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Resumo

A Esclerose Múltipla é uma doença inflamatória crónica do sistema nervoso cen-

tral que leva à incapacitação dos doentes e tem também muitos impactos sociais e

económicos. Os sintomas e a sua evolução variam muito de pessoa para pessoa. Por

conseguinte, um componente cŕıtico da gestão da doença é a previsão dos doentes

que irão transitar para o curso Secundário Progressivo (SP). Esta previsão precoce

é uma abordagem promissora que permitiria a adoção de melhores estratégias de

tratamento e uma gestão das expectativas do doente mais realista.

Apesar da evolução das técnicas de Machine Learning (ML) ao longo dos anos,

até à data estes modelos de previsão do curso da doença ainda não atingiram a

aplicabilidade cĺınica. Os principais fatores que limitam a sua utilização são a não-

transparência dos resultados e consequente falta da garantia de confiança e segurança

dos modelos. Nos últimos anos o conceito de explicabilidade ganhou um maior peso

e atualmente diversos estudos concentram-se na transformação dos modelos de ML

em modelos mais interpretáveis.

No presente estudo foi utilizada a base de dados do serviço de Esclerose Múltipla

do hospital de Sant’Andrea, de Roma, para prever se um doente transitará para o

curso SP numa janela temporal de 180, 360 ou 720 dias. Os modelos desenvolvidos

por Seccia et al. [1] foram parcialmente replicados e melhorados. Foram estudados

dois cenários: o orientado para as visitas (VO), no qual foram utilizados os classifi-

cadores Random Forest (RF), Support Vector Machines (SVMs) linear e não-linear,

k -nearest neighbours (KNN) e AdaBoost (AB) para prever considerando uma única

visita; o orientado para a história cĺınica (HO), no qual se aplicou uma rede neuronal

Long Short-Term Memory (LSTM) que considera o histórico de visitas do doente

para fazer a previsão.

Os modelos de previsão obtiveram medidas de F1-score de 28 a 37% para o cenário

VO e 71 a 77% para o cenário HO quando se utilizaram os datasets com o maior

número de visitas. Estes resultados mostram que as redes neuronais LSTM prevêem
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Resumo

eficazmente o curso SP quando se utilizam dados dispońıveis na rotina cĺınica em

maiores quantidades.

Foram também aplicados diversos métodos de explicabilidade para gerar explicações

sobre o comportamento global dos modelos de ML desenvolvidos e sobre previsões

espećıficas para certos doentes. As conclusões obtidas foram limitadas pela falta de

conhecimento sobre o significado de cada caracteŕıstica. Ainda assim, as explicações

mostraram que a escala de quantificação da condição neurológica (EDSS) é bastante

relevante na classificação da progressão da doença.

Palavras-chave: Esclerose Múltipla; Machine Learning; Progressão; Previsão; Ex-

plicabilidade.
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Abstract

Multiple Sclerosis (MS) is a chronic inflammatory disease of the Central Nervous

System (CNS) that leads to disability in patients and has many social and eco-

nomic impacts. Symptoms and their course vary significantly from person to per-

son. Therefore, a critical component of disease management is predicting patients

who will transition to the Secondary Progressive (SP) course. This early prediction

is a promising approach that would allow for better treatment strategies and more

realistic management of patient expectations.

Despite the evolution of ML techniques over the years, these disease course prediction

models have not yet reached clinical applicability. The non-transparency of the

results and consequent lack of confidence and safety of the models are the main

factors limiting their use. In recent years, the concept of explainability has gained

more significant weight and, currently, several studies focus on transforming ML

models into more interpretable models.

In the present study, the dataset of the MS service of Sant’Andrea hospital was

used to predict whether a patient will transition to the SP phase in a time window

of 180, 360 or 720 days. The models developed by Seccia et al. [1] were partially

replicated and improved. Two scenarios were studied: the Visited-Oriented (VO), in

which RF, linear and non-linear SVM, KNN and AB classifiers were used to predict

the transition to SP considering a single visit; the History-Oriented (HO), in which

it was applied a LSTM Neural Network (NN) that considers the patient’s entire

clinical history to make the prediction.

When using the datasets with the highest number of visits, the prediction models

obtained F1-score measures of 28 to 37% for the VO scenario and 71 to 77% for the

HO scenario. These results show that LSTM NNs effectively predict the SP course

when using larger quantities of data available in the clinical routine.

Several explainability methods were also applied to explain the overall behaviour

of the developed ML models and specific predictions for particular patients. The
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Abstract

conclusions obtained were limited by the lack of knowledge about the meaning of

each feature. Still, the explanations showed that the Expanded disability status

scale (EDSS) scale is quite relevant in classifying disease progression.

Keywords: Multiple Sclerosis; Machine Learning; Progression; Prediction; Ex-

plainability.
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Introduction

This chapter is divided into four sections. Initially, the motivations of this work

are presented (section 1.1). Section 1.2 explains the context of the this work, and in

section 1.3, the main goals are enumerated. Lastly, the structure of the document

and a brief description of each chapter appear in section 1.4.

1.1 Motivation

Multiple Sclerosis (MS) affects more than 2.8 million people worldwide, which

means that this disease affects 1 in every 3000 people. MS is the leading cause of

non-traumatic disability in adults between 20 and 40 years old. Its prevalence has in-

creased in most countries, with an increase of about 30% since 2013 [2]. In addition,

it is known that women are more affected than men, with a ratio of approximately

3:1 [19].

MS is an autoimmune neurologic disorder of the Central Nervous System (CNS)

characterised by myelin damage. This damage forms scar tissue (sclerosis), fol-

lowed by an alteration or stoppage of electrical impulses conduction to and from

the brain and spinal cord. The MS cause is unknown but is thought to be trig-

gered by multiple factors [20]. MS is not a curable disease, but treatment can help

manage it. The treatment is multidisciplinary and includes different management

strategies that help modify or slow the course of the disease, such as rehabilitation,

Disease-modifying teraphies (DMTs), symptom treatment, psychological support,

and lifestyle modifications [21].

The symptomatology is very heterogeneous and includes motor, cognitive, and

sometimes psychiatric problems [22]. These MS symptoms vary widely from person

to person and are unpredictable, can change over time, and be mild, moderate, or

severe [22]. Thus, predicting the evolution of the disease over the years and the tran-

sition from Relapse Remitting (RR) to Secondary Progressive (SP) are challenges

that put pressure on the physicians.
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It is fundamental to invest in strategies for early diagnosis and prognosis, and

treatment since they lead to better results in controlling the long-term progression of

the disease and, consequently, to a reduction of disability and economic and personal

costs [23]. It also allows the patient to manage expectations in relation to treatment

processes, treatment outcomes, or overall disease management since it is a chronic

disease that impacts mental health [24].

1.2 Context

MS is usually divided into three phenotypes, namely RR, Primary Progressive

(PP), and SP, but its course is highly variable and heterogeneous. The majority

of MS patients will present the RR course (>85%), which is characterised by new

symptoms appearing in isolated attacks and its complete disappearance with no

disease progression between relapses. The large majority of RR patients (>80%)

will eventually evolve to SP course, a progressive phase of the disease with worsening

of the neurological function and accumulation of disability [5, 20].

The physical and cognitive disability in patients with SP gradually increases

over time. The challenges and limitations faced by increased disability greatly im-

pact the patient’s basic life activities and ability to work, leading to disruptive conse-

quences on family life, interpersonal relationships, and economic status. Treatment

costs tend to increase significantly as the disease worsens [25].

Furthermore, identifying patients at higher risk and adopting more aggressive

and appropriate treatments lead to more efficient control of long-term progression.

This early diagnosis is a key point to prevent the disease from progressing to a stage

where treatment is not effective, since late diagnosis of SP course significantly influ-

ences permanent disability [26]. Additionally, identifying high-risk patients prevents

low-risk patients from being exposed to aggressive and relatively unsafe therapies.

Finally, it will also allow the selection of patients for clinical trials in a more homo-

geneous method [27].

However, there are no clear clinical and imaging criteria to identify this gradual

transition, and it is difficult to understand when it occurs [28, 29]. A possibility

is a Machine Learning (ML) algorithm capable of predicting the SP course in an

early and individualised way. Therefore, predicting and consequently preventing or

delaying the onset of SP will allow better management of patients at higher risk of

worsening disability and SP conversion [28, 29].
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1.3 Main goals

The goal of this thesis is to evaluate and predict MS progression from the RR

to the SP form, using the dataset processed and worked on by Seccia et al. [1],

respectively. This goal can be divided into:

• Development of ML algorithms similar to the ones developed by Seccia et al.

[1] to predict if the patient will pass to SP course at 180, 360, or 720 days

from the last visit, considering results from a single visit (Visited-Oriented

(VO) approach) and sequences of consecutive visits (History-Oriented (HO)

approach);

• Exploration of different methods to improve the results from the previously

created models;

• Exploration of strategies to identify the features of the dataset. The dataset

authors hid the meaning of the features to protect patient identity. Still, in

this work, it is essential to know their meaning to explore the explicability of

the models;

• Exploration of the explainability of ML methods designed for MS disease pro-

gression;

• Analysis of the applicability of these methods in the clinical context, consid-

ering their safety and physicians’ trust.

1.4 Structure

This dissertation is divided into seven chapters, beyond the introduction:

• Chapter 2: presents the background information about the MS disease and

ML methods that will be mentioned throughout the document;

• Chapter 3: summarises the state of the art ML methods designed for MS

disease progression and their limitations;

• Chapter 4: describes the steps of the experimental procedure adopted in this

Master’s thesis;

• Chapter 5: reports the results obtained in this study;

• Chapter 6: contains the discussion of the dataset, methodology and results.

• Chapter 7: presents the main conclusions and addresses future work.
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Background Concepts

This chapter presents the main concepts necessary to understand the work de-

veloped in this thesis. In section 2.1 the Multiple Sclerosis (MS) disease is described,

along with several related concepts, such as risk factors, disease stages, diagnosis,

and therapy. Section 2.2 introduces and describes several fundamental Machine

Learning (ML) algorithms and strategies. Lastly, section 2.3 presents the concepts

of explainability and interpretability, and the methods used to achieve it.

2.1 Multiple Sclerosis

MS is a chronic autoimmune neurologic disorder of the Central Nervous System

(CNS) in which inflammation, demyelination, and axonal loss occur. It is the most

common non-traumatic disabling disease in young adults globally, typically affecting

patients between 20 and 40 years of age [30]. The course of MS is highly diverse and

unpredictable [31]. It affects 2.8 million people worldwide, and about two-thirds of

those affected are women. The global median prevalence is 1 in 3000 people living

with MS [2].

The damaging of myelin, the protective coating surrounding nerve fibres, changes

the way nerve impulses are conducted, making it more difficult to send messages.

The nerve fibres become progressively vulnerable to damage [32]. Its ongoing damage

disrupts the body’s normal functioning, resulting in a continuous decrease in motor

function, eventually leading to disability. MS causes different symptoms among pa-

tients, such as fatigue, walking difficulties, blurred vision, depression, and dizziness.

Additionally, some patients have periods of relapse and remission while others have

a progressive pattern [2, 25].

2.1.1 Risk factors

Although the cause of MS remains unknown, its aetiology and pathogenesis are

best explained by a combination of factors, such as interactions between genetic,
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lifestyle, and environmental influences [33].

In the past few decades, studies on MS genetics have been an important piece

in understanding the aetiology of this complex disease, showing that more than

200 genetic variants, mainly Human Leukocyte Antigen (HLA), are associated with

the modification of the MS risk. These variants affect gene activity and regulatory

mechanisms but only explain 20-30% of MS heritability, implying that gene-gene

or gene-environment interactions may significantly influence the level of risk of con-

tracting the disease [34].

This disease is also affected by the latitude gradient. Countries at high latitudes

(northern hemisphere) have a higher prevalence of MS, as seen in the map in Figure

2.1. The difference in prevalence is thought to be related to ethnicity, socioeconomic

structure, and the diagnostic criteria and methods countries adopt [35]. Thus, the

lower number of cases in low-risk countries may result from the absence of data

due to worse medical facilities and lower life expectancy. However, several studies

[36] have shown the relationship between geographical latitude and levels of sun

exposure and vitamin D in the risk of MS. The risk is highest in countries with low

sunlight exposure and vitamin D deficiency [33, 34].

Figure 2.1: Worldwide prevalence of MS per 100 000 population in 2020.
Extracted from [2].

Like most autoimmune diseases, MS has a higher prevalence among women,

occurring at a rate of three women to every man. This disease appears mainly in

the reproductive years, suggesting that puberty-associated neuroendocrine factors

may play a role in the development of the disease, particularly in females [19].

Many infectious agents have been suggested to have a role in MS. The infection

with Epstein–Barr virus (EBV) has consistently been a risk factor. The fact that a

large part of adult patients have serologic evidence of prior infections [34] supports
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the idea that EBV infection during adolescence and childhood increases the risk of

MS [37].

Certain lifestyle factors, such as smoking and obesity, are also associated with

increased MS risk. Smoking and passive exposure to smoking provokes lung in-

flammation, which can trigger inflammatory and immune responses. Obesity in

adolescence and young adulthood has been linked to an increased risk of developing

MS. This risk could be influenced by interactions between obesity and both HLA

antigen MS risk variants and EBV infection [37].

Despite the evidence of the impact of risk factors on the MS onset and mod-

ification of disease activity in MS patients, these factors are not considered in the

methodology developed due to the lack of available data to explore this issue.

2.1.2 Diagnosis

Early diagnosis of MS is important since treatment can slow the disease and

improve the patients quality of life. The MS heterogeneity, both in clinical and

imaging manifestations, and the similarity with other diseases are two factors that

make the diagnosis of MS challenging, often leading to misdiagnosis [15].

Since there is no single diagnostic test, it is made by combining clinical, imaging,

and laboratory findings [21], such as Magnetic Resonance Imaging (MRI), to find

disease-related alterations in anatomical connectivity, and Cerebrospinal fluid (CSF)

testing, to identify CSF-specific oligoclonal bands. These paraclinical evaluations

allow earlier and more sensitively and specifically diagnoses [15, 38].

Currently, diagnosis is based on the McDonald Criteria 2017 [15]. These criteria

for diagnosing MS have been continuously improved over the years. They are based

on two main pillars: the dissemination in time and space of the clinical picture

caused by CNS lesions and the exclusion of other diseases with similar symptoms.

The dissemination in time is the appearance of new CNS lesions over time, and the

dissemination in space is the presence of distinct zones of the CNS [15].

The different components of the 2017 McDonald Criteria are presented in Table

2.1, and they result in three different cases:

• Confirmed MS: if the 2017 McDonald criteria are met and there is no better

explanation for the clinical picture.

• Possible MS: if MS is suspected as a result of a Clinically Isolated Syndrome

(CIS) but the 2017 McDonald criteria are not completely met.

• Not MS: if there is another diagnosis that better explains the clinical picture.
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Table 2.1: The 2017 McDonald criteria for diagnosis of MS in patients with an
attack at onset. [15]

Number of relapses
Number of with objective

clinical evidence

Additional data needed

to the MS diagnosis

≥ 2 ≥ 2
No additional tests are required to

demonstrate dissemination in space and time

≥ 2

1 (as well as clear-cut historical

evidence of a previous attack involving a lesion

in a distinct anatomical location)

No additional tests are required to

demonstrate dissemination in space and time

≥ 2 1

Dissemination in space demonstrated

by an additional clinical attack

implicating a different CNS site or by MRI

1 ≥ 2

Dissemination in time demonstrated

by an additional clinical attack or by MRI

OR

demonstration of CSF-specific oligoclonal bands

1 ≥ 2

Dissemination in space demonstrated

by an additional clinical attack

implicating a different CNS site or by MRI

AND

Dissemination in time demonstrated

by an additional clinical attack or by MRI

OR

demonstration of CSF-specific oligoclonal bands

2.1.3 Expanded disability status scale (EDSS)

The Expanded disability status scale (EDSS) is a scale developed by Kurtzke

[3] that is widely used in clinical trials and in the evaluation of people with MS. This

scale allows the quantification of disability in MS, the monitoring of changes in the

level of disability over time, and the evaluation of the effectiveness of therapeutic

interventions.

The EDSS provides a score on a scale ranging from 0 (normal status) to 10

(death due to MS), with an increment of 0.5 units, where greater values represent

higher levels of disability, as illustrated in Figure 2.2. Patients at levels 1 to 4.5 have

a high degree of ambulatory capacity, while those at levels 5.0 to 9.5 have a loss of

ambulatory capacity [3, 39].

The final EDSS score is determined by the gait analysis (locomotion) and Func-

tional System (FS) score. The FS indicates the extent of impairment in each of the

eight areas of the CNS [3, 39]:

1. Pyramidal: Related with muscle weakness and loss of voluntary control of

muscular movements.

2. Cerebellar: Associated with changes in movement coordination and balance;
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3. Brain Stem: Related to influences on the cranial nerves that can cause prob-

lems with speech, swallowing, and breathing.

4. Sensory: Related to loss of sensation below the head;

5. Bowel and Bladder: Responsible for urinary retention and incontinence;

6. Visual: Associated with vision impairments;

7. Cerebral: Responsible for problems with thinking, concentration and mem-

ory, as well as mood disorders.

8. Other: Related to other symptoms that do not fall under the functional

systems above, such as pain and fatigue.

These systems are scored on a scale from 0 (low level of problems) to 5 or 6

(high level of problems), except the last one, which is 0 if no other symptoms are

present and 1 if neurological findings are present. The first steps of the EDSS (0

to 3.5) are obtained according to FS, and the following steps also take into account

the mobility impairment, and restrictions in the patients’ daily life [3, 39].

Figure 2.2: Schematic representation of the EDSS. Adapted from [3].

Thus, EDSS has a total of 20 steps which are described in detail below [3]:

• EDSS 0: Normal neurological examination. All FS have grade 0, except for

Cerebral, which can assume grade 1.

• EDSS 1: No disability. One of the FS has grade 1, except for from Cerebral,

which can assume grade 1.

• EDSS 1.5: No disability. More than one FS has grade 1, except for from

Cerebral, which can assume grade 1.

• EDSS 2: Minimal disability in a FS with grade 2. The remaining FS can

assume grade 0 or 1.
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• EDSS 2.5: Minimum deficiency in two FS with grade 2. The remaining FS

can assume grade 0 or 1.

• EDSS 3: Fully ambulatory, but with minimal efficiency in one FS with grade

3 or slight deficiency in three or four FS with grade 2; all other FS with grade

0 or 1.

• EDSS 3.5: Fully ambulatory, but with moderate disability in a FS with grade

3 and one or two FS with grade 2, or two FS with grade 3, or five FS with

grade 2; all other FS with grade 0 or 1.

• EDSS 4: Fully ambulatory unaided and self-sufficient, but relatively severely

impaired in one FS with grade 4 and remaining FS with grade 0 or 1, or with

other combinations of lower grades exceeding the previous limits. Able to walk

unaided or rest about 500 meters.

• EDSS 4.5: Fully ambulatory without help, but may have some limitation in

full activities and require minimal assistance. Has a relatively severe disability,

with one FS with grade 4 and remaining FS grades 0 or 1, or with other

combinations of lower grades exceeding the previous limits. Able to walk

unaided or rest about 300 meters.

• EDSS 5: Ambulatory without aid or rest for 200 meters, but with disability

severe enough to impair full daily activities. Characterised by one FS with

grade 5 and remaining FS with grade 0 or 1, or with other combinations of

lower grades exceeding the limits of step 4.

• EDSS 5.5: Ambulatory without aid or rest for 100 meters, but with impair-

ment severe enough to preclude the performance of full daily activities. It is

characterised by one FS of grade 5 and remaining FS with grade 0 or 1, or

with other combinations of lower grades exceeding the limits of step 4.

• EDSS 6: Needing intermittent or unilateral help (cane, crutch, or brace) to

walk about 100 meters, regardless of the existence of rest. More than two FS

have a grade of 3 or higher.

• EDSS 6.5: Need constant bilateral help (cane, crutch or device) to walk

about 20 meters without rest. More than two FS have a grade of 3 or higher.

• EDSS 7: Inability to walk more than 5 meters, regardless of help, and lim-

itation to a wheelchair, with ability to move and transfer alone. More than

one FS has a grade of 4 or higher or, rarely, the pyramidal system alone has

grade 5.

• EDSS 7.5: Inability to take more than a few steps and limitation to a

wheelchair, considering that motorised wheelchair and transfer assistance may
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be required. More than one FS has a grade of 4 or higher.

• EDSS 8: Restriction to bed or chair or limitation to a wheelchair, with the

ability to be out of bed for much of the day and to perform self-care functions

with effective use of arms. Generally, several FS have a grade of 4 or higher.

• EDSS 8.5: Restricted to bed for most of the day, with the ability to perform

self-care functions with effective use of arms. Usually, several FS have a grade

of 4 or higher.

• EDSS 9: Bedridden and helpless patient with ability to communicate and

eat. Most FS have a grade of 4 or higher.

• EDSS 9.5: Bedridden and totally helpless patient with no ability to commu-

nicate, eat or swallow. Almost all FS have a grade of 4 or higher.

• EDSS 10: Death due to MS.

The EDSS has been used for about two decades and has proven to be useful

in assessing the progression of MS, but it has some limitations. This clinical rating

scale can evaluate reliability, validity and responsiveness [40]. The application of

EDSS highly depends on the neurologist’s interpretation; therefore, its evaluation

may differ among physicians. Moreover, at different times, even the same neurologist

may obtain different results [39]. Some studies [40, 41] show that the EDSS scale

is also not sensitive to significant clinical changes in short periods, i.e. it is non-

responsive. Regarding validity, this scale proves to be effective in assessing disability

and impairment [40].

Additionally, it is important to note that the EDSS scale considers significant

motor function impairments but is insensitive to other affected functions, such as

cognitive ability, which is rarely analysed in routine evaluation. This limitation

significantly impacts this work since cognitive impairment is as disabling as physical

disabilities, and it isn’t considered. Finally, the nature of the symptoms evaluated

and the time spent in each step of the EDSS scale are non-linear. Thus, the disability

analysed varies between stages, and the difference between stages is not homogeneous

[39].

2.1.4 Courses

The clinical courses of MS were defined in 1996 [42] to standardise the termi-

nology used in clinical practice and communication among clinicians and to unify

the advances made in clinical research.

The first formally defined MS phenotypes are described below and represented
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in Figure 2.3:

• Relapse Remitting (RR): The RR course is marked by episodes of relapses

or exacerbations, with new symptoms or worsening of existing symptoms, fol-

lowed by periods of remission without progression of the disease [4, 42]. It is

the most common form of MS, affecting about 85% of MS patients [43].

