, using a preliminary dataset. Once the

results of the grid search were analyzed and the model and its parameters decided,

the selected network was trained with the full training dataset, and its performance

evaluated using the test dataset.

4.2.1.1 Grid Search

In order to perform an initial grid search, a preliminary dataset was constructed,

by randomly selecting 10% of the training data. Two types of architectures, repre-

sented in Figure 4.2, were developed:

Deep Convolutional Neural Network (DCNN), composed of three sets of three

1D convolutional layers, with increasing number of filters in each set to ex-

tract features from the signal, followed by leaky Rectified Linear Unit (ReLU)

activation function. ReLU has a fast computation time and nonlinear charac-

teristics, making it a good option for use as activation function, but has the

potential to result in dead neurons, which will cause some network neurons to

output zero values for various inputs. Leaky ReLU addresses this drawback

by reducing the output of negative inputs instead of cancelling them [91]. The

data is returned to its original dimensions with the final convolutional layer.

Deep Convolutional Autoencoder (DCAE), that encoded the data with three

1D convolutional layers with a stride of 2 (all with the same number of filters),

reducing dimensionality, and then decoded it with 1D convolutional layers

with a stride of 1, followed by upsampling1D layers which are used to increase

dimensionality by repeating the rows of its input. These reconstruct the signal

as closely as they can to the same dimensions of the initial input.

Two hyper-parameters were inspected during the grid search:

Filter’s size in the convolutional layers: the symmetry surrounding the unit

under study cannot be maintained by filters of an even size, which results in

data aberrations across the layers, and size 1 filters are unable to analyze the
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Figure 4.1: Schematic representation of developed approaches.
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Figure 4.2: Architectures developed in the first approach. Fs refers to the
selected filter size, Nf to the selected number of filters, and the third value is the

stride of the layer. The 0.2 in Leaky ReLU layers is the value of α, a fixed
parameter that represents the slope of the activation function [92].
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values near the unit of analysis. As such, this value was varied between 3, 5

and 7 [93].

Initial number of filters in the convolutional layers: a higher number of filters

per layer increases the width of the model [94]. This value was varied between

8, 16, 32 and 64. Higher values were not used since the models would become

too computationally complex giving the available hardware.

The 24 models (12 per architecture) were each trained 10 times using the pre-

liminary training dataset, and the mean and the standard deviation of the Root

Mean Squared Error (RMSE) and Relative Root Mean Squared Error (RRMSE)

values of the validation group were analysed in Subsection 5.1.1.

4.2.1.2 Training and Testing

Analysis of grid search results showed that the DCAE with a filter size of 7

and 64 filters achieved the best performance, presented in Figure 4.3. Therefore,

architecture was selected to be trained using the entire training dataset. Training

hyper-parameters are specified in Table 4.3. Each model was trained 10 times, so

that the training and validation subdatasets were randomly selected for each run,

to ensure that performance results were not affected by chance.

Figure 4.3: Deep Learning (DL) architecture trained using the full training
dataset in the first approach.

Once all 10 models had finished training, these were applied to the test dataset,

and each model’s performance was evaluated through RMSE, RRMSE, Pearson Cor-

relation Coefficient (PCC) and Signal-to-Noise Ratio Difference (SNRDiff ). These

metrics are further described in Section 2.5. The means, medians, standard-deviations,

and the first and third quartiles of each evaluation metric were calculated, and these

39



4. Experimental Setup

Table 4.3: Model Training Hyper-Parameters

Hyper-Parameter Value

Dataset Partition Holdout Validation 70/30

Optimization Function Adam

Learning Rate 3.0×10−4

Loss Function RRMSE

Epochs 500

Number of Runs 10

values were compared to values from the MC DL architecture that was developed

by Lopes et al. [11], which had been previously trained and tested on the same data

(before the segment division by channel). Results are presented in Subsection 5.1.2.

4.2.2 Second Approach

For the second approach, the 10-minute segments were divided into 5-second

windows. This was done because the use of segments with that many timesteps

make the training of the models an extremely computationally heavy procedure. The

reduction of sample size allows the construction and training of models that are more

complex in their layers, consequently expanding the ability to learn the different

patterns and characteristics of EEG signals. Furthermore, seizure prediction and

detection algorithms commonly use EEG signals in smaller windows (from 1 to 30

seconds).

To perform this reduction, the zero padding was removed so that there were no

null 5-second segments. This sometimes led to the last window of a former 10-minute

segment having a duration inferior to 5 seconds. In these cases, overlapping from

the previous 5-second window was added in order for all segments to have an equal

length of 5 seconds, corresponding to 1280 timesteps. This reduction was performed

on both the training and test datasets, and was followed by a new grid search to

find the best DL architecture and respective hyper-parameters, to be trained using

the new training dataset and evaluated using the new test dataset.

4.2.2.1 Grid Search

To perform a new grid search, 10% of the training data was once again randomly

selected to serve as a preliminary training dataset. Two more types of architectures,

represented in Figure 4.4, were developed:
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Simple DCAE, similar to the ones constructed in the first approach.

DCAE with an embedded Bidirectional LSTM (BiLSTM), which can use infor-

mation from both the past and present since it adds one more Long Short-Term

Memory (LSTM) layer that reverses the direction of information flow.

Three hyper-parameters were varied during the second grid search:

Size of the filters in the convolutional layers, between 3, 5 and 7.

Number of filters in the convolutional layers, between 64, 128 and 256.

Number of layers before the output layer of the latent space, between 3, 4 and

5, to check how the increase or decrease in depth would affect the performance

of the DL networks.

In total, 54 models were developed (27 per architecture). Just like in the first

grid search, each model was trained 10 times with the preliminary training dataset

and the validation group were examined - see Subsection 5.2.1.

4.2.2.2 Training and Testing

The best architecture, shown in Figure 4.5, was a DCAE with an incorporated

BiLSTM layer (DCLSTMAE), using 256 filters of size 5, and 4 convolutional layers,

which was trained using the entire training dataset, with the hyper-parameters of

Table 4.3. Additionally, two more models, retrieved from literature, were trained

with the same data and parameters: the DCNN developed by Lopes et al. and the

One-Dimensional Residual Convolutional Neural Network (1D-ResCNN) developed

by Sun et al. [10], with the former being adapted to SC use so that it could be

trained using the training dataset.

