

Daniel José Forte Craveiro

DETECTION OF HUMANS AND ANIMALS IN

A FORESTRY ENVIRONMENT
USING EDGE COMPUTING

Dissertation in the context of the Master’s in Electrical and

Computer Engineering, Specialization in Robotics, Control and

Artificial Intelligence, advised by Prof. Doctor A. Paulo

Coimbra, and Professor Doctor Aníbal T. de Almeida and

presented to the Department of Electrical and Computer

Engineering of the Faculty of Sciences and Technology of the

University of Coimbra.

February of 2023

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Daniel José Forte Craveiro

Detection of Humans and Animals
in a Forestry Environment

Dissertation in the context of the Master in Electrical and Computer Engineering,
Specialization in Robotics, Control and Artificial Intelligence, advised by Prof.

Doctor A. Paulo Coimbra, and Professor Doctor Aníbal T. de Almeida.

February 2023

Acknowledgements

First and foremost I would like to thank my parents and brother, they gave me
love, support and the strength to have the resilience to keep pushing forward in
the hardest of times, during my journey through this graduation.

I want to address my most profound appreciation for my grandparents, uncles,
and cousins who supported me in crucial moments with family gatherings. Build-
ing a solid foundation for our family union was essential throughout this phase.

To my friends from Souselas, I express my sincere thanks for providing comfort
and strength in the pursuit of the conclusion of this work, as well as for under-
standing when I couldn’t be in festive moments, you were always on my mind.

To team Eletro, Gonçalo Lopes, João Duarte, Daniel Palaio, Hugo Figueiras, Guil-
herme Carvalho and Francisco Alves I want to thank you for your friendship,
companionship, help and motivation throughout this graduation.

A special appreciation to Daniela Garcia and my Psychologist Catarina Calado
that had strong participation in the improvement from a dark moment I faced in
2022, you were crucial to my recovery and the conclusion of this work despite all.

Lastly, I want to express my sincere gratitude to my supervisor Dr Paulo Coimbra
for his guidance, help and mentorship throughout this dissertation.

v

Abstract

Wildfires are a rising problem in the present days, requiring urgent measures to
suppress the escalating of these events. One of the measures taken is prevention,
involving the clearing of forests by removing flammable material. This action
becomes repetitive and can represent a risk for the human if not done cautiously.

A solution for the dangers of this hard labour job is forest cleaning robots, pro-
viding the aid that humans needed to perform these tasks. When operating these
robots one should be aware that they can be dangerous to their surroundings (hu-
mans, wildlife encounters, etc). To prevent this risk conveys a need to have an
alert system for these robots.

This dissertation proposes a solution for a detection system for humans and an-
imals in a forest environment. The solution uses an edge device, NVIDIA Jet-
son Nano, a thermal camera, FLIR ADK, and a deep learning detection model,
the SSD MobileNet V2. The system uses frameworks and tools to gather a soft-
ware solution to process the data obtained from the thermal camera and detection
model, outputting the results in a graphical interface.

Furthermore, the work presents real-world testing of the system, as well as a
discussion of the results obtained. Moreover, it is presented future improvement
ideas for the system.

vii

Resumo

Os incêndios florestais são um problema crescente nos dias de hoje, exigindo
medidas urgentes para suprimir a intensificação destes acontecimentos. Uma
das medidas tomadas é a prevenção, envolvendo limpeza de florestas através da
limpeza de material inflamável. Esta tarefa torna-se repetitiva após algum tempo,
para além disso, também representa um risco para o ser humano se não for feita
com cautela.

Uma solução para os perigos deste trabalho árduo são os robôs de limpeza flo-
restal, auxiliando ou até substituindo os humanos para fazer estas tarefas. Ao
operar estes robôs deve-se estar ciente de que os mesmos podem ser perigosos
para o seu meio em redor (humanos, animais selvagens, etc.). Para prevenir este
risco é necessário possuir um sistema de alerta para estes robôs.

Esta dissertação propõe uma solução para um sistema de deteção de humanos e
animais num ambiente florestal. A solução proposta utiliza o dispositivo móvel
de aceleração gráfica NVIDIA Jetson Nano, a câmara térmica FLIR ADK, e o mod-
elo de deteção baseado em inteligência artificial SSD MobileNet V2. O sistema
utiliza ferramentas de desenvolvimento para construir uma solução de software
com o final de processar os dados obtidos pela câmara térmica e do modelo de
deteção, mostrando os resultados obtidos numa interface gráfica.

Além disso, o trabalho apresenta testes num ambiente real, bem como uma dis-
cussão dos resultados obtidos. Inclusivamente são apresentadas futuras ideias de
melhoria para o sistema em causa.

ix

Contents

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Proposed solution . 3
1.3 Requirements . 3

2 Fundamentals and concepts 5
2.1 Deep learning . 5

2.1.1 Convolutional neural networks 5
2.2 Edge machine learning . 6

2.2.1 Relevant work on edge machine learning 7
2.2.2 TensorRT . 7
2.2.3 Detection Models . 8

2.3 Detection model evaluation . 12
2.3.1 Recall and precision . 12
2.3.2 Intersection over union . 14
2.3.3 COCO dataset evaluation . 15

2.4 Thermal cameras and human detection 15

3 Method 17
3.1 Hardware . 17

3.1.1 Graphic processing units (GPUs) 17
3.1.2 Cameras . 20

3.2 Systems overview . 21
3.2.1 Benchmark system . 25

3.3 Systems evaluation . 26

4 Results 29
4.1 Results . 29

4.1.1 Forest . 29
4.1.2 Plain grass scenario . 37

5 Conclusion 45
5.1 Requirement analysis . 45
5.2 Future work . 46

xi

Acronyms

AI artificial intelligence.