• Secondary Progressive (SP): Patients diagnosed with RR may transition

to the SP course. In this course, there is disease progression and consequent

accumulation of disability over time, with or without periods of remission

[4, 42].

• Primary Progressive (PP): PP course is characterised by continuous and

gradual disease progression from the onset of symptoms. Although there are

no relapses or remissions, there may be plateaus and occasional minor im-

provements [4, 42]. It affects approximately 10% of MS patients [5].

• Progressive Relapsing (PR): Like the PP course, the PR course is marked

by disease progression from the onset. However, this course has acute re-

lapses, with full or partial recovery, and the periods between relapses have a

continuous progression. It affects approximately 5% of MS patients [4, 42].

Figure 2.3: 1996 classification of the course of MS, with relapses in blue and
disease progression in yellow. Extracted from [4].

Since then, the understanding of the disease and its different phases has in-

creased significantly. Additionally, the above clinical course descriptors proved to

be limited because they were purely clinical and based on the subjective views of

MS experts. A review of clinical descriptive terminology, MRI and other imaging

techniques, and fluid biomarker analysis led to the update of these definitions in
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2013 [28].

Since 2013, the phenotypes used to characterise MS are CIS, RR, PP and SP.

The course PR was eliminated and the PR patients are now also classified as PP [28].

The introduction of CIS was one of the major differences. CIS is the first inflamma-

tory or demyelinating episode in the CNS that may become MS [5]. The relationship

between MS and CIS has been the subject of several studies, concluding that not

all people who suffer from CIS develop MS [43]. Radiologically Isolated Syndrome

(RIS) may raise suspicion about MS depending on the morphology and location of

the lesions detected by MRI. RIS is not considered a phenotype of MS since patients,

despite presenting abnormalities suggestive of demyelination, are asymptomatic [28].

MS phenotypes can be classified taking into account the disease activity and

progression, as described in Table 2.2. Regarding disease activity, all MS courses

(CIS, RR, SP and PP) can be defined as active or not active. On the other hand,

disease progression only describes progressive courses (SP and PP), which can be

divided into progressive and not progressive [16, 28]. Disease activity and progression

should be time-framed, at least annually, to allow the current assessment of the

disease and the monitoring of changes over time [44].

Table 2.2: Definitions of disease’s activity and progression [16].

Disease’s activity and progression

Disease activity
Active

Characterised by relapses or episodes of new or increasing neurological dysfunction

followed by full or partial recovery or occurrence of gadolinium-enhancing

or new/larger T2 lesions, preferably at least one year.

Non-active No evidence of disease’s activity.

Disease progression
Progressive

Characterised by increasing neurological dysfunction/disability

without full recovery, even though there may be phases of

stability, preferably at least one year.

Not Progressive No evidence of disease worsening, during at least one year.

CIS is a part of the RR MS spectrum and can be classified as active or non-

active. Active CIS can be considered RR if it meets McDonald’s diagnostic criteria

for this state. Otherwise, it is considered non-active until a clinic episode or MRI

changes. Moreover, RR can also be characterised as active or non-active according to

the clinical relapses and MRI findings in a given period. Regarding the progressive

state of the disease, patients can be diagnosed with SP status if they have an initial

relapsing stage followed by a progressive stage, or PP status if they have a progressive

stage from the beginning [16, 28]. Therefore, SP and PP have four possible sub-

classifications:

1. Active with progression: The patient is gradually worsening and had re-

lapses.
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2. Active without progression: The patient has relapses but the condition

state is stable and not worsening;

3. Not active but with progression: The patient don’t have relapses but the

state is gradually worsening.

4. Not active without progression: The patient has a stable form of MS.

Figure 2.4 shows the possible phases of each MS course over time, after the 2013

revision. It is possible to interpret how the deficiency increases gradually through

time and analyse the different particularities of each course.

In this master thesis, the focus is on predicting whether a patient will move from

the RR course to the SP form of the disease since SP is considered an evolution from

RR [45].

Figure 2.4: MS courses after 2013 revision. Extracted from [5].

The MS disease course is characterised by a wide range of progression rates

[46]. There is a subgroup of MS patients who have little or no progression of disease

severity over time and minimal disability at least ten years after diagnosis. The

terms benign and malignant have started to be used to describe this course of the

disease [30, 47]. These terms give an indication of disease severity over time, but

their application in clinical practice generates debate [28]. It is now known that MS

is rarely a benign disease and that neurological disability is not correctly defined

by the EDSS scale. Moreover, this diagnosis is a retrospective determination that

may be erroneous since the severity and activity of MS can change significantly even
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after decades of apparent stability. Thus, this clinical designation should be used

with caution in clinical practice [16, 28, 30].

Furthermore, it is important to clarify the difference between the terms worsen-

ing and progression. The term worsening should be used to describe patients whose

disease is progressing as a result of frequent relapses or incomplete recovery. On the

other hand, the term progression refers to patients with a progressive disease with

evidence of gradual worsening over time [16].

2.1.5 Therapies

Although MS is a disease with no cure, several treatments are available to

manage the course of the disease [31]. Currently, the treatment of MS is multi-

disciplinary, and concerns disease-modifying therapies, treatment of acute attacks,

improvement of symptoms, and rehabilitation [17, 48]. The different alternatives of

these treatments depend on the clinical situation of the patient [49], and it should

be initiated after the first attack of MS or after diagnosis since studies show that the

administration of high-efficacy therapy from the initial phase leads to better long-

term results [17]. The first treatment decision clinicians make can be divided into

two approaches. The escalation approach is more appropriate for patients with light

or moderately active disease. It starts with a first-line treatment and is switched to

a second-line treatment if it has an unsatisfactory response. On the other hand, the

induction approach begins with an efficient second-line treatment to achieve rapid

remission in cases of a very active disease [50].

Disease-modifying teraphies (DMTs) modify the course of the disease by mod-

ulating or suppressing immune function. Treatment with DMTs decreases the fre-

quency and severity of relapses, prevents CNS damage, reduces MRI lesion accumu-

lation, and delays disability [17, 21].

Table 2.3 presents the characteristics and information of several DMTs approved

by Food and Drug Administration (FDA) [17]. There are other drug options that,

although not yet FDA-approved, are used in the treatment of MS by physicians

[31]. The physician must choose the medication that best suits the patient’s clinical

condition since several medications have different objectives, and each patient reacts

differently to the treatment. In the case of a RR patient, the goal is to reduce the

frequency and severity of relapses and postpone the progressive phase of the disease,

while for a SP patient, the goal is to prevent the progressive worsening [49].

Comorbidities (e.g., psychiatric and cardiovascular) and daily behaviours (e.g.,

smoking) are associated with increased disability, MRI changes and decreased qual-

14



2. Background Concepts

ity of life [21]. There is no high-quality evidence to support the improvement of

disease status with healthy nutrition, and vitamin D supplementation [21, 31]. How-

ever, patients should remain active, do activities that stimulate cognitive and phys-

ical function, and adopt a healthy lifestyle to relieve symptoms, promote a satisfac-

tory quality of life, reduce comorbidities, and improve disease outcomes [31].

Table 2.3: Summary of Approved Disease-Modifying Therapies used in MS
treatment [17].

Name
Indication and
line of therapy

Administration Action Adverse effects

Ocrelizumab
RR and PP

First line

Intravenous (IV)
infusion, every 6

months

Reduction in annualised relapse rate (ARR)
and confirmed disability progression (CDP)

Infusion-related reaction, nasopharyngitis,
headache, upper respiratory tract
infection, urinary tract infection,

and oral herpes infection

Ofatumumab
RR

First line

Subcutaneous (SC)
injection, every

4 weeks
Reduction in ARR

Injection-related reaction, nasopharyngitis,
headache, upper respiratory tract

infection, and urinary tract infection

Natalizumab
RR

Second line
IV infusion,

every 4 weeks
Reduction in ARR and CDP Fatigue and allergic reaction

Alemtuzumab
RR

First line
IV infusion,
once daily

Reduction in ARR Headache, rash, nausea, and pyrexia

Mitoxantrone
RR and SP

Second or third
line

IV infusion,
every month or

3 months
Reduction in relapses

Dose-related cardiomyopathy
and promyelocytic leukemia

Fingolimod
RR

Second line
Oral, once daily Reduction in ARR

Bradycardia, atrioventricular conduction block,
macular edema, elevated liver-enzyme

levels, and mild hypertension

Siponimod
CIS, RR and

active SP
First line

Oral, once daily Reduction in CDP
Headache, nasopharyngitis,

urinary tract infection, and falls

Ozanimod
CIS, RR and

active SP
First line

Oral, once daily Reduction in ARR
Headache and elevated liver

aminotransferase

Dimethyl fumarate
and diroximel

fumarate

RR
First line

Oral, twice daily Reduction in ARR
Flushing, diarrhea, nausea, upper abdominal

pain, decreased lymphocyte counts and
elevated liver aminotransferase

Cladribine
RR

Second or third
line

Oral, 4-5 days over
2-week treatment

courses
Reduction in ARR

Headache, lymphocytopenia, nasopharyngitis,
upper respiratory tract infection and nausea

Teriflunomide
RR

First line
Oral, once daily Reduction in ARR

Nasopharyngitis, headache, diarrhea and
alanine aminotransferase increase

Glatiramer
acetate

RR
First line

SC injection,
once daily or

3 times weekly
Reduction in ARR Injection-site reactions

Rebif
(IFN-β-1a)

CIS and RR
First line

SC injection,
3 times weekly

Reduction in ARR
Injection-site inflammation, flu-like
symptoms, rhinitis, and headache

Avonex
(IFN-β-1a)

CIS and RR
First line

Intramuscular (IM)
injection,

once weekly
Reduction in CDP

Flu-like symptoms, muscle aches,
asthenia, chills, and fever

Plegridy
(PegIFN-β-1a)

CIS and RR
First line

SC injection,
every 2 weeks

Reduction in ARR
Injection-site erythema, influenza-like

illness, pyrexia, and headache
Betaseron
(IFN-β-1b)

CIS and RR
First line

SC injection, every
other day

Reduction in ARR
Lymphopenia, flu-like symptoms and

injection-site reactions

Despite all these advances, it is necessary to look for new options to improve

the treatment of MS. There are very effective therapies that completely control the

relapsing disease. In contrast, progression treatment needs to become more effec-

tive because current therapies only partially protect against the neurodegenerative

component of MS [17, 51].
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2.2 Machine Learning

ML is a branch of Artificial Intelligence (AI) whose goal is to mimic human

intelligence by learning from available data. To this end, mathematical models

are built based on samples that allow machines to make predictions or decisions

without specific computer programming. Several solutions are available, and the

choice depends on the type of problem to solve. This high diversity allows ML

models to be applied in several fields and to solve complex and different challenges

[52].

ML algorithms are divided into three primary categories according to the type

of data used for learning. In supervised learning, the input and output samples

are known, and the algorithms learn to predict the output from the input data.

In unsupervised learning, the data is unlabelled, and the algorithms learn from

the internal structure of the input data. Semi-supervised learning combines the

previous two, i.e. only a portion of the input data is labelled, and it is used to infer

the unlabelled part [6].

The Figure 2.5 links together the main stages of a ML workflow. After acqui-

sition, pre-processing and transformation, the dataset is divided into training and

testing sets. The ML algorithm learns from the patterns in the training set, and

this learning is applied to the testing set for prediction or classification. Finally, the

model is evaluated using performance metrics [9].

This thesis focuses on supervised learning algorithms, in which labelled clinical

data from patient history, i.e., collected during periodic visits, is used to generate

models capable of predicting disease outcomes. This outcome is whether a patient

will transition from the initial RR course to the SP form of the disease.

Figure 2.5: ML workflow. Adapted from [6].
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2.2.1 Data preparation

Since ML algorithms learn to map input variables to output variables, the data

quality influences the model performance. Data preparation is the transformation

of the raw data to meet the requirements of the ML algorithms used and can be

one of the most challenging steps in a ML project. The data used in the ML model

should have only the most relevant and non-redundant features, so the raw data

should be processed according to the problem defined beforehand [53]. This process

of deriving new variables that best represent the problem from the available data is

called Feature Engineering [54].

In clinical problems, the raw medical data can be medical notes, clinical lab

reports, clinical images, and information from medical devices. Processing these

data involves significant effort to ensure that they have the desired structure and

accurately reflect clinical reality [55].

2.2.1.1 Data Cleaning

Data cleaning is usually the first step and involves denoising, identifying and

correcting errors or missing values. First, it is important to identify and remove

columns with the same value and duplicate rows. Moreover, model results can

usually be improved after identifying and removing outliers, which are data that

differ dramatically from all others [53, 56].

Regarding the existence of missing values, solving this problem is very impor-

tant because most algorithms require that all samples have values for all features.

The simplest approach is to eliminate the samples with missing values, which causes

a loss of information that can lead to biased results. Thus, an alternative is to

impute the missing values from the existing information. To deal with missing data,

one must first identify the nature of the data and the mechanism leading to its lack

[57, 58]:

• Missing Completely at Random (MCAR): missing data does not depend on

observed or missing data.

• Missing at Random (MAR): missing data depends on observed data and does

not depend on unobserved data.

• Missing Not at Random (MNAR): missing data depends on something unob-

served.

There are several methods for imputing missing values using statistics or learn-

ing models. Statistical methods are the simplest approach and involve calculating
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a missing value from the values present. Usually, the calculated value is the mean,

median, or mode of the column, and this value replaces the missing values of that

column. Data imputation can also be done using models that predict missing values

from all other input characteristics. For example, the k -nearest neighbours (KNN)

imputation model predicts the missing value from the k nearest neighbours. Another

but more complex approach is the development of iterative models. In this case,

the model iteratively predicts a missing value from all features, including previously

estimated and imputed values [53, 57].

2.2.1.2 Data Transformation

Data transformation is the alteration of the data type to make it suitable for

the algorithm. In ML models, all input and output variables must be numeric and,

consequently, categorical data (ordinal, nominal and boolean) must be encoded to

numbers. Scaling data to a standard range is an essential step in pre-processing since

differences between input variables scale can complicate the problem’s modelling in

many ML algorithms, which leads to poor performance and higher generalisation

error. The two widely used techniques for scaling numerical data are [53]:

• Normalisation: It is the scaling of the data to a range from 0 to 1. Each

value is normalised using the equation 2.1, where x is an original value and y

is the normalised one. Knowing the minimum and maximum values of each

feature of the training data is essential. The new data is normalised using

these values.

y =
x−min(x)

max(x)−min(x)
(2.1)

• Standardisation: It is the scaling of the data to a Gaussian distribution, i.e.,

with mean 0 and standard deviation 1. To apply the equation 2.2, where x is

an original value and y is the standardised value, it is necessary to estimate

the mean and standard deviation of each feature of the training data.

y =
x−mean(x)

standard deviation(x)
(2.2)

2.2.1.3 Dimensionality Reduction

The dimensionality of a problem is the number of features in the input data.

High dimensionality and a small number of examples can lead to problems in most

algorithms, as the samples become too sparse and not representative of the space

(curse of dimensionality) [53, 59]. Moreover, irrelevant and redundant variables
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can cause learning errors, leading to inferior performance. Removing these features

has benefits such as increased knowledge of the data, identification of irrelevant

variables, more efficient learning algorithms, and improved generalisability [60].

Thus, dimensionality reduction is important in eliminating irrelevant data, in-

creasing model accuracy and improving the results’ interpretation [61]. These algo-

rithms can be divided into two distinct groups: feature extraction, which consists

in creating new features from the existing ones in the input dataset, and feature

selection, which involves choosing a subset of features and excluding the rest [62].

Feature Extraction

Feature extraction algorithms transform the input data into a lower dimension-

ality subspace by generating new features containing the most relevant information

from the input dataset [53, 59]. The most popular techniques are:

• Principal Component Analysis (PCA): PCA is a non-supervised method

that applies an orthogonal transformation to convert the original correlated

variables into a set of non-linearly correlated variables called principal com-

ponents. The number of components is less than or equal to the number of

original variables. The principal components are calculated in descending or-

der of importance, i.e., the first principal component has the highest possible

variance, and the remaining ones have a successively lower variance [59].

• Linear Discriminant Analysis (LDA): LDA is a supervised algorithm that

performs a linear transformation of the data. It optimises the separability of

the data, i.e., maximises the inter-class distance and minimises the intra-class

distance [59]. By other words, it maximises the Fisher criterion given by the

equation 2.3, where SB represents the between-class scatter matrix, and SW

represents the within-class scatter matrix. The direction W that maximises

J(W ) is given by 2.4, and µ1 and µ2 are the mean vectors of the two classes

[63].

J(W ) =
W TSBW

W TSWW
(2.3)

W = SB
−1(µ1 − µ2) (2.4)

Feature Selection

Feature selection techniques allow the selection of a subset of the most rele-

vant input features for the problem. These techniques are divided into supervised
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and unsupervised, depending on whether or not they consider the target variable,

respectively [64]. Supervised techniques can be further divided into three groups:

• Filter methods: This class of methods uses variable ranking techniques to

evaluate the relationship between the input and the target variable. Each

variable is assigned a score, and the ones with higher ratings are chosen, while

those below a defined threshold are removed. This selection method is inde-

pendent of the learning algorithm and ignores interactions between features,

relying only on statistical information in the data, such as correlation, dis-

tance metrics, and consistency metrics. The filter method is computationally

less demanding than the others and is preferable in high computational cost

problems with large datasets. Examples of filtering methods include ANOVA,

Pearson correlation, and the chi-square test [64].

• Wrapper methods: In this class of methods, several models are created with

different subsets of features, and the selection criterion is the performance of

the classifier. The selected features are the subset that leads to better per-

formance. This method performs better than filter methods. However, it is

computationally expensive, especially for large numbers of features, and may

lead to overfitting. Another disadvantage is the dependence on a giving clas-

sification method. Wrapper methods can be divided into Sequential Selection

Algorithms and Heuristic Search Algorithms. Sequential selection algorithms,

such as Sequential Feature Selection (SFS) and Sequential Backward Selection

(SBS), start with an empty or complete set of features and add or remove fea-

tures, respectively until the maximum objective function is obtained. Heuristic

search algorithms evaluate different subsets of features to optimise the objec-

tive function [60, 64].

• Embedded methods: This class of methods includes feature selection in

the model fitting process, filling the gap between the filter and wrapper mod-

els. Embedded methods select multiple subsets of features during the learning

process and choose the one with the best performance according to a perfor-

mance metric. It is much less computationally heavy than the wrapper meth-

ods and includes the interactions with the classification model. This method

includes decision trees and regularisation algorithms, such as the Least Abso-

lute Shrinkage and Selection Operator (LASSO) and Ridge regression models.

Regularisation models add penalties to different model parameters to avoid

overfitting [64].
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2.2.2 Classification

After pre-processing the data, the following steps include developing the classi-

fication model. It is important to analyse the problems of the dataset under study

and define strategies to prevent the model from being affected by its predictions.

The goal is to design a robust model to ensure reliable results. In imbalanced data,

sampling techniques allow overcoming the difference between classes. To evaluate

the algorithm performance it is essential to partition the data using resampling tech-

niques. Ensemble methods can also be applied to get the most out of algorithms

with good performance. In addition, several classification methods can be applied,

particularly the most promising ones for the problem. Lastly, some techniques are

available to find the best hyperparameters for the studied classifiers.

2.2.2.1 Sampling Methods

One of the biggest challenges in classification problems is class imbalance. In

these cases, the classifier is biased towards the majority class, and this imbalance

becomes more relevant when the class of interest is the minority class [65]. MS

classification problems usually have balancing problems between the disease stages

because MS has a slow course, which results in more records in the RR course than

in the SP and PP courses [18]. To improve the classification performance, sampling

techniques can be applied. These techniques change the distribution of the classes

so that the data is relatively balanced [65].

Sampling approaches have been proposed, including random undersampling

and random oversampling. Random undersampling involves randomly removing

samples from the majority class to balance the number of examples from each class.

The major disadvantage of undersampling is eliminating large amounts of data and

losing information that may be relevant to classification performance. Contrarily,

in random oversampling, the class balancing is done through random repetition of

samples from the minority class. In this case, the major problem is the deficiency

in the generalisation ability of the classifier due to overfitting [65, 66].

More advanced methods based on these simple techniques have been developed

to overcome these limitations. Some of these methods use intelligence to add or

remove samples or combine oversampling or undersampling to decrease information

loss and avoid overfitting [65].
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2.2.2.2 Partition Methods

The evaluation of the learning algorithm performance must be performed on

new data, usually called test data. Otherwise, the model might be overfitted to the

training data. Therefore, the dataset must be at least partitioned into two parts,

one for building the model and learning, usually called the training set, and one for

testing the model, called the test set [7, 67]. The split size depends on the data, but

it is common to use 67% of the data for training, and the remaining 33% for testing

[67].

Another alternative is the Cross-Validation (CV) technique, in which the dataset

is divided into k parts, and k iterations are performed, using each time one of the

k parts for testing and the rest for training, as shown in Figure 2.6. The classifier

performance is given by the mean and standard deviation of the test results over

k iterations. There is no rule for choosing the value of k, but it is usually 5, or 10

[7]. For imbalanced problems, Stratified CV is an alternative that ensures that each

part keeps the proportion of each class in the complete data. Another variant of

this method is Leave One Out Cross Validation (LOOCV), in which the number of

k folds is equal to the number of instances in the data set. Overall, CV methods

lead to more reliable results than train/test split since the algorithm is trained and

evaluated multiple times on different data [7, 67].

Figure 2.6: Scheme of CV with k=3. Adapted from [7].

A different approach is the Repeated Random Training/Test Splits technique

presented in Figure 2.7, in which the train/test split process is repeated several

times. The proportion of the data split is variable and influences the number of

repetitions, i.e., the higher the percentage of training, the higher the number of

repetitions should be to get stable estimates [7].
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Figure 2.7: Scheme of B repeated training and test set splits. Adapted from [7].

The Bootstrap is another approach, which consists of several resamples of the

same size as the original sample. Bootstrap samples are random and built with

replacement, i.e., the training sample may have repeated observations as observed

in Figure 2.8. Bootstrap error estimation performs well with small samples because

it has a smaller variance but demands a higher computational cost [7, 68].

Figure 2.8: Scheme of bootstrap resampling with B subsets. Adapted from [7].

2.2.2.3 Classifiers

In supervised ML problems, the classification algorithms learn from the input

data and optimise the learning for a given labelled output. Several classification

methods use different learning approaches, and the most appropriate choice de-

pends on the problem under analysis and the dataset [6]. The most well-known

classification methods are the following:

1. Logistic regression (LR): LR is a statistical model used in classification

problems that predicts the probability of a given outcome by fitting data to

a logistic function. The logistic function estimates the probability P (xi) as-

sociated with the occurrence of an event, given the input variable xi. This

probability is a number between 0 and 1, which is given by the equation 2.5.