All the trained models were then applied to the test dataset. The evaluation

metrics were obtained by employing the same steps as in the first approach, and

compared with the three types of architectures. This comparison, along with the

comparison of our SC models from each approach, can be seen in Subsection 5.2.2.
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Figure 4.4: Architectures developed in the second approach, with Fs being the
filter size, Nf the number of filters, and the third value the stride of the layer.

Layers encapsulated in blue and red are added when the number of convolutional
layers in the encoder and decoder is increased to 4 and 5, respectively. The 0.2 in

Leaky ReLU layers is the value of α, a fixed parameter that represents the slope of
the activation function [92]. 42
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Figure 4.5: DL architecture trained using the full training dataset in the second
approach.
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Results and Discussion

This chapter describes the results of the study, divided by approach: Section 5.1

refers to the results of the first approach, where all constructed models received 10-

minute Electroencephalogram (EEG) segments as input. Section 5.2 exhibits results

of the second approach, after the reduction of the segments from 10 minutes to 5

seconds. Each of these sections begins by presenting the results of the respective grid

searches and consequent architecture selection, and then discusses the performance

of the fully trained models.

5.1 First Approach

This Section presents the results obtained in the first approach. Results of the

grid search of hyper-parameters for Deep Convolutional Neural Networks (DCNNs)

and Deep Convolutional Autoencoder (DCAEs) are discussed in Subsection 5.1.1.

These are followed by a performance comparison in Subsection 5.1.2 between the

best model found through the grid search trained with the entire training dataset,

and a multi-channel (MC) DCNN model that had previously been trained with the

same data [11].

5.1.1 Grid Search

Tables 5.1 and 5.2 detail the Root Mean Squared Error (RMSE) and Relative

Root Mean Squared Error (RRMSE) means and standard deviations of the 10 runs

of all the models developed during the grid search, trained with the preliminary

training dataset. As seen in Figure 5.1, values tend to improve with higher number

of filters as well as filter sizes. In Figure 5.2 the results show that, for a low number

of filters (8 and 16), the DCNNs obtain better results when compared to DCAEs;

however, the inverse happens when more than 32 or 64 filters are used - Figure 5.3.

Both architectures show a decrease of RMSE and RRMSE values with the increase
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of both filter size and number of filters. The lowest values, presented in bold, both

belong to the same architecture, the DCAE with the highest filter size and number

of filters used, which is consistent with the notion that an increase in depth and

width of a Deep Learning (DL) model expands its learning capabilities and leads to

better results [94].

The model that achieved the best results, whose parameters are presented in

Table 5.3, was then trained ten times using the full training dataset.

5.1.2 Model Testing

Once all ten runs had been completed, the performance of the trained models

was analysed, and discussed in this subsection. Firstly, the calculated evaluation

metrics are analysed and compared to values from a similarly trained MC model

- Subsubsection 5.1.2.1. Then, to check on the model’s ability to remove artifacts

from EEG signals, we consider several examples of segments with different artifacts

reconstructed both by our model and the MC architecture - Subsubsection 5.1.2.2.

5.1.2.1 Evaluation Metrics

Values for the evaluation metrics introduced in Section 2.5 were determined us-

ing the target segments and visualized in barplots, in order to compare the original

EEG signals, the signals reconstructed by the developed single-channel (SC) ar-

chitecture, and the previously trained MC model. The barplots compare the three

RMSE, RRMSE and Pearson Correlation Coefficient (PCC) values for each channel,

and the Signal-to-Noise Ratio Difference (SNRDiff ) values of the SC model and the

MC model, also regarding each channel separately. For these graphics, medians and

interquartile ranges were used as central tendency statistics in favor of means and

standard deviations since experimental errors that persisted in the pre-processed

segments gave rise to outliers which skewed the metrics’ distributions.

Figure 5.4 presents the RMSE values. Since these values dictate the errors in

the reconstructed signals in regards to the target segments, the lower the value the

better the ability of the model to remove artifacts in each channel. The highest

reductions in RMSE values that our model achieved in comparison with the original

segments are in channels Fp1, Fp2, F7 and F8. These are also the channels with the

highest RMSE values in the original segments, since they are most heavily affected

by ocular artifacts. The Fz channel is the only one where the RMSE value of the

SC model slightly increases upon the original value, albeit being the channel with

the lowest value overall.
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Table 5.1: RMSE results for DCNNs and DCAEs in first approach Grid Search

DCNNs DCAEs

Filter Size
Number of

Filters
Mean

Standard
Deviation

Mean
Standard
Deviation

3

8 0.3823 0.0132 0.4004 0.0175

16 0.3762 0.0113 0.3832 0.0111

32 0.3747 0.0115 0.3745 0.0140

64 0.3728 0.0116 0.3677 0.0114

5

8 0.3741 0.0112 0.3923 0.0135

16 0.3703 0.0120 0.3733 0.0119

32 0.3670 0.0117 0.3636 0.0117

64 0.3658 0.0118 0.3579 0.0112

7

8 0.3708 0.0120 0.3903 0.0151

16 0.3651 0.0124 0.3655 0.0112

32 0.3616 0.0110 0.3569 0.0106

64 0.3611 0.0116 0.3520 0.0123

Table 5.2: RRMSE results for DCNNs and DCAEs in first approach Grid Search

DCNNs DCAEs

Filter Size
Number of

Filters
Mean

Standard
Deviation

Mean
Standard
Deviation

3

8 0.5885 0.0115 0.6163 0.0176

16 0.5791 0.0093 0.5899 0.0106

32 0.5769 0.0087 0.5764 0.0114

64 0.5739 0.0092 0.5660 0.0096

5

8 0.5760 0.0085 0.6039 0.0114

16 0.5700 0.0087 0.5747 0.0100

32 0.5651 0.0086 0.5598 0.0096

64 0.5632 0.0090 0.5510 0.0081

7

8 0.5709 0.0098 0.6009 0.0176

16 0.5620 0.0097 0.5627 0.0103

32 0.5567 0.0082 0.5495 0.0097

64 0.5559 0.0092 0.5418 0.0115
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(a) RMSE Values