ANNs Artificial Neural Networks.

AP Average Precision.

CNN Convolutional Neural Network.

COCO Common Objects in Context.

CPU central processing unit.

CUDA Compute Unified Device Architecture.

FPS frames per second.

GPU graphic processing unit.

IoT Internet of Things.

IoU Intersection Over Union.

mAP mean average precision.

ReLU Rectified Linear Unit.

SDK Software Development Kit.

SSD Single Shot MultiBox Detector.

VRAM video random access memory.

YOLO You Only Look Once.

xiii

List of Figures

2.1 Overall overview of a Convolutional Neural Network (CNN) ar-
chitecture. [6] . 6

2.2 Overall overview of a detection model architecture. 8
2.3 Overall overview of the Single Shot MultiBox Detector (SSD) model

architecture. 9
2.4 MobileNet V2 bottleneck residual block. 10
2.5 Detection model of MobileNet V2 as base network SSD as the clas-

sifier. 11
2.6 You Only Look Once (YOLO) v7 model architecture diagram: in-

put, backbone, neck, head and output. 12
2.7 Precision-recall curve and the Average Precision (AP). 13
2.8 Intersection over union evaluation metric. 14

3.1 Main system overview. 22
3.2 Benchmark system overview. 25
3.3 Testing scene diagram. 27

4.1 System being tested in the forest. 30
4.2 Standing human at 3 meters and 50% threshold. 30
4.3 RGB image of a standing human at 3 meters and 50% threshold. . . 30
4.4 Human walking a dog at 3 meters and 50% threshold. 31
4.5 RGB image of a Human walking a dog at 3 meters and 50% threshold. 31
4.6 Standing human at 6 meters and 50% threshold. 32
4.7 RGB image of a standing human at 6 meters and 50% threshold. . . 32
4.8 Human walking a dog at 6 meters and 50% threshold for the the

SSD Mobilenet V2 and 25% threshold for the YOLOv7. 32
4.9 Human walking a dog at 6 meters and 50% threshold for the the

SSD Mobilenet V2 and 25% threshold for the YOLOv7. 33
4.10 Standing human at 9 meters and 50% threshold. 33
4.11 RGB image of a standing human at 9 meters and 50% threshold. . . 34
4.12 Human walking a dog at 9 meters and 50% threshold for the the

SSD Mobilenet V2 and 25% threshold for the YOLOv7. 34
4.13 RGB image of a human walking a dog at 9 meters and 50% thresh-

old for the the SSD Mobilenet V2 and 25% threshold for the YOLOv7. 35
4.14 Plain grass live inference setup. 37
4.15 Standing human. 38
4.16 Crouching human. 38
4.17 Human and dog. 38
4.18 Human and dog. 39

xv

Chapter 0

4.19 Standing human detection results in plain grass. 40
4.20 Crouching human detection results in plain grass. 40
4.21 Human and dog detection results in plain grass. 40
4.22 YOLOv7 detection at 6 meters. 41
4.23 Standing human detection results in plain grass. 42
4.24 Crouching human detection results in plain grass. 42
4.25 Human and dog detection results in plain grass. 42
4.26 YOLOv7 detection at 9 meters. 43

xvi

List of Tables

1.1 Number of wildfires and burnt area in Portugal mainland from
2010 to 2020 [1]. 2

2.1 Benchmarking results for Jetson TX2, Nano and Raspberry Pi [8]. . 7
2.2 Confusion matrix for binary classification [22]. 13

3.1 NVIDIA Jetson Nano characteristics [30]. 18
3.2 NVIDIA RTX 2060 characteristics [31]. 19
3.3 FLIR ADK main features [33]. 20
3.4 Iphone 11 Pro camera main features [34]. 21

4.1 SSD Mobilenet V2 results in forestry environment. 35
4.2 YOLOv7 results in forestry environment. 35
4.3 SSD Mobilenet V2 results in plain grass environment. 44
4.4 YOLOv7 results in plain grass environment. 44
4.5 YOLOv7 RGB results in plain grass environment. 44

xvii

Chapter 1

Introduction

This chapter introduces the context and motivation for this work, as well as the
proposed solution and its technical requirements.

1.1 Context and Motivation

Forest fires are responsible for a significant abiotic disturbance in natural and
planted forests, causing countless damage in large areas around the globe. In
territories more prone to forest fires, particularly in the South Europe countries,
the risk of uncontrol is constant and recurring.

In 2020, 3400 km2 of land was burnt in the European Union, from this land,
40% were protected areas of Europe Natura 2000, it will take years to restore and
recover to what they were. Fires have ceased to affect the southern countries only,
and are now a growing threat to Central and North Europe. Global warming is
now producing fast-propagating wildfires that everyday firefighting can’t con-
trol. This effect is seen in Europe and California(USA), Australia, Central and
South America, Russia, Turkey, etc.

Efforts must be taken to mitigate this problem and minimize the impact of these
wildfires and reduce their effects, not only in economic damage but also environ-
mental impact and human losses. Today, with greater importance, we need to
be more aware of the forest fire risk and fire prevention strategies at the Euro-
pean and National levels initiating strong cooperation between European coun-
tries and their nearest as they are all victims of this critical fire situation [1].

1

Chapter 1

Portugal is part of the South Europe countries that have been suffering high losses
due to rural fires, consequently losing part of its forestry. The Portuguese forest
represents 3.2 million hectares which are equivalent to 36.2% of Portugal’s main-
land [2]. As shown in table 1.1, the burnt area annual average due to wildfires
between 2010 and 2019 in Portugal was 138083 hectares which translate to 4.3%
of the current forest territory.