The values α and βi are unknown coefficients that can be obtained by the

Maximum Likelihood Estimation (MLE) method. In binary problems, if the

output is greater than 0.5, the sample is assigned to the positive class, and if
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it is less than 0.5, it is assigned to the negative class [69].

P (x) =
1

1 + e−(α+
∑
βixi)

(2.5)

LR has the advantage over other algorithms of being an interpretable model

that is relatively quick and easy to set up, despite being too simplistic for com-

plex relationships between variables. It also tends to have lower performance

on nonlinear problems [70].

2. k-nearest neighbours (KNN): KNN assigns the class to a sample that is

the predominant one among the nearest neighbours, as shown in Figure 2.9.

The value k refers to the number of nearest neighbours that the classifier

will search to make the prediction. There are several metrics to calculate the

distance, and their choice varies according to the problem. The most used is

the Euclidean distance [9, 71].

Figure 2.9: The KNN classifier. Adapted from [8].

Compared to other classifiers, KNN has the advantage of being simple to

implement and easy to understand the classification result’s explanation. It is

a lazy learning algorithm; therefore, it memorises the training data and uses

it to make predictions. It is very sensitive to the choice of parameter k and

noisy data and does not work well on large datasets, and high dimensional

data [70, 72].

3. Decision tree (DT): DTs are a hierarchical model where an unknown pattern

is classified into a class using decision functions in successive steps. This

sequence of recursive partitions allows simpler problems to be solved with

fewer steps and features. As represented in Figure 2.10, this algorithm has

a tree-like structure: nodes, branches, and leaves. The process starts at the

root and at each node, after the test result, a branch is taken that leads to

one of the child nodes. This procedure is repeated until a leaf is reached,
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corresponding to the class result. In the case of binary decision trees, each

node splits into only two branches, and the logical test is always interpreted

as true (left) or false (right) [6, 9].

Figure 2.10: A Sample Decision Tree. Adapted from [9].

DTs have high interpretability and are easily understood by the schematic

visualisation of a tree. In addition, this classifier is robust to noisy data and

supports nonlinearity. On the other hand, it is prone to overfitting and is not

as accurate as other classification methods [70].

4. Naive Bayes (NB): The NB is a classifier based on probabilistic knowledge

and Bayes’ theorem. This algorithm assumes that the attributes are indepen-

dent of each other, given any known class. Although this assumption seems

naive and simplistic, the classifier is successfully applied to multiple complex

problems [73, 74].

In training, the classifier estimates the probability distribution given the class,

while in classification, the method calculates the posterior probability for each

class. The test data ŷ is classified according to the Maximum a posteriori

(MAP) rule, which selects the class with maximum posterior probability using

the equation 2.6 [73].

ŷ = argmax
y∈1...k

n∏
i=1

p(xi | y)P (y) (2.6)

where k is the number of possible classes, n is the number of attributes, p(xi |
y) is the probability of xi given the class y, and P (y) is the prior probability

of class y. The NB classifier is relatively simple, fast, easy to interpret, and

robust to noise and irrelevant attributes. It works well with high dimensional

input data and requires little training data. On the other hand, a limitation
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of NB is the assumption of independent predictors, which in real life is very

uncommon. This classifier also performs relatively poorly on low dimensional

data [70].

5. Support Vector Machines (SVM): A SVM is a binary classifier defined

by a separation hyperplane that divides the feature space into two parts, and

optimally each class is on different sides. For the hard-margin SVM formula-

tion, the margin is the distance between the nearest training samples (support

vectors) that belong to the different classes, as can be seen in Figure 2.12.

The goal is to select the hyperplane that maximise this margin since a bound-

ary further away from the training data will minimise the generalisation error

[6, 10]. The margin is influenced by parameter C, also known as the regu-

larisation parameter, which controls the penalty of misclassifications. This

penalty is lower for lower values of C, and consequently, the margin is larger.

In contrast, misclassifications are more penalised for higher values of C, and

the margin is smaller [10, 75].

Figure 2.11: Maximum margin through SVM. Adapted from [10].

A large proportion of problems involve data not linearly separable. In these

cases, the data is transformed into a higher-dimensional space using a kernel

function, where it is separable by a hyperplane. The Radial Basis Function

(RBF) kernel is widely used; in this case, the parameters C and gamma are set.

The gamma parameter controls the distance of the influence from a training

point. For low values, the influence is broader, while for higher values, the

influence is more localised, and consequently, the points have to be closer to

be classified in the same class [63, 75]. On the other hand, when the problem

involves more than two classes, it is divided into several binary classifications

[9].
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Figure 2.12: Non-linear SVM classification using kernel functions. Adapted from
[10].

SVM is a robust and complex model that is considered one of the best-

performing classification algorithms. The kernel function allows varying de-

grees of non-linearity and flexibility in the model. The main disadvantages of

the SVM model are that it requires a lot of memory and processing power and

that it is difficult to interpret [70].

6. Artificial Neural Network (ANN): ANNs are a computational model

based on the connectivity of neurons in the human brain. The processing

is done by neurons organised in input, hidden or output layers. This process

needs an activation function, which is the mathematical function that defines

and adjusts the weights along the learning process [71]. Several ANNs can

be used to classify different problems for different purposes. Deep Learning is

based on ANNs with many hidden layers [9].

Figure 2.13: ANN architecture. Adapted from [9].

ANNs can detect complex non-linear relationships between independent and

dependent variables, and possible interactions between predictor variables. In

addition, several types of ANN methods can be used to train and extract

knowledge. The biggest limitation of ANNs, especially in the medical field,

is that they are a black-box model, and it is not always possible to identify
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possible data relationships that led to the solution. Training ANNs requires

greater computational resources and is very time consuming, especially for

complete data and networks with many hidden layers. Furthermore, they are

prone to the problem of overfitting [70, 76].

The Feed-Forward Neural Network (FFNN) is the simplest Neural Network

(NN) since the information is processed in a single direction (forward), and

there are no cycles in the network. The ANN in Figure 2.13 represents the

architecture of a FFNN with one hidden layer [77].

The opposite of a FFNN is a Recurrent Neural Network (RNN). The latter have

cycles that allow information to persist. In this project, it was used a type of

RNN, the Long Short-Term Memory (LSTM). These networks can learn long-

term dependencies, making them popular in problems with sequential data

[78]. A LSTM layer comprises connected memory cells, whose structure is

represented in Figure 2.14. In this figure, ht−1 is the hidden state at previous

timestep (short-term memory), ct−1 is the cell state at previous timestep (long-

term memory), and xt, ht and ct are the input vector, hidden state and cell

state, respectively, at current timestep [11].

Figure 2.14: LSTM recurrent unit. Extracted from [11].

The memory unit has the cell state, which is the memory of the LSTM, and

power units (gates) that regulate the flow of information in and out of memory:

the forget gate controls the removal of information; the input gate controls the

input of important new information; the output gate controls the information

from memory that is added to the cell state. The mathematical functions

define the behaviour of the cell [11, 79].
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2.2.2.4 Ensemble Methods

Ensemble methods arose from the need to have techniques with strong gener-

alisation capability. The goal of ensemble methods is to combine several learning

algorithms to make the generalisation capability stronger [65]. Hence, several base

learners are built from the original data, and the predictions from each one are

combined [66].

Building a robust single model with good performance is a challenge, and this

combination can overcome these difficulties. Thus, although ensemble models con-

siderably increase the complexity and computational cost, they usually lead to algo-

rithm improvements, such as increased stability, better classification performance,

and reduction of the variance and bias of the model [8, 66]. Depending on how

the learners are constructed, as well as how they are combined, ensemble learning

methods can be divided into two types:

• Boosting: The main idea of Boosting is to generate several weak learners

(low performing) and combine them into a single strong learner. To this end,

a sequence of learners is created, and each learner tries to correct the mistakes

of the previous learners in the sequence. [8, 67]. The algorithm assigns different

weights to each training sample so that the samples that are harder to classify

have a higher weight than the easier ones. Thus, each base learner is trained

with the training samples adjusted by the output of the previous learner. The

most popular Boosting algorithm is AdaBoost [8].

• Bagging: The Bootstrap aggregation (Bagging) algorithm involves the cre-

ation of individual and parallel base learners. This technique uses bootstrap

sampling to include randomness in the training data and generate learners

with less dependency, and more diversity [8, 65]. Therefore, several random

samples with replacements are generated from the training group, and a base

learner is built for each one. The final learner is built from the individual base

learners, and the final prediction is the class most chosen by the sub-models

[8].

2.2.2.5 Hyperparameter Optimisation

Hyperparameters are ML algorithm variables defined during training, whose

value influences the performance of the models. Hence, it is fundamental to search

for the best and most robust combination of parameters for a given problem. This

search is called hyperparameter optimisation [67, 80]. They can be adjusted manu-

ally by trial and error, but there are faster and more automatic methods to optimise
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them. The two most widely used techniques are:

• Grid-search: It starts with a set of values for each hyperparameter, and a

model is built and evaluated for each combination of hyperparameters. The pa-

rameters chosen are those that lead to better model performance. This method

has the disadvantage of being computationally heavy due to the exhaustive

search. Additionally, the number of models evaluated increases exponentially

with the dimensionality of the hyperparameter space [80].

• Random-search: Random search is an approach that tests random combi-

nations of hyperparameters for a fixed number of values. Like in grid-search,

a model is built and evaluated for each combination of values. This method

works better than grid-search when some hyperparameters are much more

important than others [80].

2.2.3 Performance evaluation

When developing classification models, it is important to perform an evaluation

using metrics that are adequate for the problem. Their value reflects the quality of

the model and its efficiency in meeting the required requirements [67, 81].

Regarding binary classification problems, the two classes are often called pos-

itive and negative. The confusion matrix is a table that allows the calculation of

most of the evaluation metrics for binary problems and has the following values [82]:

• True Positives (TP): samples correctly classified as positive;

• True Negatives (TN): samples correctly classified as negative;

• False Positives (FP): samples classified as positive that are negative;

• False Negatives (FN): samples classified as negative that are positive.

Table 2.4: Confusion Matrix for Binary Classification [8].

Actual Positive Class Actual Negative Class

Predicted Positive Class TP FP

Predicted Negative Class FN TN

The metrics for classification evaluations often computed from a confusion ma-

trix are [82, 83]:

1. Accuracy: Accuracy is given by the ratio between the number of correct

predictions and the total number of evaluated samples. Overall, accuracy is

the most widely used metric for evaluating classification models. However,

in problems with imbalanced classes, it becomes an unreliable measure of
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performance since it assumes high values even when the model is not effective

[81].

Accuracy =
TP + TN

TP + FP + TN + FN
(2.7)

This measure reflects the total number of correctly classified cases, both RR

and SP, but does not distinguish between the numbers of correctly classified

samples from each of the classes. Thus, a high accuracy value may be related

to a bad classification since the model may be classifying nearly all samples

as the majority class (RR course) [84].

2. Sensitivity: Sensitivity, also called recall, is the proportion of positive sam-

ples that are correctly classified in relation to all positive samples. This is the

True Positive Ratio (TPR) and summarises how well the positive class was

classified [83].

Sensitivity =
TP

TP + FN
(2.8)

In this problem, the sensitivity is the proportion of patients in the SP stage

that have a positive result. A high sensitivity means that the classifier correctly

identifies patients in the SP course.

3. Specificity: Specificity is the proportion of negative samples that are correctly

classified in relation to all negative samples. This is the True Negative Ratio

(TNR) and summarises how well the negative class was classified [83].

Specificity =
TN

TN + FP
(2.9)

In this specific case, the sensitivity is the proportion of people in the RR

stage that have a negative result. A high specificity means that the classifier

correctly identifies patients in the RR course.

4. Precision: Precision is the ratio between correct positive predictions and the

total number of positive observations predicted. This metric quantifies the

quality of the positive prediction made by the model [83].

Precision =
TP

TP + FP
(2.10)

In other words, it is the accuracy for the minority class (SP course) and quan-

tifies the number of positive class predictions that are actually patients in the

SP phase.
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5. F1-score: F1-score is the harmonic mean of sensitivity and precision. This

metric is more suitable than accuracy in problems with imbalanced data, such

as MS predictions, since in these cases accuracy has high values in classifiers

with poor performance for the minority class [82].

F1-score =
2× precision× recall
precision+ recall

(2.11)

Thus, this metric provides important information about the ML models, giving

the balance between precision and recall. It is important to note that these two

metrics are both important to the problem under study, and F1-score allows a

trade-off between them since increasing precision generally leads to a decrease

in recall value and vice-versa. By increasing recall, the chance of missing the

detection of a SP patient is minimised. However, it increases the possibility

of classifying RR patients as SP (FP) who will be subjected to early or more

aggressive therapies with potentially troublesome impacts, not only in terms

of side effects but also on patient expectations and economic management. On

the other hand, precision optimisation leads to the correct prediction of SP

patients, i.e., patients classified as positive are very likely to progress to SP.

Despite that, the model may more often fail the prediction of SP patients,

classifying them as RR (FN). In this case, a patient with worsening disease is

inadequately treated [27, 85].

6. G-mean: This metric is the geometric mean of the sensitivity and specificity,

which is given by the square root of these two metrics. This measure is partic-

ularly important in problems with imbalanced data. It allows the combination

of sensitivity and specificity into a single value that reflects the balance be-

tween classification performances in both the majority and minority classes

[82].

G-mean =
√
sensitivity × specificity (2.12)

7. Area Under the Curve (AUC): AUC is the area under the Receiver Op-

erating Characteristic (ROC) curve, as represented in Figure 2.15. This curve

is represented by TPR, or sensitivity, as a function of False Positive Ratio

(FPR), or 1-specificity, for different threshold values. ROC curve summarises

the performance of a binary classification model for the positive class. The

AUC clarify the analysis and comparison of different ROC curves. Its value

ranges between 0 and 1, and the threshold between classes is 0.5. An ideal

model can correctly predict each sample and has AUC=1, while a model with
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AUC=0 is inversely identifying the samples [82].

Figure 2.15: Illustration of ROC curve and AUC. Adapted from [8].

2.3 Explainability

Explainability is not a new problem in ML models, but its importance and

need have grown with the increasing use of ML models in diverse and complex

applications. Clinicians tend to prefer simpler models, such as linear regressions

and decision trees, because these are like rule systems and, consequently, are self-

explanatory and easily understood by clinicians [86].

The increasing complexity of ML models has led to the black-box problem,

since the operation of these models and the reasons for their conclusions are not

understood. As a result, there are problems in accepting and trusting the answers

provided. There is a growing need for greater transparency in algorithm decision-

making [13]. The importance of human interpretability in algorithm design was

reinforced in 2018 with the publication of the General Data Protection Regulation

(GDPR), which gives citizens the right to receive an explanation of automated de-

cisions [87].

In situations where failures have a significant impact, particularly in medicine,

using the performance evaluation metrics of ML models may not be sufficient to

describe the problem. It becomes essential to know the reason for the decisions of

ML systems [88]. Additionally, it’s also important to evaluate other auxiliary criteria

such as fairness, privacy, reliability, robustness, causality, usability, and trust [87].

Interpretability refers to the ability of ML models to present their decision logic

in a way understandable to humans. Explainability goes a step further, being defined
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as the ability to summarise the reasons for the model’s behaviour, and explain the

reasons for the decision in non-technical terms to gain the user’s trust [89].

Figure 2.16 illustrates the challenge of making trade-offs between interpretabil-

ity and model performance since more precise explanations, such as NNs, may be

more complex and become complicated for people to interpret; and more inter-

pretable explanations, such as linear regression, may ignore input-output relation-

ships and result in lower performance values [89]. However, it is important to note

that the interpretability analysis is affected by aspects other than the algorithms

used, such as the input data and model parameters [88].

Figure 2.16: Trade-off between interpretability and model performance. Adapted
from [12].

2.3.1 Explainability Methods Taxonomy

The taxonomy of explainability is still not clear or recognised, but it is essential

to define criteria to allow researchers to compare and evaluate methods. The recent

increase in research on the explainability of ML models has resulted in their cate-

gorisation according to multiple criteria, such as inherence, specificity, scope, and

output [13, 14].

Model interpretability can be considered intrinsic if it results from simple models

with constraints imposed by their complexity or post-hoc if the explanation methods

analyse the model after its training phase. It is possible to distinguish whether

explainability is limited to specific classes of the model, defined as model-specific,

or whether it is used in any ML model, being considered model-agnostic. The

classification of explainability based on scope distinguishes whether the method is

local or global, that is, if it provides an explanation of a specific decision or if it
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gives an overview of the model [13, 14].

The distinction between explainability methods can also be based on the out-

put obtained. Statistical and visual summaries of the features can be analysed to

evaluate their impact on the model predictions. In addition, analysis of the results

can provide internal model information, such as the coefficients of linear models and

the structure of decision trees. Finally, some models become interpretable because

they return new or existing data points that provide visual or textual explanations

[14].

2.3.2 Explainability Evaluation

Unlike the performance evaluation metrics of ML models, explainability eval-

uation is not quantitative, and there is no consensus on the approaches used [14].

However, there are three main levels of evaluation, which are represented in Figure

2.17:

• Application level evaluation: It involves real people and real tasks, i.e., it

evaluates how human-created explanations help other people complete a task.

It provides more accurate results but involves a more costly process [13, 14].

• Human level evaluation: It involves real people and simpler tasks. This

type of evaluation is an alternative to the previous one because it is difficult to

find people who are experts in a particular domain. Thus, by being performed

by non-experts, it becomes a cheaper process on a larger scale, which allows

testing more general notions of the explanation [13, 14].

• Function level evaluation: It involves only proxy tasks without the involve-

ment of people. Thus, the costs and time of the evaluation process are lower.

The main challenge is the choice of which proxy to use [13, 14].

Figure 2.17: Evaluation approaches for explainability proposed by Doshi-Velez et
al. [13].
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2.3.3 Explainability methods

As mentioned earlier, several explainability methods are distinguished according

to multiple criteria and whose application depends significantly on the purpose of

the study.

Interpretability can be achieved using merely a subset of algorithms that create

interpretable models, such as linear and logistic regression. On the other hand,

explainability methods independent of ML models can be used, such as the agnostic

models applied after the training phase. This way, greater flexibility, power, and

ability to compare models can be achieved. There are also example-based methods

whose explanations are obtained by selecting specific instances from the dataset [14].

Finally, specific models for interpreting NNs are also considered. These models

allow the discovery of properties of the different layers of NNs, including the hidden

layers, which would not be possible with non-specific models [14].

2.3.3.1 Interpretable Models

According to Mohar et al. [14], interpretability is more easily achieved by using

algorithms that create interpretable models, such as those shown in Table 2.5, which

have three main properties: linearity, monotonicity, and interactions.

In a linear model, like linear regression, the explanatory variables are linearly re-

lated to the response variable. Monotonicity is achieved by monotonicity constraints

that ensure that the relationship between these variables continuously varies in the

same way; that is, it either only increases or only decreases. Regarding interactions,

decision trees include interactions between the explanatory variables to predict the

response variable’s value, making the model more transparent [14].

Table 2.5: Distinction between interpretable algorithms according to the type of
task [14].

Algorithm Linear Monotone Interaction Task

Linear regression 4 4 8 Regression

Logistic regression 8 4 8 Regression

Decision tree 8 Some 4 Regression and classification

Naive Bayes 8 4 8 Classification

k -nearest neighbours 8 8 8 Regression and classification
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2.3.3.2 Model-Agnostic methods

As mentioned in section 2.3.1, agnostic models consider input/output pairs and

analyse how changing the input influences the output by creating feature summaries.

Some of these methods are:

1. Partial Dependence Plots (PDPs): PDP is a global method that gives

the contribution of one or two features to the output. Through equation 2.13

it is possible to calculate the partial dependence, where g(x) is the output, xS

is the set of features under study, XC is the remaining features, and gS is the

expectation of g in the marginal distribution of XC [90].

gS(xS) = EXC
[g(xS,XC)] =

∫
g(xS,XC)dP (xC) (2.13)

This method is very intuitive, easy to implement, and allows a clear interpre-

tation of the influence of the features on the prediction. However, it has some

limitations, such as only showing the average of marginal effects, assuming

that features are independent, and having a maximum number of features of

only two [14].

Figure 2.18: PDPs of the bicycle number prediction for the features temperature,
humidity and wind speed. Extracted from [14].

In the example given by Mohnar et al. [14] regarding the prediction of the

number of bicycles rented daily shown in Figure 2.13, it can be seen that overall

the number of bicycles rented increases with temperature and decreases with

precipitation and wind.

2. Individual Conditional Expectation (ICE): ICE is an extension of the

previous method. While PDP shows the average influence of one or two fea-

tures on the prediction, ICE gives the prediction change for each separate data

instance. In other words, PDP shows the average of the curves present in the

ICE plots represented in Figure 2.19. This method is more intuitive than the

previous one, but it can become overcrowded in the presence of many curves
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[14, 90].

Figure 2.19: ICE plots of the bicycle number prediction for the features
temperature, humidity and wind speed. Extracted from [14].

3. Feature Interaction: Feature interaction exists when the effect of a given

feature on the prediction depends on the value of another feature. This in-

teraction can be evaluated by Friedman’s H-statistic metric, which measures

the interactions between two features and between one feature and all other

features. The H-statistic detects all existing types of interactions but has a

very high computational cost [14].

Figure 2.20: Feature interaction H-statistic metric for each feature with all
others in the problem of predicting the number of bicycles. Extracted from [14].

Figure 2.20 illustrates the values of the strength of the interaction of each fea-

ture with all the others for the previous example and shows that the interaction

effects between features are low.

4. Permutation Feature Importance: This metric allows the measurement of

a feature’s importance by permuting it and calculating the model’s prediction
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error. A feature is more important the higher the model error, and vice-versa.

Although its results vary greatly (due to randomness) and can be biased by

unrealistic instances, this metric gives an overview of the model’s behaviour

and allows comparison between different problems [14].

Figure 2.21: Importance of each feature in predicting the number of bicycles.
Extracted from [14].

Returning to the bicycle rental example, Figure 2.21 represents the importance

of each feature for the prediction problem, showing that the most important

feature is temperature.

5. Surrogate models: Surrogate models find a simpler approximation for black-

box models, which can be considered global or local, depending on whether

the explanation is for the entire model or individual predictions.

For global models, the goal is to create interpretable surrogate models that

are as close as possible to the predictions of the base model. In other words,

the goal is to approximate as closely as possible the base model’s predictive

function to the surrogate model’s predictive function, with the condition that

the latter is interpretable. This method is quite flexible, intuitive and easy to

implement. However, it is important to note that the explanations obtained

are not about the data but the model [14, 91].