(b) RRMSE Values

Figure 5.1: RMSE and RRMSE mean values for all models developed in the grid
search.
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(a) RMSE Values

(b) RRMSE Values

Figure 5.2: Mean values for the architectures with 8 and 16 filters developed in
the grid search.
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(a) RMSE Values

(b) RRMSE Values

Figure 5.3: Mean values for the architectures with 32 and 64 filters developed in
the grid search.
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Table 5.3: First Approach Grid Search - Best Model Parameters

Type of Architecture Filter Size Number of Filters

DCAE 7 64

RRMSE values, representing the normalised errors, appear in Figure 5.5, and

seem to generally follow the same trends as RMSE values. However, in the SC

model, channels O1 and O2 present some of the lowest RRMSE values, even though

their RMSE values are higher than in a lot of other channels. This indicates that

channels O1 and O2 had expected higher root mean squared (RMS) values, meaning

that the RMSE error value is less relevant in these channels. Comparing both artifact

removal models, the MC architecture achieves better results in every channel, with

the highest differences in channels O1 and O2, for both RMSE and RRMSE values.

PCC values are shown in Figure 5.6, showing the linear correlation between

the original or reconstructed segments and the targets - a PCC value of 1 would

be ideal since it meant the reconstructed segment was equal to its target. The

developed DCAE SC architecture was able to achieve higher PCC values than the

original segments, with channels Fp1, Fp2, F7 and F8 suffering the largest increases.

The Fz channel, which has the highest PCC values among the original segments, is

the only channel where SC model reconstructed segments show a decrease in this

metric. In the majority of the channels, the upper quartile of the original segments

is higher than in the SC model, and the lower quartile of this model is lower than

the median of the original PCC value. Comparing the DCAE model to the MC

architecture, the latter outperforms the former in every channel, with the highest

differences appearing in the channels most heavily affected by ocular artifacts (Fp1,

Fp2, F7 and F8).

As stated in Section 2.5, SNRDiff refers to the difference between the input and

output Signal-to-Noise Ratios (SNRs), or the SNRs of the original noisy segment

and the reconstructed segment (both in relation to the corresponding clean target

segment). Figure 5.7 presents these values for each channel, with values of the SC

model in blue, and of the MC model in orange. Although values for all channels are

positive, meaning that the model is able to reconstruct signals with better SNR, 14

out of the 19 channels contain the zero value in their interquartile range. Channel

Fz presents a median value that is very close to zero, with channels O1, O2, P7

and P8 also showing low values. Once more, the MC architecture is able to achieve

better results in every channel, with the five aforementioned channels having the

biggest gaps between the two performances.
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Figure 5.4: First approach RMSE performance results. Each bar corresponds to
the median value and the interquartile range. Asterisk symbols refer to the

significance levels in statistical tests results - one symbol if significant statistical
differences were found using α = 0.05, two if they were found using α = 0.01, and

three if they were found using α = 0.001.

Figure 5.5: First approach RRMSE performance results. Each bar corresponds
to the median value and the interquartile range. Asterisk symbols refer to the

significance levels in statistical tests results - one symbol if significant statistical
differences were found using α = 0.05, two if they were found using α = 0.01, and

three if they were found using α = 0.001.
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Figure 5.6: First approach PCC performance results. Each bar corresponds to
the median value and the interquartile range. Asterisk symbols refer to the

significance levels in statistical tests results - one symbol if significant statistical
differences were found using α = 0.05, two if they were found using α = 0.01, and

three if they were found using α = 0.001.

Figure 5.7: First approach SNRDiff performance results. Each bar corresponds
to the median value and the interquartile range. Asterisk symbols refer to the

significance levels in statistical tests results - one symbol if significant statistical
differences were found using α = 0.05, two if they were found using α = 0.01, and

three if they were found using α = 0.001.
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Statistic validation was performed in order to check for significantly statis-

tical differences between the results of the two compared models. Firstly, the

Shapiro–Wilk [95] and Kolmogorov–Smirnov tests [96] were used to verify if the

results followed a normal distribution. Since the p-value for both the SC model

and the MC model results were inferior to 0.05, we reject the null hypothesis that

the results followed a normal distribution, and used non-parametric tests to verify

whether there were significant statistical differences. The Mann–Whitney U test

was used [97], a test for independent samples whose null hypothesis is that the two

samples come from the same population (i.e. that they both have the same me-

dian). We obtained a value of U equal to zero in every case, meaning that there

are significant statistical differences between performances. Therefore, the perfor-

mance of the MC approach is better than the performance of the SC model. This,

along with every p-value being smaller than 0.05, allowed the rejection of the null

hypothesis, confirming the existence of statistical differences between the results of

the two models in every metric and for each channel. Asterisk symbols in Figures

5.4, 5.5, 5.6 and 5.7 refer to the significance levels of the test results - one symbol

for a p-value smaller than 0.05, two for a p-value smaller than 0.01, and three for a

p-value smaller than 0.001.

5.1.2.2 Artifact Removal and Signal Reconstruction

Examples of EEG channel segments with different types of artifacts were used

to compare the artifact removal ability of the trained model, comparing the recon-

structed signal to the original segment, the target segment and the signal cleaned

by the DCNN MC architecture.

Figure 5.8 shows part of a EEG segment from the test dataset carrying an eye

blink artifact, which is usually a high-amplitude low-frequency occurrence. We verify

that although the developed model was able to remove the noise from the blink, it

had some difficulties reconstructing the details of the target segment, a task that was

better achieved by the MC architecture. The segment shown in Figure 5.9 includes

an eye movement artifact. The SC architecture reduced the noise but, unlike the

DCNN model, was unable to remove it completely, with a fraction of the artifact

still present in the reconstructed signal.