Therefore it is crucial to develop new methods that prevent and control forest
fires. One such method is the use of forest cleaning robots, which can effectively
reduce the risk of fires by cutting flammable material such as dead vegetation,
leaves, twigs and branches [3].

Table 1.1: Number of wildfires and burnt area in Portugal mainland from 2010 to
2020 [1].

However, the deployment of forest cleaning robots also presents new risks and
challenges, such as the potential for accidents and damage to the surrounding en-
vironment. To minimize these risks, it is essential to implement effective accident
prevention systems on these robots. Accident prevention systems can provide
real-time monitoring and analysis of hazardous situations, allowing for quick and
accurate responses to prevent accidents.

In this work, we explore the importance of a solution for an accident prevention
system with the ability to detect human and animal presence. This solution was
met with the help of a thermal camera and an edge device powered by a deep
learning algorithm.

This dissertation is part of the SafeForest project whose partners are the company
Ingenarius, the Institute for Systems and Robotics of the University of Coimbra
(ISR-UC), ADAI (Association for the Development of Industrial Aerodynamics),
the company SILVAPOR and Carnegie Mellon University.

The SAFEFOREST project focuses on the creation of a semi-autonomous robotic
system for the prevention of wildland and wildland-urban interface fires. Its goal

2

Introduction

is to significantly reduce the cost of maintaining forests, particularly near homes
and critical infrastructure, and to control the spread of large forest fires.

To achieve this, SAFEFOREST aims to develop innovative monitoring and robotic
systems that can semi-automatically clear and manage forest fuels in areas with
challenging terrain. These systems will consist of semi-autonomous mobile plat-
forms that use advanced drone technology to map the area and identify areas in
need of land clearing. These platforms will then remove redundant vegetation
and create necessary fuel breaks. This will be made possible through the inte-
gration of multiple sensors on a semi-autonomous all-terrain platform, capable
of functioning in a variety of terrains. Advanced multi-sensor drone systems will
monitor the forest and assist with terrain mapping, ensuring the efficient and
effective implementation of the project’s goals [4].

This dissertation is organized into four chapters. Chapter 2 covers the main
theory behind the development of this work, mainly a deep learning introduc-
tion, graphic processing units (GPUs) overview, as well as state-of-the-art object
detection algorithms and thermal cameras used in the work. Chapter 3 covers
the methods followed in the execution of this work, and does an overall system
overview of the solution developed, the software involved, as well as the proce-
dure to evaluate it in a real-world environment. Then, in Chapter 4 we present
the results obtained from the real-world testing of the system, as well as a discus-
sion of the results. Finally, in Chapter 5, a conclusion is presented assessing the
requirements of the solution as well as a possible future work section.

1.2 Proposed solution

The solution to solve the problem of detection of humans and animals in a forestry
environment is composed of an edge device powered by a GPU called NVIDIA
Jetson Nano, the FLIR ADK thermal camera, and the detection model SSD Mo-
bileNet V2. In section 3 we go into detail about this system.

1.3 Requirements

To evaluate the solution proposed and assess its good functionality a few require-
ments were elaborated on:

• Successful detection at a distance of 3 meters from the target.

• Different testing environments (forestry, plain grass).

• Human and dog detection in different poses.

• Detection with different light conditions (direct sunlight, shade).

• Detection at further distances than 3 meters from the target.

• Live inference and post-captured video inference as a benchmark.

3

Chapter 2

Fundamentals and concepts

The fundamental ideas of deep learning as well as related research in the fields
of deep learning, edge machine learning, and thermal cameras are addressed in
this chapter.

2.1 Deep learning

Deep learning is at the forefront of today’s AI technology due to its recent achieve-
ments, which range from spotting cat photographs on the Internet to defeating
chess and go masters, translating texts, and determining a protein’s 3D shape
from its amino-acid sequence. Artificial Neural Networks (ANNs) were the orig-
inal title for deep learning methods, and as more layers of artificial neurons were
added to ANNs, the name Convolutional Neural Network (CNN) gained popu-
larity. Image classification and object detection are frequent uses of computer vi-
sion. The goal of image classification, which is primarily utilized for photographs
of single objects, is to categorize the input image as a whole. Object detection
is frequently employed when there are several objects present because the deep
learning algorithm both classifies and locates each object that is found.[5]

2.1.1 Convolutional neural networks

One of the best learning algorithms for comprehending picture content, CNNs
have demonstrated outstanding performance in tasks involving image segmen-
tation, classification, detection, and retrieval. Multiple learning stages made up
of a combination of convolutional layers, non-linear processing units, and sub-
sampling layers make up CNN’s topology as seen in figure 2.1 b).
Using a bank of convolutional kernels, each layer of CNN’s multilayered hierar-
chical network executes several transformations. This convolution process aids in
the extraction of valuable information from locally associated input points shown
in figure 2.2 a).

5

Chapter 2

Figure 2.1: Overall overview of a Convolutional Neural Network (CNN) archi-
tecture. [6]

The activation function, which not only aids in learning abstractions but also em-
beds non-linearity in the feature space, receives the output of the convolutional
kernels. This non-linearity produces various activation patterns for various re-
sponses, making it easier to learn the semantic differences between images. An-
other key stage in creating the neural network infrastructure is choosing the ap-
propriate loss function. When using neural networks, our goal is to reduce error,
which is represented by the loss function as the difference between the actual
value and the value that was predicted. Both of these functions are shown in
Figure 2.1 c) [7].