In the example of Figure 2.22, the surrogate model was trained with a decision

tree to approximate the predictions of a SVM. The explanation shows that the

model predicts more bicycles rented when the day is further away from 2011

and when the temperature is higher than approximately 13°C.
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Figure 2.22: Explanations of terminal node predictions from a surrogate model
with a decision tree. Extracted from [14].

On the other hand, Local Interpretable Model-Agnostic Explanations (LIME)

models create surrogate models that explain the prediction of specific indi-

vidual samples. This model initially generates a set of perturbed samples

from the selected individual sample x and determines their predictions by the

black-box model. Next, a weight is assigned to these perturbed samples ac-

cording to their proximity to x, and the weight increases with proximity. These

weights are calculated by a kernel function. Finally, an interpretable model

is generated from the weighted sample set, which should be an excellent lo-

cal approximation of the black-box model. This interpretable model provides

explanations about sample x [14, 92].

Figure 2.23: LIME explanations for two instances of the problem of predicting
the number of bicycles rented. Extracted from [14].

Figure 2.23 represents the LIME explanations obtained for two features in the

bicycle problem, showing that the higher temperature and the good weather
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have a positive impact. Besides working on tabular data, the LIME model can

also be applied to text and images. One of the main problems of this model is

the instability of the explanations since very close points can have significantly

different explanations. [14].

6. Shapley Values: This local method is based on a game theory in which

payouts are assigned to players according to their contribution to the total

payout. In this method, each feature is a player, and the prediction is the

payoff. Coalitions between features are also evaluated, and a profit is assigned

to these cooperations [14].

Figure 2.24: Shapley values for a day from the prediction model of the number of
bicycles rented daily. Extracted from [14].

The Shapley values in Figure 2.24 show that temperature on that day had

the most positive contribution and, conversely, the humidity had the most

negative contribution.

2.3.3.3 Example-based methods

While agnostic methods create feature summaries, example-based methods cre-

ate humanly understandable explanations by selecting instances from the dataset

that allow understanding complex data distribution. These methods work best in

data with a structure such as images and text. Their application to less structured

data, like tabular data with multiple features, is more challenging.

The KNN method, mentioned in Section 4.2.3, is a well-known example-based

method that compares the k nearest neighbours to make a prediction. Other

example-based methods are:

1. Counterfactual Explanations: Counterfactual explanations show how the
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prediction changes with the modification of a particular instance. It is based

on creating instances representing hypothetical scenarios close to the original,

changing as few features as possible [14]. It is usually advantageous to create

multiple counterfactual explanations to illustrate the different ways to achieve

various desirable outcomes [93].

This method is relatively easy to implement, and its explanations are quite

clear. However, its main drawback is the existence of infinite counterfactual

explanations for each case. It is only necessary to explore the ones most

relevant to the outcome [14].

2. Prototypes and Criticisms: The prototypes are the points in the centres

that represent the behaviour of the data, while the criticisms are the points in

the clusters that are not well represented by the prototypes but also provide

insights [14], as shown in Figure 2.25.

Figure 2.25: Data distribution and its prototypes and criticisms. Extracted from
[14].

A method that finds prototypes and criticisms is Maximum Mean Discrep-

ancy (MMD). By measuring the discrepancy between two distributions and

the number of prototypes and criticisms chosen, this method selects the pro-

totypes/criticisms so that their distribution is close to/distinct from the data

distribution [94].

3. Influential Instances: Data instances whose deletion influences the model

predictions are considered influential, as shown in Figure 2.26. Their identifi-

cation can be performed using the deletion diagnostics method or influential

functions [14].

In the first method, individual data instances are deleted, the model is re-
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trained, and the predictions obtained are compared with the model’s predic-

tions with all instances. The second method increases the loss weight of an

instance based on the gradients of the model parameters, and it is not nec-

essary to retrain the model. This method is an excellent alternative to the

previous one in models with differentiable parameters because it does not re-

quire retraining the model and, consequently, is not as computationally heavy

[14, 95].

Figure 2.26: Influential instance for a linear regression model. Extracted from
[14].

2.3.3.4 Neural network interpretation

The growth of the Deep Learning (DL) field has increased its application in

various tasks. The architecture of NNs is very complex because of the multiple

layers and parameters. Moreover, the prediction involves mathematical operations

and transformations of the input in the different layers. Therefore, it becomes

challenging for humans to understand the behaviour of the network from data input

to prediction [14]. Although agnostic methods, such as PDPs, can be applied,

it is important to consider specific explainability methods for understanding the

behaviour and predictions of NNs, such as:

1. Feature Visualisation: Feature visualisation is a method to make learned

features explicit. To do this, it finds the input that maximises the activation of

a unit, and this unit can be an individual neuron, channel, or class probability

neuron.

This approach is very useful in understanding the structure and operation of

NNs. However, its main problem is the illusion of interpretability, i.e., leading

to the mistaken belief that the complexity of NNs is fully understood [14].
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2. Network dissection: The network dissection method proposed by Bau et al.

[96] allows the interpretability evaluation of individual units in a Convolutional

Neural Network (CNN) by linking the units to human interpretable concepts.

This interpretability evaluation has three main steps: identification of the

set of visual concepts labelled by humans; measurement of the CNN channel

activation for the images in the set; quantification of the alignment between

the labelled concept pairs and the activations [14].

3. Pixel Attribution: In problems involving images, the most relevant pixels

in the classification by a NN are highlighted in pixel attribution methods.

This method is a particular case of feature assignment methods and, accord-

ing to its assignment approach, can be divided into perturbation-based and

Gradient-based. The first method manipulates the image to generate explana-

tions, and the second method computes the gradient of the prediction. In both

cases, to each pixel is assigned the value of its relevance in the classification

[14].

2.4 Summary

MS is a chronic neurological disease that affects the central nervous system

and causes the destruction of myelin, impeding adequate communication between

the brain and the body. The exact cause is unknown, but it is admitted that MS

may be associated with genetic, immunological, viral, bacterial, and environmental

factors, among others [37]. The symptoms are heterogeneous and include motor,

cognitive, and sometimes psychiatric problems [21].

During the disease course, disability can be quantified by the EDSS scale [39].

Diagnosis is challenging in the early stages of MS because symptoms can be highly

variable and tend to disappear over unpredictable periods of time. Since there

is no specific test for MS, clinical, imaging, and laboratory findings are combined

to confirm the presence of the disease [21]. Regarding the clinical evolution, this

disease can be divided into four phenotypes based on the frequency and severity of

symptoms: Clinically Isolated Syndrome (CIS), Relapse Remitting (RR), Secondary

Progressive (SP), and Primary Progressive (PP). RR is the most frequent course and,

in most cases, evolves to SP.

Although there is no cure for MS, there are treatments available that can modify

the course of the disease, reducing its activity and slowing the accumulation of

disability. For a RR patient, the goal is to reduce the frequency and severity of
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relapses and postpone the progressive phase of the disease, while for a SP patient,

the goal is to prevent progressive worsening [4, 28].

A ML model that can make an early prediction of MS progression in the first

years of follow-up could significantly help physicians, leading to more appropriate

treatment for each patient. In this project, the goal is to predict whether the patient

will progress from the RR course to the SP form of the disease [23].

Creating a ML prediction model is a complex process that involves several

steps. Initially, it is necessary to define the problem and analyse the available data.

Since ML algorithms learn to map input variables to output variables, the data

quality influences the model performance. This data preparation involves using or

exploring the following steps: data cleaning, data transformation, and dimensional-

ity reduction. After pre-processing the data, the next steps include the development

of the classification model, exploring the use of sampling, partition, and ensemble

methods. The final step is the selection of an appropriate classifier for the problem

under study, using a set of different metrics to evaluate its performance [53, 67].

This imbalanced classification problem’s most relevant evaluation metrics are recall,

precision, and F1-score.

The question of explainability has grown with the success of more complex and

opaque ML models. Explainability methods can be applied to overcome the black-

box problem of ML models and increase the scientific community’s acceptance and

confidence in the answers. These methods can be divided into agnostic, example-

based, or specific. Furthermore, it is essential to involve human experiments in the

process of evaluating and validating the explainability of disease prediction models.

Finally, it is important to note that much remains to be done before these methods

can be reliably applied in clinical practice, but the way to do so is by being set [14].
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State of the art

This chapter overviews the state of the art of Multiple Sclerosis (MS) progres-

sion prediction. Section 3.1 presents a review of the data type used and summarises

some approaches adopted in recent years. It focuses on the study of the evolution

from the Relapse Remitting (RR) course to the Secondary Progressive (SP) course.

Section 3.2 is focused on the current state of the art related to the explainability of

MS progression models. The chapter ends with a summary of the main ideas and

future needs presented in the literature (section 3.3).

3.1 Prediction of MS progression

The treatment of diseases can be more differentiated and appropriate for each

patient if the course of the disease can be predicted early. The growth of Machine

Learning (ML) algorithms allows their application in the medical field, especially

for classification problems. MS is the most studied autoimmune disease in the ML

field [97], and the main goal of most studies is the classification, detection, and

segmentation of MS lesions [98].

3.1.1 Data Used

The majority of models use clinical and Magnetic Resonance Imaging (MRI)

data. Seccia et al. [18] listed some MS studies (Table 3.1) that use clinical data

because this type of data has proven to be adequate in long-term prognosis.

Although Cerebrospinal fluid (CSF) represents a unique source of Central Ner-

vous System (CNS) data and plays an important role in diagnosis, it is not routinely

used in clinical practice because its collection is an invasive method [99].

MRI data is also essential in MS problems because it may clarify the pathogenic

mechanisms of the disease better than purely clinical data [100, 101]. MRI is the

only technique that allows non-invasive quantification and characterisation of MS

lesions in space and time. Hence, there have been an increasing number of studies
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focusing on automated analysis of brain MRI scans, and there has been an effort to

define more sophisticated MRI features that are more predictive [102]. Combining

these two data types can improve discrimination between different disease courses.

In addition, the influence of other important factors such as genetics [103] and

demographic characteristics [98] is also commonly studied. Another new and dif-

ferent approach is the collection of data using mobile devices such as cell phones,

which may lead in the future to a more detailed relationship between lifestyle, disease

course, and the influence of treatments [18, 104].

Table 3.1: Summary of MS prognostic studies, using ML [18].

Reference Problem Data Model

Most relevant

features

(best model)

Performance

(best model)

Pinto et al.

2020 [105]

RR progresses

to SP in 5

years and

EDSS > 3

at 6 or 10 years.

Clinical and

MRI

Linear

SVM, KNN,

DT and

LR

SP development:

EDSS, CNS

involvement

in relapses,

FS scores,

age at onset

Disease severity:

EDSS, FS

scores and

CNS affected

functions

during

relapses

RR to SP:

sensitivity = 76%

specificity = 77%

AUC = 86%

EDSS > 3 at 6y:

sensitivity = 84%

specificity = 81%

AUC = 89%

EDSS > 3 at 10y:

sensitivity = 77%

specificity = 79%

AUC = 85%

Zhao et al.

2020 [106]

∆EDSS ≥ 1.5

at 5 years

Clinical and

MRI

Linear

SVM, LR,

and ensemble

models

EDSS, disease

course, MRI

lesions,

cerebellar and

pyramidal

function, and

ambulatory

index

accuracy = 71%

sensitivity = 79%

specificity = 69%

AUC = 78%

Brichetto

et al.

2020 [107]

RR progresses

to SP in

4 months.

Clinical and

patient

reported

outcomes

Linear

SVM, LR

KNN, and

other linear

classifiers

Not reported accuracy = 82.6%

Continued on next page
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Table 3.1: Summary of MS prognostic studies, using ML [18].

Reference Problem Data Model

Most relevant

features

(best model)

Performance

(best model)

Seccia et al.

2020 [1]

RR progresses

to SP in 0.5

to 2 years.

Clinical and

MRI

Nonlinear

SVM,

AB, KNN,

and CNN

Not studied

RR to SP

in 2y (RF):

accuracy = 86.2%

sensitivity = 84.1%

specificity = 86.2%

PPV = 8.9%

RR to SP

in 2y (NN):

accuracy = 98%

sensitivity = 67.3%

specificity = 98.5%

PPV = 42.7%

Law et al.

2019 [108]

∆EDSS ≥ 1 at

2 years in

SP MS

Clinical and

MRI

AB, RF,

DT, Linear

SVM, and

individual

and ensemble

LR

EDSS,

9-Hole Peg

Test, and

Timed 25-Foot

Walk

sensitivity = 59%

specificity = 61%

PPV = 32.1%

NPV = 82.8%

Yoo et al.

2019 [102]

CIS progresses

to MS in

2 years

Clinical and

MRI

LR, RF,

and CNN
Not studied

accuracy = 75%

sensitivity = 78.7%

specificity = 70.4%

AUC = 74.6%

Zhao et al.

2017 [109]

∆EDSS > 1.5

at 5 years

Clinical and

MRI

LR and

Linear

SVM

Non progressive:

EDSS and disease

activity at 0, 6

and 12 months,

brain parenchymal

fraction, race,

ethnicity, and

family history

Progressive:

∆EDSS, disease

activity, active

disease at

baseline, T2

lesion volume,

pyramidal

function and

its change at

1 year of

follow-up

accuracy = 67%

sensitivity = 81%

specificity = 59%

Wottschel et al.

2015 [110]

CIS progresses

to MS in 1 or

3 years

Clinical and

MRI

Linear

SVM

CIS to MS in 1y:

lesion load, type

of presentation,

and gender

CIS to MS in 3y:

age, EDSS at

onset, lesion

attributes

CIS to MS in 1y:

sensitivity = 77%

specificity = 66%

CIS to MS in 3y:

sensitivity = 60%

specificity = 66%

Continued on next page
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Table 3.1: Summary of MS prognostic studies, using ML [18].

Reference Problem Data Model

Most relevant

features

(best model)

Performance

(best model)

Bejarano et al.

2011 [111]

∆EDSS>1 +

EDSS range

after 2 years +

relapse ocurrence

Clinical, MRI

and MEP

NB, DT,

LR and

NN

EDSS and

MEPs

∆EDSS>1:

accuracy = 75%

sensitivity = 82%

specificity = 52%

AUC = 74%

EDSS range:

accuracy = 80%

sensitivity = 92%

specificity = 61%

AUC = 76%

Relapses:

accuracy = 67%

sensitivity = 53%

specificity = 77%

AUC = 65%

3.1.2 Clinical problems

As shown in Table 3.1, the MS study focuses on different problems using dif-

ferent methods. The three main classification problems are predicting conversion

from Clinically Isolated Syndrome (CIS) to MS, predicting disease progression, and

predicting the SP course.

3.1.2.1 Prediction of conversion from CIS to MS

Some prognostic studies using ML focus on predicting conversion from CIS to

MS since an early treatment is beneficial and about 80-85% of patients progress

to MS after 20 years [112, 113]. Wottschel et al. [110] combined clinical and de-

mographic features with MRI-derived features of lesion characteristics in a Support

Vector Machines (SVM) model to predict conversion of CIS to clinically-definite MS

(CDMS) during one- and three-year follow-ups, obtaining the accuracy of 71.4% and

68%, respectively. More recently, Kitzler et al. [114] used advanced MRI techniques

to analyse early myelin breakdown and identify an imaging biomarker associated

with CIS to MS conversion through in vivo myelination changes.

Several studies have shown that MRI features, both the number and topogra-

phy of lesions, are the main prognostic factor in early disease [102]. Both studies

mentioned above confirmed that the higher the white matter lesion load in the CIS

course, the higher the risk of progressing to CDMS. In these papers, the used features

are associated with white matter lesions and are based on lesion masks manually
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created by a user, instead of using automated image analysis methods. Nowadays,

theDeep Learning (DL) field has been increasingly applied to these problems. Yoo

et al. [102] used Convolutional Neural Networks (CNNs) to extract latent MS le-

sion patterns associated with the conversion from CIS to MS disease, showing the

potential advantage of this automatic extraction.

3.1.2.2 Prediction of MS progression and severity

On the other hand, some studies focus on analysing disease progression and

clinical activity, such as relapses and disability. Thus, MS is classified as be-

nign/malignant and worsening/not worsening, which are not disease phenotypes

but provide an indication of the disease severity over time. This classification of

disease status based on the change of the Expanded disability status scale (EDSS)

value is quite common.

Law et al. [108] studied the progression of SP disability using learning models

based on based on Decision trees (DTs), Logistic regression (LR), and SVMs. This

was achieved by tracking patients in a clinical trial for two years and making pre-

dictions over time, based on a six-month window in advance. Thus, patients were

classified as having confirmed disability progression if an increase of ≥1 or ≥0.5 was

observed for EDSS ≤5.5 or ≥6, respectively. The best results were given by the DT

classifier, with AUC=61.8%.

Recent studies by Zhao et al. [106, 109] have focused on worsening conditions,

and patients were classified into worsening or non-worsening, according to a change

greater than 1.5 in the EDSS value after five years. In the most recent study,

Zhao et al. [106] used two-year clinical and longitudinal neuroimaging data to

predict the patients’ disability level at five years using SVM, LR, Random Forest

(RF), XGBoost, Meta-L, and LightGBM. With the ensemble method LightGBM,

the model achieved a sensitivity of 78%, a specificity of 68%, and accuracy of 70%.

Two of the frameworks developed by Pinto et al. [105] focus on predicting

disease severity at the 6th and 10th years of follow-up, classifying a patient disease

progression into benign or malignant forms. For this purpose, the patient is con-

sidered to have severe disease if the EDSS value is higher than 3. The best results

were obtained for the prediction of the 6th year using clinical information from the

first two years, with an Area Under the Curve (AUC) of 89%, a sensitivity of 84%,

and specificity of 81%.

It is important to note that the different temporal windows of analysis limit

comparison between these studies. In addition, although the EDSS scale is widely

applied in these problems, it has some limitations, including the lack of consistency
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in the threshold value between classes [106].

3.1.2.3 Prediction of SP cases

Lastly, another approach to analyse disease progression is to predict the patients

who will progress to the SP course and those who will remain in the RR course, which

is the focus of this thesis.

Bergamaschi et al. [27] explored a Bayesian approach to calculate the Bayesian

Risk Estimate for MS (BREMS) score in the first year of each patient’s disease,

which indicates the long-term risk of having the SP course. Late age at onset and

polysymptomatic onset proved to be unfavourable factors, while the female gender

was associated with a lower risk. This paper also suggests that, besides the number

of clinical events, the characteristics of the events, such as type of onset, motor, and

sphincter relapses, should also be considered.

Ion-Mărgineanu et al. [115] employed multiple binary classifiers to classify the

four courses of MS defined by McDonald’s criteria, combining clinical data with

lesion loads and magnetic resonance metabolic features. Using the Linear Discrim-

inant Analysis (LDA) classifier and a Non-linear SVM, it was possible to achieve

a F1-score of 87% in distinguishing RR from SP, and it was concluded that the

addition of metabolic features and lesion loads slightly improves the results.

Seccia et al. [1] analysed the patient’s medical history to predict the RR shift

for SP 180, 360, or 720 days after the last visit. This was done using the RF, SVM,

k -nearest neighbours (KNN), and AdaBoost (AB) classifiers and the Long Short-

Term Memory (LSTM) Neural Networks (NNs). The dataset is a time series with

clinical values over several time intervals. When predicting each visit individually,

the classifiers obtained recall values from 70 to 100% and precision values from 5 to

10%. When considering the data as a time series in the LSTM NN, the recall and

precision values reached 67% and 42% in the 720-day prediction.

Pinto et al. [105] developed another framework to predict the SP course in RR

patients. The classifier that performed best was the SVM, and the best performance

for the development of SP was achieved in the 2-year model, having an AUC of 86%,

a F1-score of 20%, a sensitivity of 76% and specificity of 77%. The low F1-score

value commonly obtained is a limitation of the models developed since it reflects that

several patients incorrectly classified as SP will be subjected to aggressive medication

without actually needing it [105].
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3.1.2.4 Brief description of the ML techniques commonly used

The most commonly used ML methods for disease detection and prediction are

based on supervised learning. Unsupervised methods are often applied to discover

and study naturally occurring patterns in data. However, supervised methods are

the most widely used for detection/segmentation, therapeutic decision-making, and

disease prognosis. Several classification algorithms can be used to model prediction

problems [116]. These methods should be chosen and configured according to the

problem under study to perform well in the classification task. Generally, a compar-

ison is made between several classification methods using some performance metrics.

The most commonly adopted classifiers in MS studies are LR, linear and non-linear

SVM, DTs, RF, and NNs, especially CNN. Among the classifiers applied in the cited

studies above, the performance of linear SVM, NNs, and RF stands out. The latter

two can be highlighted, in comparison to SVM, due to their greater generalisation

capacity that allows the detection of complex and non-linear patterns in the data

[18].

The emerging role of DL

In the last decade, ML has allowed significant improvements in several areas

in MS research, such as lesion detection and segmentation and prediction of disease

course. The existing challenges encourage the improvement of the used methods and

the exploration of new approaches. Since 2018, the DL field has grown exponentially

and more advanced techniques such as CNNs and LSTMs have been applied in the

study of MS [116]. DL techniques focus mainly on two areas of interest: detection

and segmentation of MS lesions and prediction of disease outcome to make diagnosis

more accurate and facilitate optimal clinical management of patients [117].

Therefore, the research of different ML and DL approaches is quite important

for the continuous improvement of the existing models so that, in the future, the

prediction of progression between RR and SP disease courses is made promptly.

3.1.3 Current methodology limitations

Data quantity

One of the main limitations of MS prognosis prediction is the quantity of avail-

able data. Data collection in the clinical environment is challenging, and without a

labelled and reliable dataset, classification models are more prone to failure [118].

The building of robust models depends on adequate training with large datasets
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that are representative of the population. This problem is common in MS studies

because there are a limited number of patients and records over the years of follow-

up, the data collected are of poor quality, and there is no guarantee that a dataset

is representative of the population [104]. Thus, sharing strategies can be defined,

between institutes and hospitals, to obtain a greater amount of heterogeneous data

while respecting ethical and data protection regulations [118].

In ML models, the implementation of Cross-Validation (CV) techniques is fun-

damental to minimise the risk of overfitting. Furthermore, it must be ensured that

all records related to a patient are part of the same set (train, test, or validation)

[18]. For the performance measure to be realistic, this test group should be inde-

pendent of the others, sufficiently large and completely unknown to the model. In

this case, Leave One Group Out (LOGO) CV is usually applied instead of k -fold

CV, preventing the ML model from identifying specific patients rather than the data

patterns [1].

In addition, the datasets used are often imbalanced since the disease has a

slow course, and there are fewer records in the positive class. Some cost-sensitive

strategies are adopted to minimise this problem, such as using ensemble methods,

balancing the training group, and using appropriate performance metrics like F1-

score and Geometric Mean [18].