The muscle activity present in the segment in Figure 5.10 was also largely

attenuated by the model even if not entirely - it struggled to reconstruct the details

of the target signal since residues of the artifacts remained, as is confirmed by the

Power Spectrum Density (PSD), showing an overall higher density than the target
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segment across all frequencies.

Figure 5.11 displays pulse artifacts. In removing this type of artifact, the SC

and MC models performed similarly, not being able to attenuate a big part of the

noise, which is confirmed by both the time series and the PSD, where the density

of both reconstructed signals, particularly in the higher frequencies, is still too high

when compared to the target segment, with the MC model still performing slightly

better.

The cardiac peaks in Figure 5.12 were not removed by either the SC or the MC

model, both behaving similarly. This kind of artifact was not very common in the

dataset, thus the models’ limitations in classifying this artifact as noise.

These examples reflect the results of the evaluation metrics, with the SC model

being able to largely reduce the noise in the signals, being however generally out-

performed by the MC architecture.

5.2 Second Approach

This section describes the results obtained in the second approach. Subsection

5.2.1 presents the outcomes of the grid search performed to find the best hyper-

parameters for both the DCAE and the DCAE with an incorporated BiLSTM layer

(DCLSTMAE). Subsection 5.2.2 conducts a performance comparison between three

models trained with 5-second segments (the architecture that achieved the best

results in the grid search and two others retrieved from literature), as well as a

comparison between the trained models for each of the two approaches.

5.2.1 Grid Search

The RMSE and RRMSE means and standard deviations for all the models

created during the grid search, which used the preliminary training dataset, are

shown in Tables 5.4 and 5.5, respectively.

In simple DCAE architectures with 3 convolutional layers before the output

layer of the latent space, RMSE and RRMSE values improve with the increase of

the filter size, and with the increase in the number of filters from 64 to 128, but

not always with the increase from 128 to 256 filters. As for the models with the

Bidirectional LSTM (BiLSTM) layer, the decrease in values is more apparent with

the rise of the number of filters. When the filter size is increased and the number

of filters is left unchanged, the results deteriorate for architectures using 64 and 128
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(a) EEG Time Series

(b) PSD

Figure 5.8: Example EEG segment from the test set containing eye blink artifact.
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(a) EEG Time Series

(b) PSD

Figure 5.9: Example EEG segment from the test set containing eye movement
artifact.
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(a) EEG Time Series

(b) PSD

Figure 5.10: Example EEG segment from the test set containing muscle artifact.
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(a) EEG Time Series

(b) PSD

Figure 5.11: Example EEG segment from the test set containing pulse artifact.
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(a) EEG Time Series

(b) PSD

Figure 5.12: Example EEG segment from the test set containing cardiac artifact.
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Table 5.4: RMSE results for DCAEs and DCLSTMAEs in second approach Grid
Search

DCAEs DCLSTMAEs

Filter Size
Number
of Filters

Number
of Layers

Mean
Standard
Deviation

Mean
Standard
Deviation

3

64

3 0.3634 0.0035 0.3251 0.0042

4 0.3572 0.0047 0.3224 0.0031

5 0.3539 0.0057 0.3253 0.0035

128

3 0.3548 0.0041 0.3197 0.0062

4 0.3519 0.0039 0.3171 0.0038

5 0.3447 0.0077 0.3197 0.0042

256

3 0.3592 0.0037 0.3132 0.0041

4 0.3508 0.0043 0.3134 0.0036

5 0.3458 0.0045 0.3155 0.0029

5

64

3 0.3548 0.0041 0.3214 0.0041

4 0.3504 0.0087 0.3196 0.0031

5 0.3447 0.0077 0.3258 0.0069

128

3 0.3533 0.0044 0.3163 0.0024

4 0.3422 0.0043 0.3172 0.0053

5 0.3358 0.0033 0.3172 0.0028

256

3 0.3527 0.0040 0.3128 0.0047

4 0.3428 0.0039 0.3107 0.0033

5 0.3360 0.0038 0.3138 0.0040

7

64

3 0.3508 0.0041 0.3222 0.0063

4 0.3433 0.0046 0.3182 0.0035

5 0.3376 0.0046 0.3254 0.0047

128

3 0.3479 0.0040 0.3169 0.0039

4 0.3381 0.0044 0.3146 0.0044

5 0.3386 0.0066 0.3170 0.0036

256

3 0.3493 0.0044 0.3124 0.0035

4 0.3415 0.0102 0.3120 0.0046

5 0.3376 0.0069 0.3135 0.0022
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Table 5.5: RRMSE results for DCAEs and DCLSTMAEs in second approach
Grid Search

DCAEs DCLSTMAEs

Filter Size
Number
of Filters

Number
of Layers

Mean
Standard
Deviation

Mean
Standard
Deviation

3

64

3 0.5840 0.0022 0.5225 0.0035

4 0.5740 0.0038 0.5181 0.0034

5 0.5687 0.0047 0.5228 0.0035

128

3 0.5787 0.0021 0.5139 0.0109

4 0.5656 0.0016 0.5096 0.0025

5 0.5533 0.0025 0.5138 0.0045

256

3 0.5722 0.0017 0.5034 0.0043

4 0.5638 0.0028 0.5036 0.0044

5 0.5557 0.0058 0.5071 0.0037

5

64

3 0.5702 0.0021 0.5166 0.0029

4 0.5630 0.0114 0.5136 0.0023

5 0.5539 0.0090 0.5236 0.0077

128

3 0.5678 0.0027 0.5084 0.0025

4 0.5499 0.0027 0.5098 0.0101

5 0.5396 0.0042 0.5099 0.0038

256

3 0.5667 0.0027 0.5026 0.0040

4 0.5509 0.0047 0.4994 0.0031

5 0.5401 0.0049 0.5043 0.0032

7

64

3 0.5637 0.0019 0.5177 0.0065

4 0.5517 0.0052 0.5154 0.0019

5 0.5425 0.0045 0.5230 0.0046

128

3 0.5591 0.0025 0.5093 0.0048

4 0.5434 0.0047 0.5056 0.0047

5 0.5442 0.0063 0.5095 0.0033

256

3 0.5614 0.0064 0.5021 0.0047

4 0.5488 0.0165 0.5014 0.0046

5 0.5426 0.0100 0.5039 0.0033
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filters, but slightly improve with 256 filters - see Figures 5.13 and 5.14.