2.2 Edge machine learning

Machine learning is a very computationally demanding technology, but when
working with specific problems or challenges we can move this technology to
the edge and implement machine learning on specific devices (such as Internet of
Things (IoT) devices, smartphones, etc.) as opposed to the cloud or centralized

6

Fundamentals and concepts

server, this process being referred to as edge machine learning.

On this matter, [8] published an article comparing 3 commonly used edge ma-
chine learning devices for high-performance deep learning applications: NVIDIA
Jetson Nano and TX2, and the Raspberry Pi 4. The work evaluated the perfor-
mance of the three devices by training a CNN on different amounts of data on a
single dataset (13 different fashion products with 45K images) and assessing the
accuracy, time of processing, memory and power, see table 2.1. The jetson TX2
showed to be the better device in every metric evaluated but at a cost of about 4
times the cost of the NVIDIA Jetson nano. The NVIDIA Jetson nano proved to be
an attractive choice for high-performance deep learning applications.

Table 2.1: Benchmarking results for Jetson TX2, Nano and Raspberry Pi [8].

Acc (%) Time(sec) Memory (GB) CPU (Power/W) GPU (Power/W)
Dataset TX2 Nano PI TX2 Nano PI TX2 Nano PI TX2 Nano PI TX2 Nano PI

Idle - - - - - - 1,9 1,5 1,4 0,675 0,47 0,30 2,6 0,76 -
5K 87,6 87,5 87,2 23 32 173 2,6 2,0 2,1 2,23 1,50 3,5 5,27 2,23 -

10K 93,8 93,9 91,6 32 58 372 3,1 2,75 2,6 2,78 2,32 3,6 5,32 3,25 -
20K 94,6 94,5 - 52 - 462 4,5 ERR 4,0 3,76 - 3,9 5,22 - -
30K 96,4 - - 122 - - 5,2 ERR ERR 4,25 - - 5,74 - -
45K 97,8 - - 235 - - 6,5 ERR ERR 4,92 - - 6,29 - -

2.2.1 Relevant work on edge machine learning

In 2022, Wang et al [9], developed a real-time monitoring system of ship targets
for intelligent army weapon equipment. The jetson nano micro-computer and
a smaller version of the network You Only Look Once (YOLO) v5 were used,
showing a fast detection speed and short training time, meeting the requirements
for real-time maritime battlefield monitoring.

Minh et al [10] presented a work based on performance evaluation of deep learn-
ing models on edge devices, specifically real-time traffic tracking and detecting
applications, it was concluded that models such as MobileNet-SSD were capable
of achieving good detection speed (40 FPS), high accuracy and high mean average
precision (mAP) during the training session.

Furthermore, [11] developed a solution for real-time monitoring of agricultural
land with crop prediciton and animal intrusion prevention using IoT and edge
machine learning. This project had sensors (such as soil moisture, infrared, rain,
infrared, etc.) connected to a small edge device called Raspberry Pi 3. The edge
device had a CNN installed so it could detect animal intrusion and with this
information fear the animal in question using a speaker connected to the device.

2.2.2 TensorRT

TensorRT is a Software Development Kit (SDK) that enables high-performance
machine learning inference working in collaboration with training frameworks
such as TensorFlow, PyTorch and MXNet. This framework allows us to quickly
and effectively operate a trained network on NVIDIA hardware (Jetson Nano,

7

Chapter 2

Jetson Xavier, etc.) and performs up to 36 times faster than CPU-only platforms
during inference (a process of using existing knowledge to make predictions on
new, unseen data) [12].

The training of a network can be done on a full-size machine or GPU. After this
training, all the network nodes are defined on a model file, along with their op-
erations, inputs, and outputs. In addition, training creates a checkpoint file that
captures the values of all the weights and biases. This pre-trained representation
of the network is deployed using the TensorRT framework on the edge device
(Jetson nano, Jetson TX2, etc) to be used for inference [13].

2.2.3 Detection Models

A detection model is made of a base network and a classifier head, see figure
2.2. The base network is a pre-trained neural network which is used to capture
features from the input data of the detection model. The classifier head outputs
the prediction result of the data intake.

Input image Output prediciton

Base Network

Classifier Head

Figure 2.2: Overall overview of a detection model architecture.

The model’s structure, size and complexity is determined by the use case of the
challenge we face. Depending on the number of operations needed for the end
goal, the choice of the model requires a few benchmarking and testing before
determining which one to use.

8

Fundamentals and concepts

Single shot multibox detector (SSD)

The Single Shot MultiBox Detector (SSD) is single deep neural network released
in 2016, [14] that attained new records of performance and accuracy for tasks in-
volving object detection. Seen in figure 2.3, the model takes advantage of the
VGG-16 architecture discarding the fully connected layers of the network. After
the VGG-16 convolutional layers the model SSD counts with additional convolu-
tional layers with decreasing sizes. These layers happen to be seen as a pyramid
representation of diverse scales. Large fine-grained feature maps at earlier levels
capture small objects and small coarse-grained feature maps detect large objects
efficiently. The detection occurs in every pyramidal layer, targeting objects of
different sizes [15].

conv2

conv3
conv4 + 5

300 x 300 x 64

150 x 150 x 128

75 x 75 x 256

38 x 38 x 512

300 x 300 x 3

In
pu

t I
m

ag
e

3

3

conv1

conv6

19 x 19 x 1024

conv7

10 x 10 x 128 5 x 5 x 128 5 x 5 x 128

conv9

3 x 3 x 128

conv10 conv11

1 x 1 x 128

D
et

ec
tio

ns

conv8

VGG-16

Extra feature layers

convolutional + ReLU

max pooling

batch normalization

Figure 2.3: Overall overview of the SSD model architecture.