Data quality

As mentioned before, ensuring the quality of the data is a big challenge, espe-

cially when it is not collected in controlled trials. There are several flaws in data

recording and sometimes fields with less relevant information are ignored, result-

ing in datasets with misleading information and many missing values [118]. The

pre-processing techniques discussed in section 2.2.1 help to work around this prob-

lem, but the quality of the datasets depends heavily on the primary data recorded.

Thus, the evidence that the data provides must be reliable, and physicians should

make an effort to collect complete and quality data [18]. Several measures can also

be taken during the data collection process to maximise quality, such as replacing

paper-based collection, which has a high error rate and involves double data process-

ing, with a computerised collection system. These systems should be programmed

with real-time automated analysis tools to identify possible failures at the time of

collection [18, 113].
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Generalisability and bias

ML algorithms are dependent on the available data. The training datasets

should represent the population to not compromise model decisions in the real world.

This dependency can affect the generalisability of the algorithm, i.e., small differ-

ences from the training conditions can result in decreased model performance [118].

An example is a study developed by Wottschel et al. [119] in which the classification

accuracy of the CIS outcome at one-year follow-up was highest in datasets from each

centre and reached the lowest value when all patient data from different centres were

combined. This difference is because algorithms trained with MRI data collected

by a specific model of an instrument sometimes cannot interpret data collected by

other equipment or by the same model with a different acquisition protocol [116].

The same applies to clinical characteristics that may differ across demograph-

ics and cultures. Hence, applying a model in different regions can also lead to low

performance. This inequality is also influenced by the overrepresentation of cau-

casian patient groups, who are socioeconomically more advantaged and have more

healthcare access [18, 118]. It is important to note that the data are transformed to

preserve the patients’ privacy and, consequently, potentially useful data are elimi-

nated, such as rare cases and the birthplace or ethnicity of minority groups [18].

Another challenge is the standardisation of the data to draw homogeneous con-

clusions between studies. In MS studies, the EDSS may behave as a noise source

due to variability among neurologists in its value definition. An alternative is the

automatic and objective assessment of cognitive performance [18].

Black-box models

Due to the complexity of some ML models, sometimes their logic is not easily

understandable by a human and the models are considered black boxes. In these

cases, clinicians do not understand the functioning and results of the models [118].

This problem has become more relevant with the increasing use of complex algo-

rithms, such as DL, and was reinforced by the creation of the right to explanation

in the General Data Protection Regulation (GDPR) 2018 [87].

Despite still being an under-explored field in MS ML models, there have been

several studies that aim to create explainable models for the diagnosis and prognosis

of MS and, for this, they use techniques such as Layer-wise Relevance Propagation

(LRP), SHapley Additive exPlanations (SHAP), and Local Interpretable Model-

Agnostic Explanations (LIME). This black-box problem influences the safety and

use of the models in clinical practice due to the multiple issues in their regulatory
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approval [18, 118].

3.2 Explainability and MS

Artificial Intelligence (AI) techniques, along with the increasing availability of

medical data, have allowed the creation of promising applications in several medical

problems, such as MS prediction. However, their application in clinical practice is

minimal due to the black-box problem mentioned in the previous section, which re-

sults in concerns in understanding the behaviour of the models [120]. Thus, explain-

ability is crucial to maximise the error recognition of systems and the understanding

of solutions in real-life scenarios [121]. In recent years, there have been several ML

studies in different medical fields, such as Cardiology and Neurology, that include

the analysis of the models developed through explainability techniques.

Eitel et al. [122] developed an explainable framework for the MS diagnosis.

This framework is based on 3D CNNs and LRP models with Fluid-attenuated in-

version recovery (FLAIR) imaging sequences. The CNN model obtained a balanced

accuracy of 87.04% and an AUC of 96.08%. In addition, the LRP method produced

heatmaps of the input images indicating the most relevant voxels for the final CNN

classification result. Thus, from the heatmaps obtained, it was observed that the

CNN model focused on the well-established MRI markers in MS. It was concluded

that the results are consistent with clinical knowledge and that the LRP method

leads to clear and intuitive explanations of the results of this model.

Lopatina et al. [123] developed a similar approach for the identification of MS

patients. In this study, a CNN neural network was trained with 2D Susceptibility-

weighted images (SWI) images. The attribution methods LRP and DeepLIFT were

tested to visually analyse the contribution of each voxel to the classification task.

The heatmaps analysis revealed specific relevant brain areas common to most pa-

tients in a class and showed that the most pertinent voxels are located in and around

veins. These observations reinforce the assumed relationship between changes in the

vascular system and the development of MS.

Reinhold et al. [124] developed a structural causal model that creates coun-

terfactual MRI images for MS patients based on demographic information, MRI

images, and disease covariates. The counterfactual images obtained allow modelling

of disease progression in MS cases by showing how the MRI image of the brain would

look if the information were changed; for example, if the lesion volume were 0 mL

or if the EDSS were 5. However, this model has some limitations, such as the poor

quality of the counterfactual images in the test set and the fact that the explanations
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obtained are not validated in a meaningful way since they are hypothetical results.

More recently, Sousa et al. [125] implemented several explainability methods,

such as Permutation Feature Importance (PFI), LIME, and SHAP, in the work

developed by Pinto et al. [105]. The ML model selected uses clinical information

from the first two years after MS diagnosis to predict disease severity (benign vs

malignant) at the sixth year of follow-up. It was concluded that the Functional

System (FS)-related features are relevant in most explanations, but the EDSS feature

had the highest prominence. Data scientists evaluated the explanations to determine

what improvements were needed. This evaluation concluded that explanations of

predictive models need to be simple and straightforward for clinicians. However,

to describe the logic of the predictions from an algorithmic perspective, the data

scientists suggested that the explanations should be more technical and detailed.

By extending the analysis of explainability methods to problems of prognosis of

neurodegenerative diseases, such as Alzheimer’s and Parkinson’s, it is found that the

most used method is SHAP, followed by LIME [125]. The rising popularity of SHAP

can be explained by the fact that it links LIME and Shapley values and provides a

global and local understanding of model predictions and the impact of features by

plotting summary charts, whereas LIME only gives local explanations. A key point

is its fast implementation for tree-based models [14]. Furthermore, there is growing

popularity in adopting more complex classifiers such as NN and Extreme Gradient

Boosting (XGBoost) due to their ability to achieve better performance [125].

In the MS domain, explainability studies focus mainly on diagnostic models

using image information. Since this field of research is recent, these presented studies

are only the beginning of many approaches that will be developed in the future.

There is still a long way to go before clinicians are confident that a ML model can

be trusted, both in MS and in healthcare in general, but that path is being paved.

3.3 Summary

In conclusion, the development of ML models for MS data follows a difficult

path with multiple obstacles. Over the past few years, there has been an exponential

increase in the number of ML studies focused on MS and, more recently, in the field

of DL, where there have been improvements in early disease detection, prognosis,

and lesion detection, and segmentation [116].

The application of complex NN shows to be capable of identifying minor differ-

ences between disease courses and is a promising approach in its prediction. There

is still a need to promote the models’ explainability and investigate in detail their
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safety and risks in clinical decision-making. In the future, explainability models

will play a crucial role in both increasing clinicians’ confidence in ML models and

expanding the knowledge of MS disease.

Therefore, it is essential to continue progressively improving the work done by

comparing the performance of various methods on different datasets and analysing

inconsistencies between distinct studies. Regarding data, there is a need for tech-

niques to build quality datasets with many representative samples. Additionally, it

is crucial to explore the addition of new data sources [112, 117]. These approaches

will facilitate the early accurate diagnosis, analysis of the disease progression, and

treatment choice done by neurologists, consequently improving the life quality of

MS patients.
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Methodology

This chapter describes the steps used in the development of Multiple Sclerosis

(MS) prediction algorithms and explainability methods. First, the dataset is pre-

sented in section 4.1. Then, the two classification scenarios (Visited-Oriented (VO)

and History-Oriented (HO)) developed are described in sections 4.2 and 4.3. Finally,

the explainability methods applied are detailed in section 4.4.

The general framework adopted is summarised in Figure 4.1. To predict the

MS disease course, a VO approach and a HO approach were used in a Machine

Learning (ML) binary classification task. These methodologies were used to predict

whether a patient will pass from the Relapse Remitting (RR) phase to the Secondary

Progressive (SP) phase within a given time window (180, 360, or 720 days).

Figure 4.1: Methodology used with the datasets obtained by the Record-keeping
(RK) and Feature-keeping (FK) pre-processing strategies.

In the VO approach, different classifiers were applied, and each visit was consid-

ered an isolated sample. On the other hand, in the HO approach, a Long Short-Term
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Memory (LSTM) Neural Networks (NNs) were used, and each sample is the entire

clinical history of a patient, i.e., it is a clinical time series. These models were built

using the open-source packages scikit-learn and Keras on Python 3.6.9.

Afterwards, for each of the approaches and time windows, the model with the

highest prediction performance was selected, and different explainability methods

were implemented. The explanations obtained were then compared and analysed.

4.1 Dataset

The dataset used in the problem is from the MS service of the Sant’Andrea

Hospital in Rome and was processed by Seccia et al. [1]. For each patient, one

sample corresponds to one visit. The data include clinical status and laboratory

and imaging data from the neurological examination. The features present in the

dataset are listed in Table 4.1. The Magnetic Resonance Imaging (MRI) and liquor

analysis features are boolean (yes/no) and have the following characteristics [1]:

• Status T1/T2: Presence of gadolinium-enhancing T1/T2 lesions.

• Oligoclonal banding: Presence of oligoclonal bands in liquor.

• Others: Presence of lesions in the respective regions.

Table 4.1: Types of features present in the datasets [1].

Type Feature

Age at onset

GenderDemographic

Age at Visit

EDSS

Relapses from last visit

Pregnancy

Relapses frequency

Clinical Features

Time from last relapse

Status T1

Status T2

Oligoclonal Banding

Spinal Cord

Supratentorial

Optic Pathway

MRI and liquor

Brainstem-Cerebellum

Relapse treatment drugs

First line DMT

Immunosuppressant

MS symptomatic treatment drugs

Second line DMT

Therapeutic treatments (drugs)

Other drugs
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The datasets were designed to predict a patient’s transition from phase RR

(0) to phase SP (1) after 180, 360, and 720 days. Thus, Primary Progressive (PP)

patient cases and data from visits after the transition to SP were excluded. The

class label is 1 for a given sample if the patient progresses to the SP phase within

180, 360, or 720 days after that visit.

Furthermore, in the data pre-processing (see Figure 4.2), missing values were

removed using two strategies: FK and RK. In the FK strategy, the dataset authors

removed all samples with at least one missing value, while in the RK strategy,

they eliminated the features with missing values. Thus, two different datasets were

generated from the 180-, 360-, and 720-day prediction datasets, totalling the six

shown in Table 4.2.

Figure 4.2: Pre-processing steps of the datasets worked on by Seccia et al. [1]
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Table 4.2: Characteristics of the different datasets used [1].

Strategy Features Records Patients SP Patients % SP Records

FK 21 4330 506 36 0.8
180 days

RK 18 14923 1515 207 1.3

360 days
FK 21 4202 495 37 0.8

RK 18 14238 1449 207 1.4

FK 21 3928 468 37 0.9
720 days

RK 18 13178 1375 207 1.5

It is important to note that the authors hid the identification of most of the

features in the dataset to protect the identity of the patients, and this information

was not provided. This represents a significant limitation to the work of this thesis

since one of the goals is to explore the explainability of the ML models developed

for MS progression. It is fundamental to know the meaning of each hidden feature

to evaluate which ones have the most decisive influence on the results, the degree of

interaction between them, and how these interactions work. Thus, to proceed with

the planned work, different strategies were explored to identify some of the dataset

features.

From the number of men and women present in the datasets, it was concluded

that feature F1 corresponds to gender. Additionally, by analysing the correlation

matrix illustrated in the study of Seccia et al. [1] (see Figure 4.3) it was concluded

that F10 and F13 correspond to the feature “Pregnancy” in the RK and FK datasets,

respectively. It was also found that features F2, F3, F4, and F5 are from the MRI

and liquor group and correspond to the features Spinal Cord, Supratentorial, Optic

Pathway and Brainstem-Cerebellum. Still, it was not possible to identify which was

which.

As mentioned before, the MRI and liquor features are boolean, so they always

assume the values 0 or 1. Thus, excluding the previously identified features, it was

concluded that features F7, F8 and F9 in the FK dataset correspond to Status T1,

Status T2 and Oligoclonal Banding. Still, it was not possible to identify which was

which. In the case of the datasets obtained by the RK approach, no more binary

features are present, so it can be concluded that these were eliminated during the

processing illustrated in Figure 4.2.
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Figure 4.3: Pearson correlation matrix between the dataset features for the
prediction within 180 days. At the top is the matrix presented by Seccia et al. [1]
with the identification of the features, on the left is the matrix obtained by the RK

dataset, and on the right is the Pearson matrix obtained by the FK dataset.

As mentioned earlier and observed in Figure 4.3, the number assigned to a given

feature is not the same in both dataset types; for example, the feature Pregnancy

corresponds to feature F10 in the RK datasets but corresponds to feature F13 in the

FK datasets. These differences make it very difficult to compare the explanations

obtained in the two problems. To work around this problem, an adjustment of the

assigned names was performed.

Table 4.3 shows the identified features and the ones that could not be found

(question mark). As can be seen, it was impossible to identify most of the features

in the datasets. This is a huge hindrance to the analysis of the results obtained in

this work since it is impossible to analyse in detail the explanations obtained and

the influence of all features on the prediction.
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Table 4.3: Identified features in the RK and FK datasets.

Feature RK Datasets FK Datasets

F1 Gender Gender

F2 MRI and liquor* MRI and liquor*

F3 MRI and liquor* MRI and liquor*

F4 MRI and liquor* MRI and liquor*

F5 MRI and liquor* MRI and liquor*

F6 EDSS EDSS

F7 — MRI and liquor**

F8 — MRI and liquor**

F9 — MRI and liquor**

F10 ? ?

F11 ? ?

F12 ? ?

F13 Pregnancy Pregnancy

F14 ? ?

F15 ? ?

F16 ? ?

F17 ? ?

F18 ? ?

F19 ? ?

* Spinal Cord, Supratentorial, Optic Pathway or Brainstem-Cerebellum

** Status T1, Status T2 or Oligoclonal Banding

4.2 Visited-Oriented approach

In the VO approach, the predictions are made considering a single visit: a

sample with information from an individual clinical record. Several ML models

were trained by varying the classifiers and their parameters. Five supervised classi-

fiers have been used: k -nearest neighbours (KNN), Random Forest (RF), AdaBoost

(AB), and linear and non-linear Support Vector Machines (SVM). In short, in each

iteration, one patient is selected for the testing and evaluation of classifier perfor-

mance. The remaining patients represent the classifier training group. This process,

represented in Figure 4.4, is repeated ten times for all patients, and the final perfor-

mance is given by the average of the results of all runs. This pipeline was repeated

for the best-performing model, but in this case, a step with feature selection methods

was included (dashed block).
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Figure 4.4: ML pipeline used for the VO approach.

Since each patient visit is considered an isolated sample, there are approxi-

mately 4000 samples in the FK datasets, of which 0.8-0.9% are SP samples, and

about 14000 samples in the RK datasets with 1.3-1.5% SP samples. This big differ-

ence in the number of samples for each class reflects the imbalance of the dataset.

4.2.1 Partition and balancing methods

Due to the fact that the problem in the study is extremely imbalanced and,

consequently, so is the dataset, the standard train-validation-test split strategy was

not used. Instead, a Cross-Validation (CV) procedure was implemented. In the

traditional CV approach, the entire dataset is partitioned in k folds, and k -1 folds

are used to train, and the left one is used for the test. However, this methodology

was not the most reliable in the problem in the study since the model could recognize

the patient from some specific features. Thus, a Leave One Group Out (LOGO) CV

procedure has been implemented. In this case, k is the number of patients, and in

each iteration, all visit records of a single patient compose the test group, and the

remaining patients constitute the training group. As a result, in each iteration, the

model is tested on a patient who is completely new to the model. After splitting
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the data into train and test sets, the train set was standardised using a z-score to

convert the data into a common range. The mean and standard deviation obtained

from the train set were used to transform the test data.

The skew in the class distribution can influence the ML algorithms and make

them ignore the minority class. One approach to address the class imbalance prob-

lem is to randomly resample the training dataset. The used technique was Random

Undersampling which involves randomly selecting examples from the majority class

and deleting them from the training dataset until both classes have the same number

of samples.

To reduce the variance of the algorithms, the ensemble Bootstrap aggregation

(Bagging) procedure was also implemented. This technique makes predictions more

accurate by combining the predictions from B ML algorithms. The hyperparameters

used were the default ones, which means that the number of base estimators was

B=10. As shown in Figure 4.5, the B classifiers were trained on different partitions

of the training data, and the combination of all the predictions defines the final

prediction for the input vector.

Figure 4.5: Schematic of the LOGO resampling method followed by the Bagging
method.
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4.2.2 Feature Selection

Although Seccia et al. [1] did not report the application of feature selection

methods, after analysing the results obtained through a methodology similar to

his, it was decided to test these methods and analyse their impact on the results.

Therefore, feature selection methods were applied only to the best-performing model

of each dataset. This choice resulted from the high computational and temporal cost

associated with their application to a large number of approaches and classifiers

developed so far.

This step allowed the selection of a subset that increases the generalisation

ability and maximises the model performance. Moreover, the explainability of the

developed models is increased by only considering the most relevant features for

the prediction problem [126]. The lower the number of features, the easier it is to

interpret the model [14]. The two feature selection methods applied were Pearson

correlation and Least Absolute Shrinkage and Selection Operator (LASSO) regres-

sion.

Pearson’s correlation method is a simple and fast filter method that calculates

the correlation between each feature and the output [64]. Thus, the 3, 5 and 10

features with the highest correlation values were selected. On the other hand, the

LASSO regression method is computationally more expensive. It has a regularisation

process that penalises the weight of various features, reducing it to zero in some

cases. Features whose weight differs from zero are selected, while the remaining

ones are eliminated. In this process, the tuning parameter λ controls the influence

of the penalty, and the higher its value, the greater the regularisation action, i.e.,

the more features are eliminated [126]. The value of the tuning parameter λ was set

to 0.001, 0.003 and 0.005.

4.2.3 Classifiers and hyperparameter optimisation

Several classifiers were tested to evaluate the results using different approaches

and the model performance for different approaches. Therefore, it is possible to

analyse whether the model is good regardless of the classifier. The ML models

considered were: KNN, RF, AB, and linear and non-linear SVM.

The grid-search technique was used to identify the optimal hyperparameters

for each model from a range of values. The performance metrics of the model

were calculated, and the main performance indicator for choosing the best set of

hyperparameters was the F1-score. This choice is motivated by the fact that this

metric provides important information about the model, giving the balance between
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precision and recall, as explained in detail previously in Section 2.2.3.

Figure 4.6: Selection process of the best training parameters.

The first classifier used was KNN, where a range of 1:2:20 values was tested for

k. In the case of a RF classifier, hyperparameters include the number of decision

trees and the maximum depth of each tree. It used the following number of trees

and the maximum depth: {1, 2, 5, 10, 15} and {1, 2, 5, 10, 15, 30}, respectively.

The AB method builds a robust classifier by combining multiple poorly performing

classifiers, and, to determine the number of estimators, the model was trained with

the following values: {1, 3, 5, 10, 15, 30, 50, 100}. Finally, we tested the same

strategy with linear and non-linear SVMs. The first one tested the regularisation

parameter C with different orders of magnitude from 10−5 to 104. The maximum

number of iterations within the solver was also changed to 500000. The default is

-1, which means there is no limit, and, in this problem, it increases the runtime

significantly. In the case of the non-linear SVM, the parameters C and Gamma

influence the decision boundary, and both were changed from 10−5 to 104.

All of these methodologies were repeated ten times, and, to speed-up the grid-

search, only half of the experimental data was considered. That is, at each iteration,

a subset with 50% of the data was randomly selected, keeping the class ratio of the

original dataset. The mean of the performance metrics was calculated, and the

chosen parameters were the ones that led to the highest value of the F1-score.
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4.3 History-Oriented approach

In the HO approach, each sample of the training dataset is a sequence of con-

secutive visits of one patient, where each patient is considered a time series. Thus,

the number of samples is the number of patients and not the total number of visits

present in the dataset, i.e., it is about 500 patients in the FK datasets and 1500

patients in the RK datasets. The percentage of SP patients is the same as the pre-

vious approach, i.e., 0.8-0.9% and 1.3-1.5% for the datasets obtained by the FK and

RK approaches, respectively.

Classifiers were trained to predict if patients will shift from the initial RR to

the SP form, namely a NN that combined LSTM and Feed-Forward Neural Network

(FFNN) layers. Figure 4.7 illustrates the ML pipeline used for the HO approach.

In short, the data was divided into a test group (30%) and a training group (70%),

keeping in both groups the proportions of patients evolving to SP. The Bagging

algorithm was implemented with the NN, and the final performance was given by

the average of the values obtained in the ten iterations performed.

Figure 4.7: ML pipeline used for the HO approach.
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4.3.1 Partition and balancing methods

Due to the computing cost and time, the LOGO procedure was not applied.

Instead, the data were randomly split into training (70%) and testing (30%) sets

over ten iterations (n = 10), with the class ratios preserved. Like in the previous

approach, the data was standardised with the z-score metric, following the same

methodology.

In this approach, the Bagging algorithm was also implemented, with ten boot-

strap samples (default, B=10), to increase the stability of the model. The applica-

tion of this algorithm in models with NN reduces forecast errors and their variation

and improves short-term prediction [127].

4.3.2 Feature Selection

The feature selection process applied was the same as in the previous approach

(Section 4.2.2), i.e., the Pearson correlation and the LASSO regression methods were

used in the best model obtained for each problem. The same values were also chosen

for the number of features selected (3, 5 and 10) and for the tuning parameter λ

(0.001, 0.003 and 0.005), respectively.

4.3.3 Neural Network

The proposed NN architecture is a combination of LSTM and FFNN layers.

LSTM is a form of Recurrent Neural Network (RNN) characterised by the ability

to learn long-term dependencies. In addition, this network has complex layers that

include feedback connections that regulate the flow of information, making these

networks a proper model for time series prediction [128]. FFNN, on the other

hand, has no feedback from the neurons’ outputs to the inputs; that is, it has a

unidirectional movement of information [129].

The proposed network can learn from the data of a time series with information

collected in routine visits of MS patients. This patient’s medical history constitutes

an abundant source of knowledge with a lot of potential in classifying the evolution

of MS [1].

Table 4.4 presents the different architectures and hyperparameters explored.