The same happens with architectures with 4 convolutional layers (Figures 5.15

and 5.16): in models without the BiLSTM layer, RMSE and RRMSE values get

lower with the rise of the hyper-parameters, except when the number of filters is

increased from 128 to 256. In models with the recurrent layer, a higher number of

filters leads to better results, while a higher filter size can either improve or worsen

the results, or even leave them unchanged.

When the number of convolutional layers is changed to 5 (Figures 5.17 and

5.18), simple DCAE models tend to, as before, show improvements with bigger

filter sizes, but present inferior results when the number of filters is pushed from

128 to 256 (with filter sizes 3 and 5) and from 64 to 128 (with filter size 7). Models

with the BiLSTM layer show however, better results with larger numbers of filters,

while the size of said filters seems to hardly affect the RMSE and RRMSE values.

Additionally, models with the BiLSTM layer consistently outperform those lacking

it, for the same filter size and number of filters and layers.

In regards to the variation of the number of convolutional layers before the

output layer of the latent space, the results in DCAE architectures with no recurrent

layer are improved when the number of these layers is increased from 3 to 4 as well

as from 4 to 5. When the BiLSTM layer is present, a boost from 3 to 4 convolutional

layers leads to better results, but a further increase form 4 to 5 layers worsens them,

which can be ssen in Figures 5.19 and 5.20.

According to the results, networks without the BiLSTM layer typically get

better RMSE and RRMSE values with larger filter sizes. However, increasing the

number of filters tends to have little to no effect or even impair the outcomes. The

inverse occurs in networks with the BiLSTM layer: greater results are obtained

with more filters, but increasing the size of the filters occasionally results in worse

results. Regarding the quantity of convolutional layers, in architectures without

the recurrent layer, the results get better as the number of layers rises; however, for

models incorporating that layer, the models with the best RMSE and RRMSE values

have 4 convolutional layers before the output layer of the latent space. Furthermore,

for every hyper-parameter variation, the presence of the BiLSTM layer in the model

leads to better results.

The architecture with the best RMSE and RRMSE mean values was the one

chosen to be trained with the entire new training dataset. Its parameters can be

observed in 5.6.
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Figure 5.13: RMSE values for architectures with 3 convolutional layers before
the output layer of the latent space.

Figure 5.14: RRMSE values for architectures with 3 convolutional layers before
the output layer of the latent space.
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Figure 5.15: RMSE values for architectures with 4 convolutional layers before
the output layer of the latent space.

Figure 5.16: RRMSE values for architectures with 4 convolutional layers before
the output layer of the latent space.
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Figure 5.17: RMSE values for architectures with 5 convolutional layers before
the output layer of the latent space.

Figure 5.18: RRMSE values for architectures with 5 convolutional layers before
the output layer of the latent space.
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Figure 5.19: RMSE mean values for all architectures developed in the grid search.

Figure 5.20: RRMSE mean values for all architectures developed in the grid
search.
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Table 5.6: Second Approach Grid Search - Best Model Parameters

Type of
Architecture

Filter Size Number of Filters
Convolutional

Layers

DCLSTMAE 5 256 4

5.2.2 Model Testing

After training, the models were applied to the test dataset. We evaluated these

using two methods: computing the evaluation metrics, which were compared and

discussed in Subsubsection 5.2.2.1, and reconstructing various segments to visually

evaluate the artifact removal capability of the architectures. These can be seen in

Subsubsection 5.2.2.2.

5.2.2.1 Evaluation Metrics

The first method used for determining the evaluation metrics was by calculating

their values for each 5-second window of the test dataset. Concerning the RMSE,

RRMSE, and PCC metrics, barplots present the values of the original segments and

of the signals reconstructed by each of the three trained models, for each channel

- Figures 5.21, 5.22 and 5.23. Regarding the SNRDiff , the barplot in Figure 5.24

shows the values of each channel regarding the three architectures. Once again,

medians and interquartile ranges were used as central tendency statistics.

Regarding RMSE and RRMSE values, shown in Figures 5.21 and 5.22, our

model (DCLSTMAE) achieved the lowest values, and thus the best results out of the

three. Every channel presents lower error values compared to the ones of the original

segments, apart from channels Fz and Cz, which incidentally are the channels with

the lowest values overall. The DCNN model also lowers the RMSE and RRMSE in

all channels apart from Fz and Cz, but its results are higher than the results from the

DCLSTMAE model. The One-Dimensional Residual Convolutional Neural Network

(1D-ResCNN) model performs the worst out of the three, only lowering the original

error values in 8 out of the 19 channels. Although it normally presents the highest

error value of the three architectures for each channel, in channels Fp1 and Fp2 its

values are lower than the DCNN’s (but still higher than the DCLSTMAE’s).

PCC values in Figure 5.23 show that the DCLSTMAE model achieves higher

values than the original segments in 12 of the 19 channels, with the biggest increases

upon the original values in the Fp1 and Fp2 channels and the biggest reductions in

the Fz and Cz channel, with multiple channels presenting values that do not differ
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greatly from the originals. The pattern of the DCNN is similar to the DCLSTMAE,

although it achieves slightly worse results, being only able to improve upon the

original values in channels Fp1 and Fp2. The 1D-ResCNN is unable to improve

PCC values on any of the channels.

Figure 5.24 presents the SNRDiff values. The DCLSTMAE and DCNN models

achieve positive results for every channel except Fz and Cz, with the DCLSTMAE

consistently achieving higher values. The 1D-ResCNN model shows positive values

for 9 of the 19 channels. In channels Fp1, Fp2, F7 and F8, this architecture’s results

are higher than the DCNN but lower than the DCLSTMAE, and in the other 5

channels, are the lowest of the three models.