Some object detection systems use this method, which involves predicting bound-
ing boxes, resampling pixels or features for each box, and then using a high-
quality classifier. While this method remains accurate, this strategy is computa-
tionally heavy and doesn’t serve the purpose of embedded devices and is slower
in real-time appliances.

The SSD solves the issue of a high-quality classifier (computationally heavier) by
lowering the output space into a cluster of default bounding boxes with different
aspect ratios and dimensions per feature map. When predicting, the model gen-
erates scores for the existence of each object category in each default box to match
accordingly with the shape of the object [14].

MobileNet V2

Mobilenet V2 is a highly efficient and lightweight CNN designed for mobile and
embedded vision applications. This network uses shortcut connections between
layers and depth-wise convolutions to maintain a low operational load. The
model is composed of three convolutional layers stacked in a block as seen in
figure 2.4. The first layer is a 1x1 expansion layer which has the function of ex-
panding the number of channels that flow through it. The second layer is the

9

Chapter 2

depth-wise convolutional layer that is in charge of filtering the input, followed
by the 1x1 projection layer or bottleneck layer. The projection layer reduces the
number of channels and diminishes the amount of data that flows via the net-
work [16].

Each layer of the network has a batch normalization layer and activation function
(Rectified Linear Unit (ReLU) - 6) besides the projection layer. ReLU-6 is an exten-
sion of the standard ReLU function, where instead of having an upper bound of
infinity, it has an upper bound of 6 (see equation 2.1), making the network learn
sparse features earlier [17].

min(max(x, 0), 6) (2.1)

The block’s input and output are both low-dimensional tensors, but the block’s
internal filtering is carried out on a high-dimensional tensor.The residual link is
only utilized when the number of channels entering and leaving the block are
equal in order to aid in the flow of gradients through the network [16].

depthwise convolution

batch normalization

projection layer

1x1

ReLU6

Input

1 x 1

3 x 3

1 x 1

O
ut

pu
t

Residual connection

expansion layer

Figure 2.4: MobileNet V2 bottleneck residual block.

While SSD is conceived to work under the independence of the base network,
one can stack SSD as the classifier head and MobileNet V2 as the base network
combining both architectures to improve the overall performance of the model
(see figure 2.5). SSD provides high accuracy and real-time performance, while
Mobilenet V2 delivers low computational complexity and high accuracy [18].

10

Fundamentals and concepts

Input image Output prediciton

MobileNet V2

Classifier head

Base network

Single Shot MultiBox
Detector (SSD)

Figure 2.5: Detection model of MobileNet V2 as base network SSD as the classi-
fier.

You Only Look Once (YOLO) version 7

At the current date, YOLO v7 surpassed every object detector both in speed and
accuracy in the 5 to 160 frames per second (FPS) range, achieving 56.8% Average
Precision (AP) among most real-time object detectors capable of attaining 30 FPS
or more on NVIDIA V100 graphic processing unit (GPU)[19].

In 2022, Wang et al [20] published a research paper regarding the detection of
defects in the steel strip production process. For this end, they used YOLO v7
to address the detection of these defects achieving 80,2% mAP on the GC10-DET
dataset (a metallic surface defect dataset) accomplishing a result which is better
than the other models at that time of publishing. In India, potholes account for the
majority of fatal and injury-causing incidents. [21] developed a phone application
with the ability to report potholes on roads. The system usedYOLO v7 network
to detect the pothole, identify its location and determine the pothole count.

The YOLO v7 model architeture consists of (see figure 2.6)[20]:

• The backbone network, is a CNN that is used to extract the features from
the input image. The backbone network in YOLO v7 uses a variation of the
EfficientNet model, which is renowned for its excellent performance and
high efficiency.

• The neck network, which links the backbone network to the head network
refines the features extracted by the backbone network.

11

Chapter 2

• The fully linked head network, which predicts the kind and placement of
objects in a picture using the fine-tuned features from the neck network.

• A last layer, which is used as an output for classifying and locating objects
in the image.

Backbone Neck Head

Output
Input

Figure 2.6: YOLO v7 model architecture diagram: input, backbone, neck, head
and output.

While being a much more complex and computationally heavier network, the
YOLO v7 remains a good model for benchmark reasons.

2.3 Detection model evaluation

In this section, we address the evaluation metrics used in object detection. We
discuss typical evaluation metrics used in the machine learning industry, such as
recall, precision, and Intersection Over Union (IoU).

2.3.1 Recall and precision

On binary classification applications, the confusion matrix can be used to de-
fine the discrimination evaluation of the optimal answer during the classification
training, as shown in table 2.2. The predicted class is shown in the table’s rows,
while the ground truth class is shown in the columns.

As a practical demonstration of the terms using the human class detection appli-
cation: true positive is when a human is detected as a human, a false negative is
when the detection model fails to detect a human, the true negative is when the
detection model effectively didn’t detect an animal.

12

Fundamentals and concepts

Table 2.2: Confusion matrix for binary classification [22].

Actual Positive Class Actual Negative Class
Predicted Positive Class True positive (tp) False positive (fp)

Predicited Negative Class False negative (fn) True negative (tn)

precision =
tp

tp + f p
(2.2)

recall =
tp

tp + f n
=

tp
predicted positives

(2.3)

Precision and recall can be calculated using equations 2.2 and 2.3 respectively,
they are used to determine a model’s average precision. In terms of the per-
centage of right predictions, precision expresses how precise the predictions are.
Recall gauges how well a model finds every occurrence.