Due to the computational cost associated with grid-search, the hyperparameters

optimisation was done through the manual search approach, i.e., different combi-

nations of hyperparameters were tested, as well as single-layer and stacked LSTM

models. For each prediction problem, i.e., for each dataset used, the model leading
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to the best performance was selected. As with the previous approach, this selection

was based on the value obtained for the F1-score metric.

Table 4.4: The tested NN architectures.

Model NN Layers No. of cells Dropout Function

Masking 1 — —

LSTM 3 0.2 —Model 1

Dense 1 — Sigmoid

Masking 1 — —

LSTM 6 0.2 —Model 2

Dense 1 — Sigmoid

Masking 1 — —

LSTM 8 0.2 —Model 3

Dense 1 — Sigmoid

Masking 1 — —

LSTM 10 0.2 —Model 4

Dense 1 — Sigmoid

Masking 1 — —

LSTM 10 0.2 —

LSTM 5 0.2 —
Model 5

Dense 1 — Sigmoid

Masking 1 — —

LSTM 20 0.2 —

LSTM 10 0.2 —
Model 6

Dense 1 — Sigmoid

To work with a LSTM network, the input sequences must have a fixed length.

In this case, the length of the sequences is variable since there are patients with

different numbers of visits. All samples were padded to the same length, which

was defined as the maximum number of visits among all patients multiplied by the

number of features. Then, a Masking layer was applied before the first LSTM layer

to ignore these padded elements, as shown in Figure 4.8.

The dropout regularisation was applied to the LSTM layers to avoid the risk of

overfitting and to improve model performance [130]. This method temporarily and

randomly eliminates certain neurons during training to ensure they do not influence

forward propagation. The proportion of neurons to be dropped out was defined as

p = 0.2.

The network ends with a FFNN to make predictions. It uses the sigmoid

activation function that produces a probability output from 0 to 1 that can be

converted to class values using a threshold of 0.5. If the probability is lower than
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0.5, then the output is 0; if the probability is equal to or higher than 0.5, then the

output is 1.

Figure 4.8: Architecture of the LSTM model.

The optimisation algorithm and the loss function significantly impact the pro-

duction of optimal and fast results. The optimiser chosen was Adaptive Moment

Estimation (ADAM) since it achieves good results fast, and it is considered the opti-

miser that performs the best on average [131]. The loss function applied was Binary

Cross-entropy because it is the default loss function to use in binary classification

tasks [132].

4.3.4 Input shape

Two input types were used, whose transformation is illustrated in Figure 4.9.

In the first approach, the network is trained with the time series of each patient,

and each record in the time series has information only from one visit. On the other

hand, in the second approach, the data were transformed so that each record is

considered together with all previous records. The pre-padding method was used to

have all the samples of the same size since it is more efficient than post-padding in

the case of LSTM [133].

These two approaches allowed exploring different ways of training LSTM net-

works. As mentioned before, LSTMs can store information and learn the long-term

dependencies between the different time steps of the sequence data. This network

processes the data from one sequence at a time and updates the state of the network

so that it contains the information from all previous time steps [134]. Thus, for input

1, the information from each time step of the time sequence is presented separately.

In input 2, in addition to the new information, the information of previous time

steps already seen by the network is presented again.
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Figure 4.9: Schematic of the input transformation for two patients (P1 and P2).

Furthermore, it is important to note that it was necessary to prepare the data for

the LSTM network since the input to the LSTM layer must have three dimensions:

samples, time steps, and features.

4.4 Explainability methods

The methods used were global and local model-agnostic interpretation methods,

which stand out for their flexibility, as shown in Figure 4.10. Global methods aim

to explain how the model makes predictions as a whole, while local methods aim to

clarify how individual predictions are made [14].

Figure 4.10: Explainability methods applied.

Thus, several explainability methods were implemented in the best-performing
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models created through the methodology described in the previous section that

include the feature selection step. To implement these methods, the Python libraries

Scikit-learn and Lime were used.

4.4.1 Global explanations

As mentioned earlier, global methods give general explanations of the model’s

behaviour and help to understand the logic of its results relying on features. This

logic is closely related to the input data. Therefore, it is important to understand

how the features contribute to the way the model makes its predictions and whether

there is consistency in this learning process across different datasets [135].

To achieve this goal, four methods were applied: the determination of feature

recurrence, the calculation of Permutation Feature Importance (PFI), and the vi-

sualisation of Individual Conditional Expectations (ICEs) for single features and

Partial Dependence Plots (PDPs) for single features and pairs of features. For the

use of these methods, in each problem, the best model was selected from all the mod-

els generated in the ten iterations, except for the feature recurrence determination

in which all iterations were considered.

Initially, the recurrence of each of the selected features in the multiple models

obtained throughout the CV over the ten iterations was determined. This step was

performed to analyse which set of features stands out. The results were plotted in

a histogram with the frequency of each selected feature.

The second method applied was PFI. This method measures the importance of

each feature by analysing the reduction in model performance after its permutation,

that is, after replacing the values of that feature with random noise [14]. Once

again, the metric chosen to evaluate the model’s performance was the F1-score, so

the performance reduction is given by the difference between the F1-score achieved

with the original feature and the F1-score achieved with the permuted feature. This

procedure was repeated twenty times, and the result returned is the average value of

the importance of each input feature. The higher this value is, the more important

the feature is. However, it is important to note that the importance obtained through

this method reflects the importance of each feature to the specific model and not

the intrinsic predictive value of the feature itself [136].

Finally, to visualise the dependency relationship between one or more features

and the prediction result, ICE plots and PDPs were produced using the PartialDe-

pendenceDisplay function. These plots were developed for the features and feature

pairs with the highest importance values in the previous method.
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4.4.2 Local explanations

Sometimes the global representation of model behaviour does not reflect the

best local behaviour in the prediction process. Thus, analysing a single instance can

lead to clearer, and more accurate explanations than global explanations [14, 137].

Furthermore, it is possible to analyse specific instances of correct and incorrect

classifications.

Regarding local methods, the Local Interpretable Model-Agnostic Explanations

(LIME) method was used to create specific explanations for the most representa-

tive samples and for well- and misclassified samples. The explanatory model was

created using the LimeTabularExplainer function with the ML model and training

data. This model was applied to samples from the test set to obtain the local expla-

nations. Note also that the optimisation of the kernel parameter, which significantly

influences the results, was not performed; instead, the default value was used. This

decision was made because the lack of knowledge about the features’ meaning makes

it impossible to analyse whether the explanations make sense.

The Submodular Pick-LIME (SP-LIME) algorithm was used to identify the

most representative samples. This algorithm proposed by Ribeiro et al. [138] com-

bines local explanations to explain the model globally. The SP-LIME algorithm

selects through a greedy approach a data set whose explanations (generated by

LIME) are non-redundant and representative of the global characteristics of the

model [138]. The results were visualised through a graph and table generated by

the function. The number of selected instances and the number of explanations

generated were set to 50 and 3, respectively.

The selection of correctly classified and misclassified samples followed the struc-

ture illustrated in Figure 4.11. This step aims to understand in more detail the be-

haviour of the models in both cases since, in the medical field, it is very important

to understand the reasons why the model misclassifies a given sample.
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Figure 4.11: Process of selecting representative data points and applying the
LIME method.

To select these samples, the test dataset was first divided into points correctly

classified as progress to the SP course (class 1), points correctly classified as RR

(class 0), and misclassifications.

In the VO scenario, Agglomerative clustering was applied to each of these

groups. It is a bottom-up hierarchical clustering strategy in which each observa-

tion starts in its own cluster, and the two clusters with the smallest distance are

recursively merged until a satisfactory final cluster is produced [139]. This step was

applied to create three clusters based on the similarity between the points using

Euclidean distance to compare them. In each cluster, a point was randomly selected

to generate an explanation. The results are displayed in a graph and table as in the

SP-LIME method.

On the other hand, in the HO scenario, it was impossible to apply clustering

techniques because the NN input has a 3D shape. In this case, the three samples

were randomly selected within each group.
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Results

This chapter presents the results obtained by the methodology described in the

previous chapter. In Section 5.1, the results of the different classifiers in the Visited-

Oriented (VO) and History-Oriented (HO) approaches are presented. Subsequently,

in Section 5.2, the explanations produced by the different methods for the prediction

models are shown.

5.1 Classification

This section presents the classification results obtained in Secondary Progres-

sive (SP) prediction at 180, 360 and 720 days for the six datasets. It starts by

presenting the results obtained for the k -nearest neighbours (KNN), Random Forest

(RF), AdaBoost (AB), and linear and non-linear Support Vector Machines (SVM)

classifiers in the VO approach (section 5.1.1). Then, section 5.1.2 shows the results

of the HO approach using Long Short-Term Memory (LSTM) models.

The initial phase of the work aimed to replicate the study presented by Seccia

et al. [1] and was followed by efforts to improve the performance and explainability

of the models. Regarding the performance of the models, the best results for each

of the problems are in bold.

5.1.1 Visited-Oriented approach

The methodology described in the previous chapter was applied to the six

datasets. Initially, the grid-search procedure was performed to select the train-

ing parameters for each one of the classifiers. This grid-search selection was based

on the F1-score metric. All the chosen hyperparameters for the different classifiers

in the six datasets are shown in Table 5.1. The results of the multiple classifiers

with the optimal hyperparameter set are presented in Table 5.2.
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Table 5.1: Optimal hyperparameters found for each classifier that produce the
best value for the F1-score metric.

FK 180 FK 360 FK 720 RK 180 RK 360 RK 720

KNN K neighbors 17 19 19 19 17 19

AB No of estimators 5 3 1 10 15 15

No of trees 50 10 50 10 50 15
RF

Tree depth 2 2 1 5 1 2

Linear

SVM
C 0.01 0.01 0.01 0.001 0.001 0.001

C 10 100 100 1 1 1Non-linear

SVM Gamma 0.0001 0.0001 0.0001 0.001 0.001 0.001

Table 5.2: Results of the performance obtained for the classification problem in
the VO approach.

Feature-keeping (FK) Record-keeping (RK)
Classifier

Accuracy Precision Recall Specificity F1-score Accuracy Precision Recall Specificity F1-score

180 days

KNN 90,266 5,126 61,111 90,510 9,457 88,959 8,73 73,575 89,175 15,607

AB 82,381 4,279 94,444 82,28 8,188 81,409 6,313 89,614 81,293 11,796

RF 82,277 4,212 93,333 82,184 8,061 82,417 6,627 89,179 82,322 12,338

Linear

SVM
89,591 5,344 68,889 89,765 9,917 96,165 17,835 48,744 96,832 26,102

Non-linear

SVM
87,492 4,994 77,778 87,573 9,384 87,708 8,77 83,575 87,766 15,873

360 days

KNN 88,786 4,523 58,108 89,059 8,39 89,697 9,272 69,227 89,999 16,352

AB 80,873 3,92 88,108 80,809 7,506 79,673 5,961 87,826 79,552 11,163

RF 81,547 3,882 83,784 81,527 7,419 82,83 6,45 80 82,872 11,937

Linear

SVM
90,074 5,341 61,351 90,329 9,827 97,005 23,153 45,507 97,765 30,675

Non-linear

SVM
86,594 4,283 66,486 86,773 8,046 93,465 13,436 64,203 93,896 22,221

720 days

KNN 91,545 5,814 52,162 91,92 10,458 90,831 10,940 67,681 91,210 18,834

AB 81,991 3,949 77,568 82,033 7,516 80,253 6,451 85,7 80,166 11,999

RF 82,432 3,697 70,27 82,548 7,024 85,011 7,678 77,44 85,132 13,97

Linear

SVM
91,326 6,061 56,216 91,66 10,939 97,327 28,625 46,86 98,132 35,529

Non-linear

SVM
87 4,638 65,135 87,208 8,657 94,048 15,704 63,816 94,531 25,204

As can be seen in Table 5.2, the KNN and linear and non-linear SVM classifiers

achieved the best performance. Although recall assumes relatively good values, the

results obtained for the F1-score metric were quite low due to low precision, which

is lower in the Feature-keeping (FK) approach.

The best results were achieved using the linear SVM classifier in all approaches

and time windows. This classifier leads to lower recall values than the others, but

the overall F1-score achieves the highest values since it balances precision and recall.
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The feature selection process was then applied to the Machine Learning (ML)

models with the linear SVM classifier. Table 5.3 shows the best results achieved for

each problem, and the remaining results can be found in Appendix A.1.

Table 5.3: Results of the best performance obtained for the linear SVM classifier
with the feature selection step in the VO approach.

Days
Feature selection

method
Accuracy Precision Recall Specificity F1-score

Feature-keeping (FK)

180
LASSO regression

λ = 0,005
91,885 6,735 68,056 92,084 12,256

360
Pearson correlation

n = 5
93,137 6,99 55,135 93,474 12,402

720
Pearson correlation

n = 5
93,979 8,769 57,027 94,331 15,195

Record-keeping (RK)

180
LASSO regression

λ = 0,003
96,955 21,15 43,671 97,705 28,487

360
LASSO regression

λ = 0,005
97,583 27,931 41,884 98,404 33,506

720
LASSO regression

λ = 0,005
97,754 33,333 42,85 98,63 37,486

Comparing the results obtained with and without the feature selection step, it

can be observed that, overall, the F1-score value increases slightly when only the

most relevant features are considered. This increase is a result of the improvement

in the precision value.

On the other hand, when comparing the results between the FK and Record-

keeping (RK) datasets, it is noticed that the values of all metrics except recall are

higher for the RK dataset. This difference is most noticeable in precision and means

that increasing the number of samples leads to a decrease in the number of patients

misclassified as SP (False Positives (FP)). Contrarily, the recall value is lower in

the RK data. In this case, there is a higher number of False Negatives (FN), i.e.,

cases where a patient who will transition to the SP phase is classified in the Relapse

Remitting (RR) phase. A higher number of samples improves the classification of

RR status but worsens the identification of patients who will progress to the SP

stage in a given time window.

By analysing the performance results for the different time windows, it is ob-

served that the F1-score increases with the increase of the time window. Focusing on

the precision and recall values, it is observed that the recall value decreased with the

increase of the time window while the precision value increased. These results make
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sense because the larger the temporal window, the more difficult it is to predict the

evolution to the SP course.

5.1.2 History-Oriented approach

Two types of inputs were applied to each of the Neural Network (NN) archi-

tectures tested, as stated in Section 4.3.4. All the results of the different neuronal

network architectures can be found in sections A.2.1 and A.2.2 of the Appendix.

The results obtained for input strategy 2 were significantly better. Thus, the NN

architecture choice was based on the model results for this approach.

The details of the chosen models are listed in Table 5.4. Table 5.5 has the

performance results achieved using the selected architectures for the two types of

input data structures employed.

Table 5.4: Architecture and optimal hyperparameters for the NNs that produce
the best value for the F1-score metric.

Dataset Model
Details

Layers No. of cells Dropout Funtion

Masking 1 — —

LSTM 10 0.2 —FK 180 Model 4

Dense 1 — Sigmoid

FK 360 Model 6

Masking 1 — —

LSTM 20 0.2 —

LSTM 10 0.2 —

Dense 1 — Sigmoid

Masking 1 — —

LSTM 8 0.2 —FK 720 Model 3

Dense 1 — Sigmoid

RK 180 Model 2

Masking 1 — —

LSTM 6 0.2 —

Dense 1 — Sigmoid

Masking 1 — —

LSTM 10 0.2 —RK 360 Model 4

Dense 1 — Sigmoid

RK 720 Model 4

Masking 1 — —

LSTM 10 0.2 —

Dense 1 — Sigmoid
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Table 5.5: Results of the performance obtained for the classification problem in
the HO approach.

Input strategy 1 Input strategy 2
Days

Accuracy Precision Recall Specificity F1-score Accuracy Precision Recall Specificity F1-score

Feature-keeping (FK)

180 97,465 10,589 20,909 98,12 12,497 94,243 32,371 17,57 98,143 22,019

360 64,584 2,301 82,5 64,41 4,472 95,325 63,744 34,777 98,671 43,623

720 98,016 16,926 19,167 98,808 17,178 92,89 43,512 29,218 97,332 34,312

Record-keeping (RK)

180 91,596 10,507 64,921 91,975 18,035 96,491 87,087 66,153 99,113 74,655

360 90,851 10,067 64,603 91,24 17,376 96,066 82,646 69,685 98,588 75,461

720 87,864 9,288 71,905 88,127 16,39 95,345 83,086 67,543 98,448 74,399

The results show that by considering each patient’s records as a time series, it

becomes very advantageous to add the information from each record to the infor-

mation from previous records. Therefore, the feature selection step was applied to

the models with input strategy 2, and the best results are shown in Table 5.6. The

remaining results are presented in sections A.2.3 and A.2.4 of the Appendix.

Table 5.6: Results of the best performance obtained with the feature selection
step in the HO approach.

Days
Feature selection

method
Accuracy Precision Recall Specificity F1-score

Feature-keeping (FK)

180
LASSO regression

λ = 0,005
95,397 56,402 35,705 98,407 41,596

360
LASSO regression

λ = 0,005
95,458 70,103 40,007 98,844 49,330

720
LASSO regression

λ = 0,005
93,510 48,021 43,539 96,805 45,040

Record-keeping (RK)

180
LASSO regression

λ = 0,001
95,967 84,869 62,414 98,982 71,574

360
LASSO regression

λ = 0,003
96,383 86,242 70,678 98,888 77,332

720
LASSO regression

λ = 0,003
95,862 86,492 70,011 98,748 77,105

The performances presented in Tables 5.5 and 5.6 reflect the ability of NNs

to learn and model complex relationships and generalise. In this approach, the

performances were much better in all the considered problems, reaching a F1-score

higher than 70% in the three RK datasets. The significant difference in the precision

and F1-score values between the RK and FK datasets reinforces the need for a high

number of samples. Moreover, in both data types, the performance obtained in the
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three time windows is very similar, although it is slightly worse in the shorter time

window (180 days).

5.2 Produced explanations

This section presents the global and local explanations produced for the best

model of each problem from the different approaches mentioned in the previous

section. This part of the work aims to interpret the models created to understand

the behaviour of the models, which features it relies on the most, and how each

feature affects the final decision.

5.2.1 Visited-Oriented approach

5.2.1.1 Global explanations

The models’ behaviour analysis began by determining each feature’s recurrence

in the different iterations, i.e., the number of times a feature was selected for the

classifier input.

The same sets of features were selected in all iterations of each problem, and

these sets are listed in Table 5.7. Features F6, F11 and F12 are selected in all

models. On the other hand, features F8 and F9 have a strong presence in the FK

approach, while in the RK approach, features F10 and F11 are always selected.

Table 5.7: Selected features of each dataset in the VO approach.

Days
Dataset

Feature-keeping (FK) Record-keeping (RK)

180 F6, F11, F12 F6, F10, F11, F12

360 F6, F8, F9, F11, F12 F6, F10, F11, F12

720 F6, F8, F9, F11, F12 F6, F10, F11, F12

It is important to remind that feature F6 corresponds to the Expanded disability

status scale (EDSS) value and features F8 and F9 are Magnetic Resonance Imaging

(MRI) and liquor features and are not present in the RK datasets. Also, the meaning

of features F10, F11 and F12 is unknown. It is only known that they can be

features with clinical information or information about the treatment drugs, but

these concepts are quite distinct.
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Figure 5.1: PFI for the best model of the FK (top) and RK (bottom) problems
of the VO approach.

The next step in the interpretation process was calculating the Permutation

Feature Importance (PFI) for each problem. Figure 5.1 shows the average values

of permutation importance for each feature and their standard deviation. The in-

terpretation of the displayed graphs is quite simple. A feature is more important

the higher its calculated importance value is. In these cases, the features with the

highest importance values are features F6, F11 and F12.

Some features have negative importance values, which means that in these cases,

the F1-Score values obtained with the noisy data were higher than those obtained

with the original data. In these cases, it can be considered that the importance of

the feature is approximately zero.

The high standard deviation illustrated confirms the randomness associated

with the importance calculation in the multiple iterations. The high variability

causes more uncertainty in the analysis of the results and, consequently, in the

conclusions drawn. Furthermore, this randomness can result in the creation of un-

realistic permutation samples that significantly impact the results [14].

Despite these limitations, this algorithm shows how features contribute to the

prediction in a simple and understandable way. Another major advantage is the

ability to consider the interactions between features when determining importance.
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Figure 5.2: PDP (green) and ICE (blue) plots for the most important features of
the FK 360 (top) and RK 360 (bottom) problems of the VO approach.

Next, Partial Dependence Plots (PDPs) and Individual Conditional Expecta-

tion (ICE) graphs were plotted to understand the marginal effect of the most im-

portant features (F6, F11, and F12) on the classification result. The dependency

relationship between the target response and the different features is very similar in

the three time windows of each data type, so only one example of each approach is

presented. Figure 5.2 shows the PDPs of the features with the highest importance

for problems FK 360 and RK 360.

The dashed green line shows the average relationship (PDP), while each blue

line (ICE) is the dependence for each sample separately. Since this is a binary

classification problem, the target answer is given as a probability of the positive

class.

Figure 5.2 reveals a positive correlation between the features presented and the

prediction value; that is, the higher its value, the higher the probability of being

classified as a transition to the SP course. In the case of features F11 and F12, it is

clear that there is an almost linear relationship, whose slope is significantly higher

for the RK dataset. In the latter, for values of F11 and F12 greater than 10, the

probability is 1.

There is some heterogeneity in the ICE lines of the different samples. This
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dispersion is most noticeable for features of the RK dataset. For the FK features,

the presence of thicker blue lines indicates that the behaviour of the different samples

is very similar between them. Overall, the behaviour and the relationship with the

target response are similar to that of PDP.

Figure 5.3: PDPs for pairs of most important features of the FK 360 (top) and
RK 360 (bottom) problems of the VO approach.

Figure 5.3 shows the PDPs for the feature pairs with the highest importance

and represents how the two features interact for the final prediction. The interaction

between the two features has a positive linear influence on the prediction since the

higher both values are, the higher the probability.

In the RK dataset, the PDPs show the strong influence of features F11 and

F12 in predicting the transition to the SP course. For values higher than ten, the

classification is practically independent of F6.

The analysis of PDPs is intuitive and quickly understandable. It is possible to

analyse the effect of a given feature on the predicted outcome, compare the behaviour

of different models and evaluate their consistency. Comparing the representation of

the impact of features on the target outcome to current clinical knowledge helps to

determine whether the behaviour of features is the expected one. In addition, the

inclusion of ICE curves allows the exposure of heterogeneous relationships [14].
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The biggest problem of these methods is the independence assumption, that is,

the assumption that features are not correlated with others in the partial dependency

calculation. If this is not the case, the dependency points created may be invalid.