Statistic validation was once again performed, firstly between the DCLSTMAE

model to both the 1D-ResCNN and the DCNN architectures. The p-values for the

the Shapiro–Wilk and Kolmogorov–Smirnov tests across all metrics and channels

were inferior to 0.05 in all models, meaning that non-parametric tests should be

used. Since we were in the presence of three independent groups, the Kruskal-Wallis

test [98], considered to be the non-parametric equivalent of the One-Way ANOVA,

and the Dunn-S̆idák test [99] were used to determine whether there were statistically

significant differences between their medians. We the used the MATLAB tool mult-

compare to perform pairwise comparisons between the DCLSTMAE and the other

two models. Significance levels of 0.05, 0.01 and 0.001 were used, and the results

can be observed in the number of asterisk symbols of Figures 5.21, 5.22, 5.23, and

5.24. Statistical differences were found for every metric in every channel between

our model and the other two.

Next, the results of the DCLSTMAE (the architecture with the best perfor-

mance) were compared to the results of the architecture developed during the first

approach. To this end, it was necessary to recalculate the metrics: instead of de-

termining them for each 5-second segment prediction, these smaller segments were

re-concatenated in the 10-minute segments used in the first approach, and the eval-

uation metrics were then determined for these longer signals.

Figures 5.25 and 5.26 compare RMSE and RRMSE values, and show that the

DCLSTMAE achieves similar results to the DCAE developed in the first approach,

with slight improvements in channels Fp1, Fp2, F7 and F8. As in the first approach

architecture, channel Fz is the unique channel where the reconstructed error is higher

than the original value. PCC values between the two models in Figure 5.27 are also

similar, with the DCLSTMAE only surpassing the DCAE in channel Fp1. The Fz

channel is once again the only channel where the original segment has a higher PCC
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Figure 5.21: Second approach RMSE performance results. Each bar corresponds
to the median value and the interquartile range. Asterisk symbols refer to the

significance levels in statistical tests results - one symbol if significant statistical
differences were found using α = 0.05, two if they were found using α = 0.01, and

three if they were found using α = 0.001.

Figure 5.22: Second approach RRMSE performance results. Each bar
corresponds to the median value and the interquartile range. Asterisk symbols

refer to the significance levels in statistical tests results - one symbol if significant
statistical differences were found using α = 0.05, two if they were found using α =

0.01, and three if they were found using α = 0.001.
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Figure 5.23: Second approach PCC performance results. Each bar corresponds
to the median value and the interquartile range. Asterisk symbols refer to the

significance levels in statistical tests results - one symbol if significant statistical
differences were found using α = 0.05, two if they were found using α = 0.01, and

three if they were found using α = 0.001.

Figure 5.24: Second approach SNRDiff performance results. Each bar
corresponds to the median value and the interquartile range. Asterisk symbols

refer to the significance levels in statistical tests results - one symbol if significant
statistical differences were found using α = 0.05, two if they were found using α =

0.01, and three if they were found using α = 0.001.
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value than either reconstructed signal. Observing the SNRDiff values in Figure 5.28,

the DCLSTMAE model shows slightly higher values in channels Fp1, Fp2, O2 and

F8. However, the SNRDiff value for channel Fz is negative, which is not the case

for the DCAE architecture.

Since we knew from previous tests that distributions of the DCLSTMAE model,

as well as the ones from the DCAE model and the MC model from the first approach

did not follow a normal distribution, the Kruskal-Wallis was once again used, fol-

lowed by a pairwise comparison using the multcompare with the Dunn-S̆idák test.

These results are shown in Figures 5.25, 5.26, 5.27, and 5.28, with the number of as-

terisk symbol referring to the significance levels of 0.05, 0.01, and 0.001, respectively.

Comparing our model to the MC architecture, statistical significant differences were

found for every channel in every metric. However, several channels did not present

significant differences between the SC models: channel F4 did not present differences

in RMSE values; in RRMSE values, only channels Fp1 and Fp2 showed significant

statistical differences; in PCC values, channels Fp1, Fp2 and F8 did not present

statistical differences; and channels O1, O2, F7 and F8 did not show statistical

differences in SNRDiff values.

Clear differences show up in the evaluation metrics results when they are de-

termined for 5-second signals and for 10-minute segments, both for the original and

for the reconstructed signal values.

When RMSE and RRMSE values are determined for 10-minute segments, they

go up in every channel. However, this increase is much more sharp in the original

segments, resulting in the model providing a bigger noise reduction. The recon-

structed error in channel Cz becomes smaller than the error in the original signals

(something that did not happen before).

The PCC results present the biggest differences when determined for longer

signals (compared to the 5-second segments). Values decrease for both original

and reconstructed segments in every channel, but the reduction is larger in original

segments. In channels where, before, the original values surpassed the ones generated

by the model, the reconstructed signals’ PCC values become higher than the original

segments’ - the DCLSTMAE model achieves higher PCC values than the original

segments in every channel apart from Fz.

Much like RMSE and RRMSE, SNRDiff values increase in every channel, with

channel Cz going from a negative to a positive value.

To try to understand these differences, histograms were constructed represent-
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Figure 5.25: RMSE performance results comparing both approaches. Each bar
corresponds to the median value and the interquartile range. Asterisk symbols

refer to the significance levels in statistical tests results - one symbol if significant
statistical differences were found using α = 0.05, two if they were found using α =

0.01, and three if they were found using α = 0.001.

Figure 5.26: RRMSE performance results comparing both approaches. Each bar
corresponds to the median value and the interquartile range. Asterisk symbols

refer to the significance levels in statistical tests results - one symbol if significant
statistical differences were found using α = 0.05, two if they were found using α =

0.01, and three if they were found using α = 0.001.

72



5. Results and Discussion

Figure 5.27: PCC performance results comparing both approaches. Each bar
corresponds to the median value and the interquartile range. Asterisk symbols

refer to the significance levels in statistical tests results - one symbol if significant
statistical differences were found using α = 0.05, two if they were found using α =

0.01, and three if they were found using α = 0.001.