The Average Precision (AP) is a commonly used metric to evaluate object detec-
tion models, and it translates as the weighted mean of precision scores achieved
at each precision-recall curve (figure 2.7) threshold. The general definition for the
Average Precision (AP) is given by calculating the area under the precision-recall
curve, this area is given by the integral in equation 2.4 (r being the recall and p
the precision).

Area under the curve (AUC) = Average precison (AP)

Figure 2.7: Precision-recall curve and the AP.

AP =
∫ 1

0
p(r)dr (2.4)

13

Chapter 2

Another metric used for evaluating a detector when multiple classes are present
is the mean average precision (mAP), which measures the AP across multiple
classes. To compute the mAP we add the average precisions for each class and
divide them by the number of classes, see equation 2.5 (N stands for number of
classes).

mAP =
1
N

N

∑
i=1

APi (2.5)

2.3.2 Intersection over union

Intersection Over Union (IoU) is an evaluation metric that is used to assess how
well object detection models are behaving. It calculates how closely an image’s
predicted bounding box and the actual bounding box match one another [23].
The area of intersection over the area of union of the two bounding boxes is used
to calculate the intersection over union, or IoU, see equation 2.6.

IoU =
area o f overlap
area o f union

(2.6)

The predicted bounding box perfectly overlaps the ground truth bounding box
when the IoU value is 1, whereas a value of 0 indicates that there is no overlap
between the bounding boxes. A common threshold value for IoU is 0.5, which
means that if the predicted bounding box’s IoU is greater than or equal to 0.5, it is
considered a true positive, otherwise a false positive. A practical example of the
metric can be seen in figure 2.8.

Ground truth bounding box

Predicted bounding box

Area of intersection

Figure 2.8: Intersection over union evaluation metric.

14

Fundamentals and concepts

2.3.3 COCO dataset evaluation

The Microsoft team created the Common Objects in Context (COCO) dataset,
which was originally made available in 2014. It is made to aid research into arti-
ficial intelligence, machine learning and computer vision [24].

To train and test object detection models, researchers frequently employ the COCO
dataset. The COCO dataset offers a huge and varied set of images with a wide va-
riety of items and contexts, and object detection models are trained to recognize
and locate things inside an image.

The 80 object classes that make up the COCO dataset each have a different set of
object examples. The collection of these 80 object classes contains details about
the object type, location, size, and each instance of the object is identified by an
ID. The collection also contains a number of captions that list the items in each
image.

Additionally, the COCO dataset offers a leaderboard with 12 evaluation metrics
that serve as benchmarks for object detection models. It provides a way to com-
pare the performance of different models on the COCO dataset and track progress
in the field of object detection [25].

2.4 Thermal cameras and human detection

Our focus in this work is on human and animal detection using thermal camera
images. The importance of human detection for different applications, includ-
ing self-driving automobiles and driver support systems, has led to extensive
research on the subject [26]. For visible-range color cameras to detect humans,
a variety of techniques have been suggested. Recent research attempts to solve
challenges brought on by the visible-range camera sensor, including occlusions,
person stature, and differences in lighting [27].

The majority of the current approaches for detecting humans start to fail when
visible-range cameras are unable to gather enough data from a scene because
there is not enough light for illumination. The issue is exacerbated when there is
no light source and it is pitch black.

The issue of low light conditions is solved by a different kind of sensor, specif-
ically a thermal or long-wave infrared camera sensor, which can collect useful
data from dimly illuminated or completely dark surroundings. These sensors are
primarily made to measure the temperature of a scene, making it possible to take
photographs of people that are plainly apparent due to their body temperatures.
The performance of thermal cameras is nevertheless impacted by other issues.
For instance, the weather may have an impact on the pixel values in a thermal
image. More, on a chilly day, humans might stand out significantly against the
background. On warmer days, however, there may be less contrast between peo-
ple and the background, which can make it harder to detect humans. Another
challenge is that it can be difficult to discern between a person and another hot

15

Chapter 2

item when there are various objects close to a human body [28][29].

More recently, sensors with higher resolution thermal image capture, like the
FLIR A-35, FLIR ADK and Raytheon 300D, are performing better at detecting
humans in warmer conditions, doing a better job at differentiating humans from
the background.

16

Chapter 3

Method

The following chapter describes the methodologies, tools, hardware and software
used to address the challenge of human and animal detection.

3.1 Hardware

This section presents the software and hardware used in the development of this
work. It includes a brief overview of graphic processing units (GPUs) and cam-
eras.

3.1.1 Graphic processing units (GPUs)

A graphic processing unit (GPU) is a specialized type of processor designed for
handling graphics operations and tasks that involve massive parallel processing.
Deep learning applications involve large amounts of matrix and vector opera-
tions and GPUs can perform these operations more efficiently than central pro-
cessing units (CPUs). Furthermore, GPUs usually have more cores than CPUs,
allowing them to complete more operations in parallel, resulting in faster neural
network training times and detection.

17

Chapter 3

As shown in section 2.2 the NVIDIA Jetson Nano proved to be a small powerful
edge device powered by a small GPU capable of achieving high accuracy results
in the training of a CNN as well as a small power consumption when operating.
With this in mind, this edge device was determined to be our choice to develop
this work. Some characteristics of this device can be seen in table 3.1.

Table 3.1: NVIDIA Jetson Nano characteristics [30].