Furthermore, it is impossible to interpret the partial dependency between more than

two features [14].

5.2.1.2 Local explanations

The results obtained for the global methods presented earlier helped to get

an idea of the overall behaviour of the models. The Submodular Pick-LIME (SP-

LIME) algorithm was used to select the three most relevant instances of each problem

and generate the Local Interpretable Model-Agnostic Explanations (LIME) expla-

nations.

The work was developed with six different datasets that have a high amount of

samples with redundant information. Only the explanations for problems FK 720

and RK 720 will be presented since they showed the best classification results in

each data type (Table 5.3).

Figures 5.4 and 5.5 show the sets of explanations chosen by the SP-LIME for

both problems FK 720 and RK 720. The bar charts explain the reason for the

classification, representing the weight of each feature in the result; the higher its

value, the longer the bar. Positive weights (green) indicate that the features promote

the evolution to the SP course (class 1), while negative weights (red) mean that the

features influenced the prognosis for the Multiple Sclerosis (MS) RR course (class

0).

Explanations a) and b) of Figures 5.4 and 5.5 show extreme cases in which the

model is 100% confident that the classes are 0 and 1, respectively. In these cases, the

features that contributed most to increasing the probability of the predicted class

were F6, F11, and F12. In problem FK 720, it is observed that features F8 and

F9 did not influence the model prediction in any of the three cases. Contrarily, in

problem RK 720, overall, all features somehow influence the prediction probability.

In the case of Figure 5.5c, features F11 and F12 contributed to the prediction being

class 0, although the remaining features voted for class 1.
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(a) Prediction probability: 100%
Class 0.

(b) Prediction probability: 100%
Class 1.

(c) Prediction probability: 90%
Class 0.

Figure 5.4: LIME explanations generated by the SP-LIME method with the best
model from the FK 720 problem of the VO approach.

(a) Prediction probability: 100%
Class 0.

(b) Prediction probability: 100%
Class 1.

(c) Prediction probability: 80%
Class 0.

Figure 5.5: LIME explanations generated by the SP-LIME method with the best
model from the RK 720 problem of the VO approach.
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First, for the FK 720 problem (Figure 5.6), it can be seen that values of F11

and F12 less than -0.11 strongly support the prediction of the samples as being class

0, and conversely, for higher values, these features weigh on the classification of class

1. Misclassifications are based on the dominance of these features. In these cases,

although feature F6 supports the prediction of the sample for the correct class, it is

not as dominant as the other features. Furthermore, it is observed that feature F9

does not influence the prediction.

Similar situations are observed in problem RK 720 (Figure 5.7); that is, the

weights assigned to features F11 and F12 underlie the outcome of the classifications,

and feature F6 always supports the correct class. In this case, feature F10 supports

the classification very little.

(a) Sample correctly classified as 0.
Prediction probability: 70% Class 0.

(b) Sample correctly classified as 1.
Prediction probability: 100% Class 1.

(c) Misclassified sample. Prediction
probability: 60% Class 0.

(d) Misclassified sample. Prediction
probability: 90% Class 1.

Figure 5.6: LIME explanations for examples of the three classification groups
from the best model of the FK 720 problem of the VO approach.
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(a) Sample correctly classified as 0.
Prediction probability: 100% Class 0.

(b) Sample correctly classified as 1.
Prediction probability: 100% Class 1.

(c) Misclassified sample. Prediction
probability: 85% Class 0.

(d) Misclassified sample. Prediction
probability: 90% Class 1.

Figure 5.7: LIME explanations for examples of the three classification groups
from the best model of the RK 720 problem of the VO approach.

These local explanations produced are simple and do not influence model per-

formance. Thus, through LIME explanations, the clinician can analyse model be-

haviour and understand the local impact of a particular feature when the others are

in a specific range.

In this case, from the instances selected for analysis, it is possible to understand

the behaviour of the best models of the RK 720 and FK 720 problems and to see

that the samples with higher values of F6, F11, and F12 tend to be classified as

cases that will evolve to SP in the 720-day time window.

However, it is important to note that even though LIME helps increase the

explainability of the model, it is still a developing method with several limitations.

The main obstacles are the instability of the explanations and the difficulty of the

method in defining the local neighbourhood of the selected sample [14, 140]. In

addition, improvements in the user experience are needed. An example of a problem

is the incomplete explanation of the relationship between the prediction probability

and the feature probabilities graph presented [140].
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5.2.2 History-Oriented approach

5.2.2.1 Global explanations

In the HO approach, the same methodology was followed as in the previous

approach. Initially, the recurrence of each feature over the ten runs in the different

problems was determined. In this case, the selected features differ between itera-

tions, and their frequency is illustrated in Figure 5.8.

Figure 5.8: Feature recurrence for each problem of the HO approach.

As with the VO approach, the variable recurrence results show that the feature

sets [F6, F11, F12] and [F6, F10, F11, F12] are the most recurrent in the FK and RK

datasets, respectively. The best models were obtained with the feature sets present

in Table 5.8 and will be the ones used to generate the remaining explanations.

Table 5.8: Selected features of each dataset in the HO approach.

Days
Dataset

Feature-keeping (FK) Record-keeping (RK)

180 F6, F11, F12 F6, F10, F11, F12, F15, F18

360 F6, F11, F12 F6, F10, F11, F12

720 F6, F11, F12 F6, F10, F11, F12, F15

It is observed that the features F6, F11, and F12 are always selected in the

best models. As mentioned earlier, feature F6 is the EDSS value, and the exact

meaning of features F10, F11, F12, F15, and F18 is not known; these could be

clinical information or information about drug therapies.
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Figure 5.9: PFI for the best model of the FK (top) and RK (bottom) problems
of the HO approach.

Figure 5.9 shows the permutation importance of the features used in the best

models and the associated uncertainty. Again, the presence of features F6, F11, and

F12 stands out, and for the RK datasets, these three features have higher importance

values than the others. In this approach, the feature with the highest uncertainty

is F6.

Figure 5.10: PDP (green) and ICE (blue) plots for the most important features
of the FK 360 (top) and RK 360 (bottom) problems of the HO approach.
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The PDPs and ICEs were then plotted for the different problems. Figure 5.10

shows the plots for the features with the highest permutation importance for the FK

360 and FK 360 problems. The relationship between feature value and dependency

is similar in both problems and across features. However, for the RK datasets, there

is a bigger dispersion of the ICE lines from the different samples. When observing

the PDP, it becomes evident that high sample values generally indicate progression

to the SP state.

Figure 5.11: PDPs for pairs of most important features of the FK 360 (top) and
RK 360 (bottom) problems of the HO approach.

In the plots of Figure 5.11, it can be seen that the first values are able to

influence the prediction result, and changing the values in a later step no longer

changes the model’s confidence.

5.2.2.2 Local explanations

The local explanations presented in this section are related to the problems with

the best classification results, which correspond to the 360-day time window. In this

step, the three most relevant instances were selected, and their explanations were

generated using the SP-LIME algorithm to show how the model behaves globally.

The top ten features used in each explanation are shown in Figures 5.12 and
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5.13. In the HO approach, each sample corresponds to a time series with the visits

of one patient. Thus, each explanation presented considers the history of a selected

patient. It can be seen that, in the different explanations, a diverse set of visits from

the time series is chosen.

(a) Prediction probability: 68%
Class 1.

(b) Prediction probability: 57%
Class 0.

(c) Prediction probability: 62%
Class 0.

Figure 5.12: LIME explanations generated by the SP-LIME method with the
best model from the FK 360 problem of the HO approach.

In problem FK 360 (Figure 5.12), the main common features of the three expla-

nations are the values of F6, F11, and F12 from the last two visits (t-0 and t-1). In

general, data of up to seven visits are considered. This shows that the most recent

values have a greater impact on the classification task but the time series analysis

influences the prediction process. Overall, values of F6, F11, and F12 greater than

0.35, -0.11, and -0.12, respectively, support class 1.

In the RK 360 problem (Figure 5.13), the most important features only include

features F11 and F12 at different visits (t-0 to t-6). The impact of these features is

very similar to the one of the previous problem. The values that support class 1 are

F11 > −0.11 and F12 > −0.13.
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(a) Prediction probability: 77%
Class 1.

(b) Prediction probability: 61%
Class 0.

(c) Prediction probability: 70%
Class 0.

Figure 5.13: LIME explanations generated by the SP-LIME method with the
best model from the RK 360 problem of the HO approach.

The second step was the creation of explanations for the specific samples. Re-

garding the selection of correctly and wrongly classified samples, it was not possible

to apply the clustering step since the clustering algorithms of the scikit-learn library

are not compatible with the 3D input data of the model. Thus, the samples were

randomly selected from each classification group (class 1, class 0, and misclassifica-

tions).

Figures 5.14 and 5.15 show the high weight of features F11 and F12 for t-0,

t-1, and t-2. In figures a) and b), the predictions are quite reliable, and practically

all ten features weigh in the classification of the correct class. The model predicts

classes 0 and 1 with relatively high confidence values of approximately 70%, reaching

81% in the explanation 5.14b.

Images 5.14c and 5.14d show situations where the model of the problem FK

360 classified the samples into class 0, but the actual class was 1. It is noticeable

that this misclassification was based on the F11 values of the last three visits and

the F12 value of the last visit. In contrast, the feature F6 supports class 1.

For problem RK 360, the explanation 5.15d shows that the most recent visits

(t-0) voted wrongly for class 1 and the other features contributed to the model

prediction being class 0.
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(a) Sample correctly classified as 0.
Prediction probability: 74% Class 0.

(b) Sample correctly classified as 1.
Prediction probability: 81% Class 1.

(c) Misclassified sample. Prediction
probability: 55% Class 0.

(d) Misclassified sample. Prediction
probability: 63% Class 0.

Figure 5.14: LIME explanations for examples of the three classification groups
from the best model of the FK 360 problem of the HO approach.

(a) Sample correctly classified as 0.
Prediction probability: 68% Class 0.

(b) Sample correctly classified as 1.
Prediction probability: 76% Class 1.

(c) Misclassified sample. Prediction
probability: 58% Class 1.

(d) Misclassified sample. Prediction
probability: 52% Class 1.

Figure 5.15: LIME explanations for examples of the three classification groups
from the best model of the RK 360 problem of the HO approach.
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Discussion

This chapter discusses several points related to the approach used in the exper-

imental procedure and the analysis of the results obtained. Firstly, in section 6.1,

an overview of the dataset is presented. Section 6.2 is focused on the classification

process developed, while section 6.3 concentrates on the explanations produced.

6.1 Dataset description

A significant limitation of this master’s thesis was the dataset used. The small

number of patients and samples per patient and the high number of missing data

in some fields made it impossible to use the Centro Hospitalar e Universitário de

Coimbra (CHUC) dataset in this project, that was previosly used in Pinto et al.

[105], Oliveira et al. [141], and Sousa et al. [125]. The transformation of this

dataset into time windows led to datasets with a reduced number of patients.

Therefore, it was decided to use the datasets provided by Seccia et al. [1].

These datasets have the advantage of having data that is easily collected routinely in

clinical practice and includes results of neurological and imaging examinations. The

use of clinical data acquired in routine visits, representing a real scenario, may lead

to an easier and improved replication of this proposed methodology with datasets

from different clinical centres. However, a big problem with the dataset used was

that the authors removed the feature labels to protect the patients’ privacy. This

action was a significant limitation for the explainability step, discussed later in this

chapter.

The dataset is the pillar of Machine Learning (ML) models, and its preparation

is a crucial step. Different pre-processing approaches can lead to different outcomes.

One of the limitations found in using this dataset is that it is already extremely

preprocessed, and it is not possible to explore different strategies, such as alternative

missing data imputation methods and other prediction time windows.

The pre-processing performed by the authors reduced the problem dimension-
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ality from 200 features to 21 features. Furthermore, as mentioned before, for the

elimination of missing values, the authors considered two strategies: the elimination

of all records with at least one missing value while persevering the features (Feature-

keeping (FK)) and the elimination of features with missing values while keeping all

patient samples (Record-keeping (RK)). Different methods could be addressed in

this step, such as the imputation of missing values using existing data in order to

keep as many samples as possible.

The datasets are significantly imbalanced, which is typical in medical Multiple

Sclerosis (MS) databases. In this case, only approximately 1% of the visits belong

to patients who have developed Secondary Progressive (SP). Although the datasets

have a high number of patients, about 40% of the patients contain less than five

visits, and 13% have information from only one visit. This small number of samples

limits the performance of the classifiers, especially in the History-Oriented (HO)

approach, where a patient’s visits are considered a time series, and the Long Short-

Term Memory (LSTM) Neural Network (NN) needs more data than is available.

Furthermore, although the FK and RK datasets contain information regarding

approximately 500 and 1500 patients, respectively, it is considered a small dataset

for the complexity of this problem since the more complex the relationships, the

more data is required. Thus, in this study, there was always the risk of exhausting

the information present in the datasets used.

6.2 Classification

Since the problem is highly imbalanced, there was a special need to adopt

specific techniques to address this challenge. The data balancing step to equalise

the number of samples of each class in the training group stands out. The Bootstrap

aggregation (Bagging) algorithm assumed a key role in the classification process due

to its impact on improving robustness and reliability in model performance. Several

metrics were also calculated using the confusion matrix to evaluate the performances

and have an overview of the model’s behaviour in different aspects.

The feature selection step not only decreased the training time, whose difference

was most noticeable in the HO approach, but also improved the model performance.

Optimising the feature selection hyperparameters made it possible to find the best

subset of features in each problem.

Regarding the Visited-Oriented (VO) approach, five different classifiers were

used to have a higher degree of confidence and explore the data in-depth. The

selection of the classifiers was based on their properties and performance. The grid-
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search step for each classifier-dataset pair was fundamental to extract the classifier’s

highest capacity and improve the model’s global performance. For all three time

windows (180, 360 and 720 days), the best results were achieved with the linear

Support Vector Machines (SVM) classifier.

The F1-score value is quite low, especially for the FK data, suggesting that the

classifier is misclassifying many patients who will remain in the Relapse Remitting

(RR) stage as progressing to SP. Using this algorithm without medical confirmation

would result in the administration of more aggressive drugs unnecessarily, which

could cause negative effects on patients. However, it is important to emphasize that

the purpose of this ML model is not to make decisions by clinicians in isolation but

to support decision-making and help in complex and challenging situations.

Looking at the HO approach, multiple NN architectures were designed and

tested with the different datasets to bring out the best architecture for each problem

and achieve better classification performance. The simplest tested NN did not learn

the relationship of the data (underfitting), while the more complex ones adapted

too well to the data (overfitting).

As mentioned earlier, a training set was selected to train the model and another

set to test. While in the VO approach, the Leave One Group Out (LOGO) data

partitioning method was used, in the HO approach, the simpler train-test split

strategy was used (70% training and 30% testing). Thus, in each one of the ten

runs, random and different sets of patients were selected for training and testing.

This change was due to the time and computational limitations of applying the

LOGO procedure in NN models and possibly negatively affected the performance of

the LSTM model.

Despite having a small sample of patients that developed the SP course, the

results obtained for the RK approach are quite satisfactory, with a F1-score higher

than 70% in all three-time windows. These results support the choice of this ap-

proach in predicting the transition of the disease to the SP course, from the shortest

time period (half a year), up to about two years. Detecting this transition two years

in advance is very useful to adapt therapies and reverse this evolution, but it may

not be enough since the effects of some therapies are quite slow [1].

Finally, comparing the results of the two different types of datasets (FK and

RK), it is noticeable that it is more important to have a higher number of visits

than the additional features F7, F8, and F9, whose information is about results of

liquor and Magnetic Resonance Imaging (MRI) scans. However, the recall values of

the VO approach show that these imaging data help identify the cases of patients

who will transition to the SP course. These two different pre-processing approaches
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performed by Seccia allowed the evaluation of the behaviour of the models in relation

to the amount of data and features available.

6.2.1 Comparative analysis with other studies

The results obtained can be compared with the performance of the papers

mentioned in Section 3.1.2.3. When comparing our results with Ion-Mărgineanu et

al. [115], who developed a classification model for RR and SP cases using Fisher

Linear Discriminant Analysis (LDA) and SVM-RBF classifiers, our model had a

lower performance in terms of F1-score. Concerning Pinto et al. [105], who predicted

the SP course in patients who appear to have RR MS, the results achieved are better

in terms of F1-score for both approaches with the RK datasets. Nevertheless, it is

important to note that these comparisons are limited since the problem approaches

are quite different, as are the datasets and their time window of analysis.

On the other side, it is possible to make a direct comparison with the study by

Seccia et al. [1] because the work developed in this master thesis was built on this

study and used the same dataset. Tables 6.1 and 6.2 show the results presented by

Seccia on each classification problem.

The short description of the procedures performed made it impossible to exactly

replicate the model developed by Seccia as a starting point. However, the efforts to

replicate this study, and to improve the performance of the models presented, were

successful and resulted in higher F1-score values.

The main performance indicator used by Seccia to choose the best set of hy-

perparameters and evaluate the models was the recall metric. This leads to higher

recall values than those obtained in this work for the VO approach. Differently,

in this project, the key performance indicator chosen was the F1-score metric. As

mentioned before, the F1-score value gives a realistic view of the model’s behaviour,

especially in problems of this type with a highly imbalanced dataset.

In terms of classification, the state-of-the-art was essential for selecting the

classifiers used. In addition to the classifiers used by Seccia et al. [1], different

classifiers that are commonly found in the literature were also tested, namely Logistic

regression (LR), linear SVM, and Decision trees (DTs). It was decided to only

include the linear SVM results in this dissertation since it was the only classifier that

overperformed the others. Besides, it is noteworthy that the linear SVM provided

the best performance results in all datasets.

Focusing on the NN models, the strategy adopted in the shape of the input data

allowed the exploration of a new problem approach that significantly improved the
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results. By looking at each visit in the time series that includes information from

previous visits, the model recalls the previously observed information stored in the

memory cells. However, it is important to note that with this approach, we may be

squeezing as much as possible from the data and the model. The way Seccia worked

out the input data is unclear and this change may be at the root of the observed

differences in performance.

Table 6.1: Comparison between the best performance values of this study and
the study by Seccia et al. [1] for the classification problem in the VO approach.

Study and

Classifier

Feature-keeping (FK) Record-keeping (RK)

Accuracy Precision Recall Specificity F1-score Accuracy Precision Recall Specificity F1-score

180 days

S
ec

ci
a

KNN 72,6 2,4 80,6 72,6 4,7 85,6 7,4 81,2 85,7 13,6

AB 86,1 5,6 100,0 86,0 10,6 85,4 7,9 88,9 85,3 14,5

RF 86,5 5,8 100,0 86,4 10,9 85,1 7,9 90,8 85,0 14,6

Non-linear

SVM
86,4 5,5 94,4 86,4 10,4 87,2 8,6 85,0 87,2 15,6

T
h

is
st

u
d

y

KNN 90,118 5,195 63,056 90,345 9,597 88,959 8,73 73,575 89,175 15,607

AB 82,381 4,279 94,444 82,28 8,188 81,409 6,313 89,614 81,293 11,796

RF 82,277 4,212 93,333 82,184 8,061 82,417 6,627 89,179 82,322 12,338

Linear

SVM
91,885 6,735 68,056 92,084 12,256 96,955 21,15 43,671 97,705 28,487

Non-linear

SVM
87,492 4,994 77,778 87,573 9,384 87,708 8,77 83,575 87,766 15,873

360 days

S
ec

ci
a

KNN 71,2 2,0 67,6 71,2 3,9 85,0 7,1 77,3 85,1 13,0

AB 85,5 4,9 83,8 85,5 9,3 83,6 7,3 88,4 83,5 13,5

RF 87,3 5,9 89,2 87,3 11,1 83,2 7,2 88,4 83,1 13,3

Non-linear

SVM
85,1 4,9 86,5 85,1 9,3 86,6 8,2 80,7 86,7 14,9

T
h

is
st

u
d

y

KNN 88,786 4,523 58,108 89,059 8,39 89,697 9,272 69,227 89,999 16,352

AB 80,873 3,92 88,108 80,809 7,506 79,673 5,961 87,826 79,552 11,163

RF 81,547 3,882 83,784 81,527 7,419 82,83 6,45 80 82,872 11,937

Linear

SVM
93,137 6,99 55,135 93,474 12,402 97,583 27,931 41,884 98,404 33,506

Non-linear

SVM
86,594 4,283 66,486 86,773 8,046 93,465 13,436 64,203 93,896 22,221

720 days

S
ec

ci
a

KNN 75,1 2,4 64,9 75,2 4,6 85,2 7,6 75,8 85,4 13,5

AB 86,9 4,9 70,3 87,1 9,2 85,0 8,3 84,5 85,1 15,1

RF 86,2 5,2 78,4 86,3 9,8 86,2 8,9 84,1 86,2 16,1

Non-linear

SVM
84,8 4,8 81,1 84,8 9,1 87,8 9,3 77,3 87,9 16,6

T
h

is
st

u
d

y

KNN 91,545 5,814 52,162 91,92 10,458 90,719 10,838 67,874 91,084 18,69

AB 81,991 3,949 77,568 82,033 7,516 80,253 6,451 85,7 80,166 11,999

RF 82,432 3,697 70,27 82,548 7,024 85,011 7,678 77,44 85,132 13,97

Linear

SVM
93,979 8,769 57,027 94,331 15,195 97,754 33,333 42,85 98,63 37,486

Non-linear

SVM
87 4,638 65,135 87,208 8,657 94,048 15,704 63,816 94,531 25,204
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Table 6.2: Comparison between the best performance values of this study and
the study by Seccia et al. [1] for the classification problem in the HO approach.

Feature-keeping (FK) Record-keeping (RK)
Days

Accuracy Precision Recall Specificity F1-score Accuracy Precision Recall Specificity F1-score

180 days

Seccia 96,1 10,5 44,4 96,6 16,9 98,0 30,8 38,5 98,8 34,2

This study 95,397 56,402 35,705 98,407 41,596 95,967 84,869 62,414 98,982 71,574

360 days

Seccia 97,0 14,8 40,0 97,6 21,6 97,5 29,5 50,0 98,2 37,1

This study 95,458 70,103 40,007 98,844 49,330 96,383 86,242 70,678 98,888 77,332

720 days

Seccia 97,1 20,7 60,0 97,5 30,8 98,0 42,7 67,3 98,5 52,3

This study 93,510 48,021 43,539 96,805 45,040 95,862 86,492 70,011 98,748 77,105

To conclude this section, it is important to note that, unlike Seccia, the hy-

perparameters of the classifiers and the different NN architectures were adjusted to

each dataset and time window to extract the maximum capacity of the models with

the different data used.