Figure 5.28: SNRDiff performance results comparing both approaches. Each bar
corresponds to the median value and the interquartile range. Asterisk symbols

refer to the significance levels in statistical tests results - one symbol if significant
statistical differences were found using α = 0.05, two if they were found using α =

0.01, and three if they were found using α = 0.001.
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ing the distributions of each metric, both for the original segments and the recon-

structed signals of each channel, firstly for values calculated from 5-second segments

and then from 10-minute segments. In Figure 5.29, these distributions can be ob-

served for channel O2, which is one of the channels where the PCC values for the

reconstructed signals are lower than the originals when the metric is determined for

5-second segments, but higher when determined for 10-minute segments.

Ten-minute clean segments, to which no Independent Components (ICs) were

removed during the visual analysis phase, when divided into 5-second windows,

generate 120 segments all with a perfect PCC. Noisy segments however, once divided,

can generate both windows with a very low PCC value and others with a very high

PCC value, meaning that there will be a higher number of original segments with

a high PCC value, affecting its average statistics. Although PCC is the metric

with the highest differences, the same phenomenon (that can be observed in the

aforementioned barplots) happens to the error values, which are higher when the

metrics are determined for 10-minute segments rather than 5-second ones.

Exploring this matter even further, for each of the 10-minute segments in the

test dataset, the evaluation metrics values for the entire segment were compared

to the mean of the values of all 5-second signals that compose that segment. This

comparison was performed using a line graph for each channel and each metric, where

each point in the x-axis corresponds to one of the dataset segments, and the four

values for that point represent the original 10-minute segment value, the predicted

10-minute segment value, the mean of all 5-second original segments values, and the

mean of all 5-second predicted segments values. Figure 5.30 shows the PCC and

RMSE line graphs for segments 800 to 850 in the dataset, since there are several

segments of interest in this interval.

Analyzing the line graphs for the channels where the PCC differences are the

highest, a selection of segments can be found where the relation of original-predicted

segments values of the 10-minute segments is very different from that relation in the

mean of all 5-second segments. Although these differences are also present in the

error values, are much more sharp in the PCC metric. Plotting a few of these

segments such as segment 822, which can be seen in Figure 5.31, there is a clear

pattern: these segments show one or two short but very strong peaks of noise, in

the middle of an otherwise almost noiseless signal. This leads to a lot of 5-second

segments with very high PCC values and relatively low error values and a few

windows with very low PCC and high errors, bringing the PCC especially down

when this metric is determined for the entire 10-minute segment.
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(a) Distributions for metrics determined for each 5-second segment.

(b) Distributions for metrics determined for each 10-minute segment.

Figure 5.29: Distributions for RMSE, RRMSE and PCC metrics for channel O2
segments, both the original signals and the signals reconstructed by the

DCLSTMAE.
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(a) PCC values of segments 800 to 850 of the test dataset.

(b) RMSE values of segments 800 to 850 of the test dataset.

Figure 5.30: Zoomed in line graphs representing the different PCC and RMSE
values for each 10-minute segment in the test dataset.
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Figure 5.31: Example of segment with very different PCC values.

5.2.2.2 Artifact Removal and Signal Reconstruction

The same noisy examples of the previous approach were again used, firstly to

compare the performances of the three architectures developed for 5-second seg-

ments, and then to compare the reconstruction abilities of the DCLSTMAE model

to the DCAE model of the first approach.

Observing the segment with an eye blink artifact in Figure 5.32, the three

architectures are able to reduce the noise, with the 1D-ResCNN model performing

the worst and the DCLSTMAE model the best, even though this architecture still

shows difficulties in reconstructing the details of the signal, with the PSD showing

lower values than the target segment across all frequencies. This behavior is coherent

with the first approach, since the model behaves very similarly to the first approach

DCAE, which also had this limitation - see Figure 5.33.

In the segment showcasing eye movement, in Figure 5.34, as in the previous seg-

ment, although the DCLSTMAE can reduce the noise better than the 1D-ResCNN

and DCNN architectures, it does it excessively, again not being able to reconstruct

the finer details and presenting a lower PSD. Nevertheless, it can be seen in Figure

5.35 that it does perform better than the first approach architecture, which can only

partially remove the noise from the artifact.

Figures 5.36 and 5.37 showcase a segment presenting muscle activity. The

DCNN performs the worst, removing less noise than the other two architectures and

with its PSD showing values closer to the original segment than to the target signal.

The other two models present similar results. The DCLSTMAE model performs
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better than the first approach DCAE, which still maintains a fraction of the noise

and has PSD levels closer to the original segment.

The segment with the pulse artifact in Figure 5.38 shows that the DCLSTMAE

and the DCNN models present the same behaviour, with the former being able

to reduce a larger fraction of the noise, while the 1D-ResCNN does not faithfully

reconstruct the signal. The DCLSTMAE performs similarly to the DCAE model

from the first approach, if not slightly better (Figure 5.39).

In Figures 5.40 and 5.41, representing a segment with cardiac artifact, all three

new architectures, as well as the model from the first approach and the MC model,

were unable to remove the noise (with the 1D-ResCNN model performing slightly

better than the others), which once again can be explained by the lack of examples

of this artifact in the used dataset.

Comparing the DCAE SC model developed in the first approach to the pre-

viously trained DCNN MC model, in high amplitude short artifacts, such as eye

blinks, even though the artifact is removed, the noise reduction may be excessive,

there being an inability in reconstructing the smaller details of the signal. In longer

types of high-amplitude artifacts, the MC architecture is able to remove a larger

fraction of the noise than our SC model. Just as with the MC model, the DCAE

expresses more difficulties in reconstructing the low frequency details of signals with

high amplitude artifacts. Since amplitude and frequency are normally inversely pro-

portional in EEG signals, this behaviour may be explained, because loss functions

initially learn to remove the high amplitude artifacts, and only then to reconstruct

the low amplitude characteristics of the target segment. However, in artifacts with

lower amplitudes, such as pulse artifacts, the SC architecture performs better than

the MC approach.

This difference in performances can be most likely due to the fact that EEG

signals for each channel are always partially influenced by the signals of all other

channels, a concept present in the very definition of Independent Component Anal-

ysis (ICA), which can only isolate as many ICs as the number of sources (in this

case, channels). By receiving all channels as input instead of only one at a time, the

DCNN MC model will be able of better explore this correlations and use them to

enhance its signal reconstruction capabilities.