NVIDIA Jetson Nano
Performance 472 GFLOPS

CPU Quad-Core ARM Cortex-A57
64-bit @ 1.42 GHz

GPU NVIDIA Maxwell w/ 128 CUDA
cores @ 921 MHz

Memory 4 GB LPDDR4 @ 1600MHz,
25.6 GB/s

Networking Gigabit Ethernet / M.2 Key E
Display HDMI 2.0 and eDP 1.4
USB 4x USB 3.0, USB 2.0 Micro-B
Other 40-pin GPIO
Video encode H.264/H.265 (4Kp30)
Video decode H.264/H.265 (4Kp60, 2x 4Kp30)
Camera MIPI CSI port
Storage 16 GB eMMC
Power under load 5W-10W
Price $89

18

Method

For evaluation and benchmark purposes, another GPU was chosen to take part in
this work, in this case, a full-size GPU which is a GPU that is designed to fit into a
standard desktop computer. Additionally, a full-size GPU typically has a higher
number of cores, video random access memory (VRAM), and a wider memory
bus providing improved performance for demanding tasks such as CNN train-
ing, or object detection. The GPU used was an NVIDIA RTX 2060, and some of
its characteristics can be seen in table 3.2.

Table 3.2: NVIDIA RTX 2060 characteristics [31].

NVIDIA RTX 2060
Performance 7.5 GFLOPS
CPU -

GPU NVIDIA Turing w/ 1920 CUDA
cores @ 1365 MHz

Memory 6 GB GDDR6 @ 14GHz,
336 GB/s

Networking Gigabit Ethernet / M.2 Key E
Display 3x DisplayPort 1.4, HDMI 2.0b
USB -
Other -

Video encode H.264/H.265 (4Kp60),
VP9 (8Kp30), NVENC

Video decode H.264/H.265 (4Kp60),
VP9 (8Kp30), NVENC

Camera -
Storage -
Power under load 160W
Price $347.99

19

Chapter 3

3.1.2 Cameras

In this section, we present the cameras used for the development of this work. It
was used a thermal infrared camera, and for benchmark reasons, it was chosen
to use an RGB camera.

Thermal camera

The thermal infrared camera used in this work is the FLIR ADK by FLIR [32].
FLIR ADK is an outdoor/indoor long-wave infrared (LWIR) that was developed
with an emphasis on pedestrian recognition. It accurately identifies people in
crowded settings and provides vital data for automated decision-making. See
table 3.3 for some of the main features of the FLIR ADK.

Table 3.3: FLIR ADK main features [33].

FLIR ADK
Sensor technology Boson™ – Uncooled VOx microbolometer
Spectral range 8-14 microns - Longwave infrared (LWIR)
Arctral range 8-14 microns - Longwave infrared (LWIR)
Array format 640 × 512
Pixel Pitch 12µm
Effective frame rate Full Frame (30 & 60 Hz selectable), 9 Hz optional
FOV – horizontal 75°
Output format 16-bit TIFF (raw sensor format) or compressed 8-bit
Environmental Protection IP67
Solar protection Yes (sun will not damage sensor)
Dimensions (W x H x D) 35 × 40 × 47 mm
Weight 100 g
Operating Temperature -40°C to +85°C

Power Consumption 1 W (without heater);
∼4 W average and 12 W maximum(with heater)

RGB camera

An RGB camera is a type of camera that captures coloured images by separating
frames into red, green, and blue components, as it operates within the visible
light spectrum with wavelengths ranging from 0.4 microns to 0.7 microns. This
imaging device processes the incoming light and records the intensity of each
colour channel, producing a final colour representation of the captured scene.

The RGB camera used in this work is the iPhone 11 Pro (Camera) by Apple [34].
The iPhone 11 Pro is a smartphone developed by Apple and released in Septem-
ber 2019. The smartphone is known for its advanced camera system and fine
build quality. See table 3.4 for the iPhone 11 Pro camera’s main features.

20

Method

Table 3.4: Iphone 11 Pro camera main features [34].

iPhone 11 Pro
Sensor technology Back-side illuminated (BSI) CMOS sensor
Spectral range 0.4-0.7 microns - Visible light
Arctral range 0.4-0.7 microns - Visible light
Array format 4K, 1080p
Pixel Pitch -
Effective frame rate 4K at 60 FPS, 1080p at 120 FPS
FOV – horizontal 83°
Output format HEIF, H.264
Environmental Protection IP68
Solar protection No (sun might damage sensor)
Dimensions (W x H x D) 144 × 71.4 × 8.1 mm
Weight 188 g
Operating Temperature 0ºC to +35°C
Power Consumption -

3.2 Systems overview

The research on the challenge of detecting animals in a forestry environment in-
volved two systems: The main system which is composed of the NVIDIA Jetson
Nano, the FLIR ADK camera and the SSD MobileNet V2; A benchmark system
composed of a standard desktop computer and an NVIDIA RTX 2060 with the
latest YOLO v7 detection model.

This section describes both systems’ architecture as well as the software required
to run both systems and their respective detection models.

Main system

Figure 3.1 illustrates the workflow of the system proposed to solve the challenge
of detecting humans and animals in a forestry environment. The system is com-
posed of:

• FLIR ADK thermal camera.

• NVIDIA Jetson Nano edge device.

• Single Shot MultiBox Detector (SSD) MobileNet V2 detection model.

21

Chapter 3

NVIDIA Jetson Nano

Detections
SSD Mobilenet V2

TensorRT Output

Bounding box (w,h)
Object class
IoU value640x512

I/O Bus

Monitor
Keyboard
Mouse

FLIR ADK

Edge device w/ detection model

Camera input

System output

Optional system I/O (Used for
configuration reasons/ visual results)

Figure 3.1: Main system overview.