6.3 Explainability methods

The diversity of explainability methods applied made it possible to generate

several explanations that provide information about the relationship between the

data, the model and the outcome. These explanations evaluate different character-

istics of the models and allow the analysis of the consistencies between results and

comparison of the approaches developed. In addition to increasing confidence in

predictive models, in the future, the explanations will make it possible to identify

the safest and most reliable models for clinical application.

6.3.1 Methods and produced explanations

Initially, for each approach (VO and HO), the iteration model with the best

performance of each problem was identified. This choice was made since several

classifiers were studied, and it is impossible to analyse all the models’ explanations.

Thus, the best model allows the analysis of the predictions with greater confidence.

Nevertheless, the conclusions obtained for each model cannot be generalised because

the results change from model to model.

Next, global and local explainability methods that complement each other were

applied. These methods are essential for the future validation of ML models in the

clinical domain.
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Global explanations

The global explanations can provide information about the global dynamics

of the models and even about the MS disease. The feature recurrence analysis

allowed the study of the best set of features for the problems under investigation.

The features F6, F11 and F12 were always selected in the different iterations of the

various problems. This high selection as input highlights their significant role in

disease classification.

Determining the Permutation Feature Importance (PFI) of the selected features

provided a clear view of the overall behaviour of the model, considering the inter-

actions between the features. The inclusion of these interactions is crucial because

it expands the knowledge about the relationships between model variables and the

target. For example, the combination of features can significantly impact the pre-

diction process, which is not seen using the features individually. The representation

of the mean and standard deviation of the PFI measure allows the easy compar-

ison of the importance of each feature in the different problems. However, given

the randomness demonstrated, it might be interesting to explore other metrics and

approaches to analyse the importance results of the various iterations.

The last global methods applied were the Individual Conditional Expectation

(ICE) and Partial Dependence Plot (PDP) plots. Due to a large amount of infor-

mation to interpret, only the plots of the most important features of the best model

were included in this thesis. These plots provide a simple way to visualise the in-

fluence of different features on the prediction outcome and determine whether their

behaviour follows the expected clinical knowledge. In this case, only feature F6 is

known to be the Expanded disability status scale (EDSS) value. It is observed that

it follows theoretical knowledge since the higher its value, the higher the probability

of a prediction of transition to the SP course.

Combining the different global methods results provided more insight and a

better understanding of the reason for the prediction. In summary, the recurrence

analysis gave general information about the features that stand out the most in

iterations, the PFI allowed the study of interactions between features, and the PDPs

represented the dependency between the target and a particular feature of interest.

Local explanations

The Local Interpretable Model-Agnostic Explanations (LIME) method was

used to analyse sample-specific explanations and understand how models use fea-

tures in decisions. Two procedures were applied to select the instances: the Sub-
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modular Pick-LIME (SP-LIME) method and the application of the LIME method

on selected samples that were correctly and wrongly classified. It is important to

highlight that the range of values shown in the LIME plots corresponds to the nor-

malised values. Moreover, all selected samples and their explanations are different,

so it is not possible to make a direct comparison.

The application of the SP-LIME method resulted in the representation, and

consequent analysis, of a set of explanations that simulate the global understanding

of the model.

In the other approach, the selection of the samples for local explanations was

based on a clustering technique to ensure that the set of selected examples was

distinct and representative of the data. In addition, separating the samples into

the three groups of correctly classified (class 1 or class 0) and misclassified and the

consequent analysis of the explanations of each type was an important step towards

a more comprehensive understanding of model behaviour. To apply these methods

in clinical settings, it is important to understand what led the model to classify

correctly and mainly the reason for a misclassification.

Through the selected instances in both approaches, it was understood how

the models think, the local impact of each feature on the final decision when the

others are in a particular range, and, in the case of the HO approach, which is the

most appropriate time step. Moreover, the prediction probability for each sample

given by the LIME method is also valuable because it helps to understand the

model’s confidence. These factors are essential for the clinician to understand the

model’s behaviour, compare it with existing medical knowledge, and validate the

explanations and models.

Overall analysis

The results of all problems indicate that the most influential features are F6,

F11, and F12; F6 is the EDSS value and the meaning of the last two is unknown.

Both the LIME values of the represented samples and the PDPs showed that, as

expected, low values of EDSS promote continuity on the RR course, while high

values promote development towards the SP course.

Nevertheless, in most explanations, the EDSS value is not the one that has a

greater weight in the classification. This fact highlights the complexity of MS and

the challenge of its prognosis due to the heterogeneity of features.
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6.3.2 Results constraints

The lack of knowledge about the dataset features strongly affected the ex-

plainability step. Despite the efforts to discover the meaning of the features, the

information found was insufficient for a solid analysis of the model behaviour, the

impact of the different features and the consequent comparison with the theoretical

knowledge. Moreover, using a dataset is not enough to select the best model for each

problem and ensure its reliability in the complex context of predicting the evolution

of MS.

Regarding the methods, several techniques were applied and resulted in a large

number of explanations. Only the most relevant results for the best model were

included in this thesis. This decision was made since the abundance of information

may confuse the information receiver. This problem can be compounded by the

different results between methods that result from their different logical frameworks

in determining the impact of features on prediction. For example, in the RK 720

problem of the VO approach, although feature F10 has a high recurrence, it has

relatively low permutation importance and almost no impact on local explanations.

Still, this comparison between methods is essential to understand which are the most

suitable to support disease prediction models and which complement each other.

The implementation of other methods could lead to improvements in explana-

tions. For example, Sousa et al. [125] explored counterfactual explanations in a

MS progression problem. Although the number of features that could be directly

changed was small, Sousa showed that this method is promising. In the present

study, it was impossible to explore this method due to the lack of knowledge of

the meaning of different features. Furthermore, applying the famous SHapley Ad-

ditive exPlanations (SHAP) explainer was impossible because it does not support

the Bagging model.

At a local level, it would be interesting to analyse instances incorrectly predicted

by clinicians and inconclusive instances for clinicians that the models correctly clas-

sify since these are the cases in which the existence of a ML model to support

decision-making is most important. These approaches would require clinicians’ in-

volvement in sample identification but would be a key step towards validation.

Finally, it is noticeable that this study lacks the rigorous evaluation of the

explanations by data scientists, as done by Sousa et al. [125], but especially by MS

experts. Although quite complex, this evaluation by MS experts is fundamental for

the models to be validated and applied safely and reliably in medical practice. Thus,

it is expected that the information presented to physicians will support decision-
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making and make diagnoses more accurate after future adaptations and refinements

of this model. Additionally, these explanations could be an additional tool that

physicians can use to explain to patients the challenges involved in MS prognosis.
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Conclusion

This project aimed to predict whether a patient will pass from the Relapse

Remitting (RR) course to the Secondary Progressive (SP) course in a given time

window and to explore different explanations for the Machine Learning (ML) models.

It also aims to provide explanations to better understand the models’ decision-

making and disease dynamics. This was done using the six datasets processed by

Seccia et al. [1] from the Multiple Sclerosis (MS) service of Sant’Andrea Hospital.

Initially, two different prediction approaches (Visited-Oriented (VO) and History-

Oriented (HO)) were developed based on the study by Seccia et al. [1] that led to

the construction and evaluation of seven alternative ML models for each dataset.

These algorithms were used to classify each patient as either not transitioning or

transitioning to the SP course. It was then possible to compare the performances

of the models. Overall, all the proposed models outperformed the results obtained

by Seccia et al. [1] for the F1-score metric. The best results for the VO approach

were obtained using the Record-keeping (RK) 720 dataset and the linear Support

Vector Machines (SVM) classifier. They achieved an accuracy of 97.75%, a precision

of 33.33%, a sensitivity of 42.85%, a specificity of 98.63% and a F1-score of 37.49%.

In particular, this work’s best performing classification problem was obtained by

the HO approach with the RK 360 dataset, with an accuracy of 96.38%, a precision

of 86.24%, and a sensitivity of 70.68%, a specificity of 98.89% and a F1-score of

77.33%. In performance evaluation, it is fundamental to consider different metrics

to evaluate the classifier’s performance in detail, with the F1-score metric assuming

greater relevance for the MS problem under study.

It is concluded that the best classification approach is the HO scenario, with

quite satisfactory F1-score values. Long Short-Term Memory (LSTM) Neural Net-

works (NNs) are very promising for short- and long-term forecasts, but using datasets

with larger visits is essential. Therefore, testing the methodology presented in dif-

ferent datasets is encouraged to validate the conclusions drawn. In addition, an

effort by physicians to register clinical data of MS patients is called for to increase

the number of quality datasets available.
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Besides predicting progression for the SP state, the logic of the models in

decision-making through explainability methods was also studied. The combina-

tion of different global and local methods proved to be very useful for increasing the

comprehension of the models. The Expanded disability status scale (EDSS) feature

was often relevant in the different explanations. This observation gives a certain

degree of confidence to the results as it is consistent with medical knowledge. It is

worth noting that a significant limitation of this study was the fact that the name of

the features was hidden, and it was not possible to identify more than half of them.

Consequently, the methodology of explainability was immediately compromised, and

achieving the desired depth of analysis was impossible.

In the future, it is essential to apply different complete datasets, conduct an

evaluation by experts, refine the model and explore other explainability techniques.

These steps are essential to ensure that explanations are secure and reliable and

help MS experts understand the models and discover hidden patterns in the data.
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A

Supplementary results

A.1 Hyperparameter optimisation in the VO sce-

nario

A.1.1 Feature selection in the FK datasets

Table A.1: Results of the feature selection techniques for the dataset
Feature-keeping (FK) 180 in the VO scenario.

Method Hyperparameters Accuracy Precision Recall Specificity F1-score

Without reduction — 89,591 5,344 68,889 89,765 9,917

n = 10 90,095 5,664 69,444 90,268 10,472

n = 5 90,887 5,904 66,667 91,09 10,846
Pearson

correlation
n = 3 91,771 6,487 66,111 91,986 11,814

λ = 0,001 90,076 5,519 67,778 90,263 10,206

λ = 0,003 91,252 6,104 66,111 91,463 11,173
LASSO

regression
λ = 0,005 91,885 6,735 68,056 92,084 12,256

Table A.2: Results of the feature selection techniques for the dataset FK 360 in
the VO scenario.

Method Hyperparameters Accuracy Precision Recall Specificity F1-score

Without reduction — 90,074 5,341 61,351 90,329 9,827

n = 10 91,283 5,789 58,108 91,577 10,525

n = 5 993,137 6,99 55,135 93,474 12,402
Pearson

correlation
n = 3 93,329 6,734 51,081 93,705 11,894

λ = 0,001 91,461 5,899 57,838 91,76 10,701

λ = 0,003 92,989 6,683 53,514 93,34 11,879
LASSO

regression
λ = 0,005 93,256 6,961 53,784 93,606 12,323
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Table A.3: Results of the feature selection techniques for the dataset FK 720 in
the VO scenario.

Method Hyperparameters Accuracy Precision Recall Specificity F1-score

Without reduction — 91,326 6,061 56,216 91,66 10,939

n = 10 93,293 7,703 55,405 93,654 13,519

n = 5 93,979 8,769 57,027 94,331 15,195
Pearson

correlation
n = 3 94,252 8,107 49,189 94,681 13,91

λ = 0,001 92,429 6,887 55,946 92,777 12,257

λ = 0,003 94,007 8,239 52,703 94,4 14,244
LASSO

regression
λ = 0,005 93,938 7,773 48,919 94,367 13,397

A.1.2 Feature selection in the RK datasets

Table A.4: Results of the feature selection techniques for the dataset RK 180 in
the VO scenario.

Method Hyperparameters Accuracy Precision Recall Specificity F1-score

Without reduction — 96,165 17,835 48,744 96,832 26,102

n = 10 96,404 18,656 47,295 97,095 26,752

n = 5 96,716 19,531 44,589 97,463 26,964
Pearson

correlation
n = 3 96,681 19,047 42,802 97,439 26,358

λ = 0,001 96,715 20,345 46,763 97,418 28,341

λ = 0,003 96,955 21,150 43,671 97,705 28,487
LASSO

regression
λ = 0,005 96,948 21,044 43,478 97,700 28,348

Table A.5: Results of the feature selection techniques for the dataset RK 360 in
the VO scenario.

Method Hyperparameters Accuracy Precision Recall Specificity F1-score

Without reduction — 97,005 23,153 45,507 97,765 30,675

n = 10 97,094 23,482 44,106 97,875 30,635

n = 5 97,382 25,994 43,188 98,182 32,443
Pearson

correlation
n = 3 97,469 26,43 41,401 98,296 32,251

λ = 0,001 97,297 25,135 43,382 98,092 31,824

λ = 0,003 97,541 27,18 41,159 98,373 32,739
LASSO

regression
λ = 0,005 97,583 27,931 41,884 98,404 33,506
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Table A.6: Results of the feature selection techniques for the dataset RK 720 in
the VO scenario.

Method Hyperparameters Accuracy Precision Recall Specificity F1-score

Without reduction — 97,327 28,625 46,86 98,132 35,529

n = 10 97,478 30,208 46,039 98,299 36,468

n = 5 97,738 33,121 43,092 98,61 37,447
Pearson

correlation
n = 3 97,76 33,258 42,174 98,647 37,177

λ = 0,001 97,557 30,853 44,638 98,401 36,479

λ = 0,003 97,704 32,322 42,126 98,591 36,571
LASSO

regression
λ = 0,005 97,754 33,333 42,85 98,63 37,486

A.2 Hyperparameter optimisation in the HO sce-

nario

A.2.1 Classification in the FK datasets

Table A.7: Results of the different NN architectures tested for the FK 180
dataset.

Input strategy 1 Input strategy 2NN

Model Accuracy Precision Recall Specificity F1-score Accuracy Precision Recall Specificity F1-score

Model 1 99,081 33,333 8,333 99,857 13,333 94,135 21,374 7,968 98,512 11,411

Model 2 98,935 22,628 12,727 99,674 15,507 94,093 31,768 15,878 98,197 20,954

Model 3 98,704 21,27 19,091 99,382 19,504 94,204 28,151 15,607 98,095 19,209

Model 4 97,465 10,589 20,909 98,12 12,497 94,243 32,371 17,57 98,143 22,019

Model 5 89,347 4,751 59,091 89,605 8,775 95,648 44,459 5,673 99,526 9,151

Model 6 71,767 2,282 75,455 71,734 4,423 95,247 41,734 12,833 99,082 18,148

Table A.8: Results of the different NN architectures tested for the FK 360
dataset.

Input strategy 1 Input strategy 2NN

Model Accuracy Precision Recall Specificity F1-score Accuracy Precision Recall Specificity F1-score

Model 1 98,960 20,011 9,091 99,731 12,511 94,163 20,635 9,081 98,308 12,376

Model 2 98,642 18,175 12,5 99,434 13,68 94,008 42,112 24,34 98,02 30,024

Model 3 97,481 13,534 22,5 98,201 15,705 93,604 36,323 25,766 97,444 29,757

Model 4 96,673 12,317 29,167 97,334 15,491 94,181 39,587 23,004 98,14 28,312

Model 5 87,626 4,631 56,667 87,922 8,509 95,083 66,042 28,561 98,823 37,904

Model 6 64,584 2,301 82,5 64,41 4,472 95,325 63,744 34,777 98,671 43,623
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Table A.9: Results of the different NN architectures tested for the FK 720
dataset.

Input strategy 1 Input strategy 2NN

Model Accuracy Precision Recall Specificity F1-score Accuracy Precision Recall Specificity F1-score

Model 1 92,87 38,436 11,713 98,565 16,636 91,855 22,947 11,038 97,326 14,696

Model 2 98,486 20,903 12,5 99,366 14,09 91,985 31,427 24,212 96,547 26,934

Model 3 98,016 16,926 19,167 98,808 17,178 92,89 43,512 29,218 97,332 34,312

Model 4 96,732 11,762 30,833 97,399 16,669 92,676 32,593 29,622 96,622 29,416

Model 5 81,762 3,704 63,333 81,956 6,98 93,963 59,368 11,269 99,442 18,634

Model 6 50,783 1,86 80,833 50,46 3,629 93,996 52,239 25,742 98,401 33,679

A.2.2 Classification in the RK datasets

Table A.10: Results of the different NN architectures tested for the RK 180
dataset.

Input strategy 1 Input strategy 2NN

Model Accuracy Precision Recall Specificity F1-score Accuracy Precision Recall Specificity F1-score

Model 1 92,623 11,587 63,492 93,04 19,554 94,495 92,996 37,639 99,725 53,201

Model 2 91,596 10,507 64,921 91,975 18,035 96,491 87,087 66,153 99,113 74,655

Model 3 91,165 10,021 65,873 91,528 17,379 95,943 88,807 60,594 99,294 71,725

Model 4 90,727 9,457 64,762 91,095 16,463 96,504 88,97 63,798 99,316 73,707

Model 5 83,587 6,679 77,937 83,666 12,257 94,738 86,09 Ê44,413 99,342 58,113

Model 6 80,932 5,782 81,746 80,921 10,785 95,175 73,99 65,084 97,905 68,868

Table A.11: Results of the different NN architectures tested for the RK 360
dataset.

Input strategy 1 Input strategy 2NN

Model Accuracy Precision Recall Specificity F1-score Accuracy Precision Recall Specificity F1-score

Model 1 90,618 10,323 68,095 90,955 17,884 95,065 89,936 49,921 99,44 63,401

Model 2 91,527 10,626 62,381 91,963 18,13 95,842 87,709 63,992 99,078 73,435

Model 3 90,999 10,198 64,444 91,391 17,574 96,169 85,906 67,393 98,94 75,432

Model 4 90,851 10,067 64,603 91,24 17,376 96,066 82,646 69,685 98,588 75,461

Model 5 83,465 6,705 77,778 83,55 12,324 94,347 83,122 46,045 99,074 58,168

Model 6 76,671 5,255 80,952 76,609 9,832 95,738 78,235 71,827 98,054 74,693

Table A.12: Results of the different NN architectures tested for the RK 720
dataset.

Input strategy 1 Input strategy 2NN

Model Accuracy Precision Recall Specificity F1-score Accuracy Precision Recall Specificity F1-score

Model 1 90,761 10,768 64,603 91,174 18,391 93,587 86,882 44,067 99,233 57,884

Model 2 89,854 9,953 66,032 90,237 17,263 95,229 86,32 62,651 98,869 72,115

Model 3 988,803 9,444 69,524 89,115 16,615 95,249 83,58 65,376 98,576 73,208

Model 4 87,864 9,288 71,905 88,127 16,39 95,345 83,086 67,543 98,448 74,399

Model 5 77,454 5,595 81,111 77,393 10,449 94,014 78,304 53,172 98,377 62,459

Model 6 69,082 4,419 86,032 68,81 8,387 94,333 76,567 64,989 97,693 69,655
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A.2.3 Feature selection in the FK datasets

Table A.13: Results of the feature selection techniques for the dataset FK 180 in
the HO scenario.

Method Hyperparameters Accuracy Precision Recall Specificity F1-score

Without reduction — 94,243 32,371 17,57 98,143 22,019

n = 10 94,916 41,064 25,63 98,341 30,779

n = 5 95,014 42,594 23,88 98,517 30,023
Pearson

correlation
n = 3 95,58 47,728 29,585 35,614 35,614

λ = 0,001 94,591 32,927 24,554 97,8 27,267

λ = 0,003 94,412 37,386 14,016 98,728 20,023
LASSO

regression
λ = 0,005 95,397 56,402 35,705 98,407 41,596

Table A.14: Results of the feature selection techniques for the dataset FK 360 in
the HO scenario.

Method Hyperparameters Accuracy Precision Recall Specificity F1-score

Without reduction — 95,325 63,744 34,777 98,671 43,623

n = 10 95,388 62,775 25,659 99,198 33,745

n = 5 95,208 67,548 24,383 99,147 33,824
Pearson

correlation
n = 3 95,529 57,861 33,329 98,771 40,659

λ = 0,001 95,035 62,942 29,706 98,692 38,546

λ = 0,003 95,606 69,845 39,022 98,872 46,829
LASSO

regression
λ = 0,005 95,458 70,103 40,007 98,844 49,33

Table A.15: Results of the feature selection techniques for the dataset FK 720 in
the HO scenario.

Method Hyperparameters Accuracy Precision Recall Specificity F1-score

Without reduction — 92,89 43,512 29,218 97,332 34,312

n = 10 93,589 40,035 32,483 97,22 34,674

n = 5 93,581 44,795 41,926 96,747 43,031
Pearson

correlation
n = 3 93,521 47,809 38,674 97,184 41,592

λ = 0,001 93,288 42,38 35,635 96,925 38,637

λ = 0,003 93,715 43,137 38,642 97,036 39,909
LASSO

regression
λ = 0,005 93,51 48,021 43,539 96,805 45,04
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A.2.4 Feature selection in the RK datasets

Table A.16: Results of the feature selection techniques for the dataset RK 180 in
the HO scenario.

Method Hyperparameters Accuracy Precision Recall Specificity F1-score

Without reduction — 96,491 87,087 66,153 99,113 74,655

n = 10 95,767 89,316 54,565 99,408 67,432

n = 5 95,066 88,306 47,739 99,395 61,127
Pearson

correlation
n = 3 95,117 88,631 47,101 99,412 59,932

λ = 0,001 95,967 84,869 62,414 98,982 71,574

λ = 0,003 95,354 87,709 51,042 99,334 63,327
LASSO

regression
λ = 0,005 94,851 87,677 45,847 99,396 58,845

Table A.17: Results of the feature selection techniques for the dataset RK 360 in
the HO scenario.

Method Hyperparameters Accuracy Precision Recall Specificity F1-score

Without reduction — 96,066 82,646 69,685 98,588 75,461

n = 10 96,18 87,081 67,429 98,998 75,72

n = 5 95,943 84,711 67,75 98,749 74,861
Pearson

correlation
n = 3 95,981 85,066 67,473 98,787 74,901

λ = 0,001 96,216 85,222 69,96 98,786 76,517

λ = 0,003 96,383 86,242 70,678 98,888 77,332
LASSO

regression
λ = 0,005 96,15 82,269 71,558 98,514 75,806

Table A.18: Results of the feature selection techniques for the dataset RK 720 in
the HO scenario.

Method Hyperparameters Accuracy Precision Recall Specificity F1-score

Without reduction — 95,345 83,086 67,543 98,448 74,399

n = 10 95,538 86,509 67,088 98,799 75,112

n = 5 95,868 87,675 68,516 98,908 76,565
Pearson

correlation
n = 3 95,303 85,869 65,196 98,763 73,807

λ = 0,001 95,455 84,741 66,836 98,661 74,412

λ = 0,003 95,862 86,492 70,011 98,748 77,105
LASSO

regression
λ = 0,005 95,681 84,425 70,015 98,528 76,136
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