Regarding now the DCLSTMAE architecture developed in the second approach,

this architecture outperformed the other SC models, which were adapted or recon-

structed from literature and trained using the same 5-second signals. Putting it up
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(a) EEG Time Series

(b) PSD

Figure 5.32: Example EEG segment from the test set containing eye blink
artifact comparing the three architectures developed in the second approach.
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(a) EEG Time Series

(b) PSD

Figure 5.33: Example EEG segment from the test set containing eye blink
artifact comparing the DCLSTMAE to the DCAE model from the first approach.
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(a) EEG Time Series

(b) PSD

Figure 5.34: Example EEG segment from the test set containing eye movement
artifact comparing the three architectures developed in the second approach.
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(a) EEG Time Series

(b) PSD

Figure 5.35: Example EEG segment from the test set containing eye movement
artifact comparing the DCLSTMAE to the DCAE model from the first approach.
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(a) EEG Time Series

(b) PSD

Figure 5.36: Example EEG segment from the test set containing muscle activity
comparing the three architectures developed in the second approach.
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(a) EEG Time Series

(b) PSD

Figure 5.37: Example EEG segment from the test set containing muscle activity
comparing the DCLSTMAE to the DCAE model from the first approach.
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(a) EEG Time Series

(b) PSD

Figure 5.38: Example EEG segment from the test set containing pulse artifact
comparing the three architectures developed in the second approach.
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(a) EEG Time Series

(b) PSD

Figure 5.39: Example EEG segment from the test set containing pulse artifact
comparing the DCLSTMAE to the DCAE model from the first approach.
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(a) EEG Time Series

(b) PSD

Figure 5.40: Example EEG segment from the test set containing cardiac artifact
comparing the three architectures developed in the second approach.
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(a) EEG Time Series

(b) PSD

Figure 5.41: Example EEG segment from the test set containing cardiac artifact
comparing the DCLSTMAE to the DCAE model from the first approach.
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against the DCAE architecture from the first approach, we can see from the example

segments figures that, although both models behave similarly, the DCLSTMAE is

able to reduce a larger fraction of the noise. However, difficulties in reconstructing

signals’ small details persist, and the MC is still significantly better.

Even though the majority of the channels report statistically significant differ-

ences between DCLSTMAE and the DCAE architectures, their behaviour is similar

and differences in their performances are small. This might be explained by the

counterbalance effect to the increase in the architecture’s complexity caused by the

segment sample size reduction from 10 minutes to 5 seconds - although the increase

in number of filters and the introduction of a BiLSTM layer was proven to enhance

the architecture’s results, enabling it to obtain nearly identical results to the model

using 10-minute segments, the lower sample size limits the information that the

model receives in each input. This leads us to believe that without hardware limi-

tations, if it was possible to apply the DCLSTMAE architecture to the 10-minute

segments, performance could improve past the results of the DCAE model.
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Conclusion

Electroencephalogram (EEG) recordings are affected by several different types

of artifacts, which must be removed so that a rigorous analysis of the brain activity

can be performed. However, EEG signal processing techniques are either only able

to partially remove noisy artifacts or require human inspection, making it time-

consuming and inadequate for real-time use. Furthermore, Deep Learning (DL)

multi-channel (MC) models are restricted to recordings with the same number of

channels with which they were trained. As such, the research at hand focused on

the advancement of the state of the art of EEG signal pre-processing, through the

development and training of automatic single-channel (SC) models based on Deep

Learning Neural Networks (DLNNs) capable of removing artifacts and reconstruct-

ing EEG signals.

The models were trained and tested using real EEG data from patients with

epilepsy in pre-surgical monitoring. Initially, we developed a Deep Convolutional

Autoencoder (DCAE) using 10-minute segments and compared it to a previously

trained MC Deep Convolutional Neural Network (DCNN). Results indicate that even

though our model was able to largely reduce the noise and remove several artifacts,

it was outperformed by the MC DCNN, presumably because of the influence that

one channel has over the other channels, a connection that can be explored by a MC

model but not by a SC model.

In the second approach, segment size was reduced from 10 minutes to 5 sec-

onds, and the complexity of the DLNN was increased, with a higher number of filters

and the incorporation of a Bidirectional LSTM (BiLSTM) layer. Along with this

model, two other SC architectures were either retrieved or adapted from literature

and trained with the same data, for performance comparison purposes. Our model

obtained better results than the other SC models, and similar values in the evalua-

tion metrics than the DCAE. Upon visual inspection, this new model could reduce

larger portions of some of the artifacts compared to the architecture from the first
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approach, even though difficulties in detail reconstruction persisted in both models.

Although these results reinforce the notion that DLNNs are a powerful tool

in artifact removal and EEG signal cleaning, several limitations, namely in the

development of SC architectures, should be addressed in future works. To resolve

problems in the reconstruction of the small details in the signals, there is a need

to try different training setups, such as trying different loss functions to find one

better suited for this purpose. In order for the SC models to achieve comparable

performances to those of MC ones, complexity of the networks, training times and

dataset size must be further increased so that it can compensate the input of a

unique channel. This might prove challenging due to hardware and time constraints,

since the increase in complexity leads to the training of the models being more time

consuming and utilizing more of the device’s memory.

Furthermore, the reduction in sample size also creates an imbalance, specifi-

cally by originating a lot of 5-second segments with practically no noise, which was

demonstrated by the difference in metrics when they were calculated for 5-second and

10-minute segments, and might not prove to be the most useful for model training.

In the future, this should be taken into account so that there are a comparable num-

ber of clean and noisy segments. The fact that dataset preparation was performed

using Independent Component Analysis (ICA), which is also a MC pre-processing

technique, can also indicate that the data was prepared for the development of MC

and not SC models.

This work paves the way for future research, that can either improve upon the

architectures developed here or test different kinds of DLNNs that can achieve an

even better reconstruction of EEG signals, and that are not limited to any kind of

acquisition system, unlike MC models.
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