Operation

The FLIR thermal camera is connected to the NVIDIA Jetson Nano as the input
image device, feeding the captured images to the SSD Mobilenet V2 detection
model. The output can be received through a screen or through a terminal, as
seen in figure 3.1.

When operating the NVIDIA Jetson Nano, the device required some prerequisites
in terms of software. The steps to achieve the functionality of the system are listed
below:

1. Installation of the NVIDIA Jetpack SDK [35].

A Software Development Kit from NVIDIA that provides a comprehensive
solution for developing artificial intelligence (AI) and robotics applications
on NVIDIA’s Jetson platforms. The software includes the framework Ten-
sorRT mentioned in the section 2.2.2, taking a role in deploying the detec-
tion model SSD MobileNet V2. Moreover, the Jetpack SDK includes a boot-
loader, Linux kernel and an Ubuntu desktop environment that works as a
graphic user interface facilitating the configuration, programming and op-
eration of the system.

2. Clone and installation of the NVIDIA Jetson Inference toolkit [36] inside a
Docker container [37].

The NVIDIA Jetson inference toolkit is a set of libraries and tools that of-
fer utilities, pre-trained models, sample code, and deployment options for
Jetson hardware.

Docker container is an open-source platform that enables the creation, de-
ployment, and running of applications inside virtualized containers. Con-
tainers are isolated units that include the application code, runtime and set-

22

Method

tings required to run the application, providing a way for developers to
easily deploy these applications in any infrastructure.

Following the prerequired software, a python script seen in algorithm 1 was writ-
ten with the following characteristics:

1. Stream the display output from the FLIR ADK including:

(a) Bounding box around the object detected.

(b) Confidence score of the detection (Intersection Over Union (IoU)).

(c) Class of the object detected.

2. Print in the command line terminal the following details:

(a) Number of entities in the scene.

(b) Number of humans in the scene.

(c) Confidence score of the detection (IoU).

(d) Coordinates of the centre of the bounding box in the scene.

.

23

Chapter 3

Algorithm 1 Python script pseudocode for the detection.

1: Import jetson.inference
2: Import jetson.utils
3:
4: net = jetson.inference.detectNet("ssd-mobilenet-v2", threshold=0.5)
5: camera = jetson.utils.gstCamera(640, 512, "/dev/video0")
6: display = jetson.utils.glDisplay()
7:
8: while display.IsOpen() do
9: img, width, height = camera.CaptureRGBA()

10: detections = net.Detect(img, width, height)
11: objcount = length of detections
12: if objcount > 0 then
13: personcount = 0
14: tnow = current date and time
15: for i = 0 to objcount - 1 do
16: if detections[i].ClassID = 1 then
17: conf = 100 * detections[i].Confidence (as integer)
18: cx = detections[i].Center[0] (as integer)
19: cy = detections[i].Center[1] (as integer)
20: Print tnow, " OBJ", i + 1, "/", objcount, " Conf%", conf, " @", cx,

",", cy
21: end if
22: end for
23: end if
24: end while

24

Method

3.2.1 Benchmark system

Figure 3.2 illustrates the workflow of the system proposed to benchmark the main
system (proposed solution) for detecting humans and animals in a forestry envi-
ronment. The benchmark system is composed of:

• Desktop personal computer.

• NVIDIA RTX 2060 full-size GPU.

• YOLO v7 detection model.

Desktop computer

NVIDIA RTX 2060
Output

Bounding box (w,h)
Object class
IoU value

Captured video from live
detection tests YOLOv7

Anaconda

I/O Bus

Monitor
Keyboard
Mouse

Personal desktop computer w/ NVIDIA
RTX 2060
Pre-recorded data from life detection
tests

System output

Optional system I/O (Used for
configuration reasons/ visual results)

Figure 3.2: Benchmark system overview.

Operation

The present system works as a benchmark system, receiving as input recorded
data from the detection testing. The system has installed the Anaconda deep
learning framework with the latest YOLOv7 pre-trained model. The output result
is used to evaluate the detection ability and compare with the NVIDIA Jetson
Nano solution.

When operating the benchmark system with the YOLO v7 detection model, the
device required some prerequisites in terms of software. The steps to achieve the
functionality of the system are listed below:

1. Installation of the Anaconda environment [38].

Anaconda is a free open-source distribution of Python and R programming
languages for data science, scientific computing, and machine learning. It
includes a collection of packages and tools, including popular libraries and

25

Chapter 3

tools for data analysis and visualization. Anaconda possesses environments
that allow managing multiple versions of packages and dependencies and
creating isolated environments for specific projects to avoid conflicts.

On this occasion, the Anaconda was needed to create an environment with
the purpose of deploying the detection model YOLO v7.

2. Installation of the Compute Unified Device Architecture (CUDA) toolkit
by NVIDIA [39]

CUDA is an SDK developed by NVIDIA for programming GPUs for high-
performance parallel computing. It provides a platform for developing,
optimizing, and deploying GPU-accelerated applications, allowing devel-
opers to speed up their computationally intensive applications. The CUDA
toolkit allows YOLO v7 to efficiently utilize the GPU NVIDIA RTX 2060
parallel processing power.

3. Clone and installation of the YOLO version 7 repository [40].

A repository with the YOLO version 7 that includes pre-trained models, and
pre-developed scripts to run the software on custom data or live inference
video.

Following the prerequired software, a python script is found in the YOLO v7
repository. This script allows us to process data in video format in the YOLO
v7, and the detection model outputs the post-processed video with the following
details as video overlay:

• Class of the object detected.

• Confidence score of the detection (Intersection Over Union (IoU)).

• Bounding box around the object detected.

The script allows us to set a custom threshold when performing the inference.

3.3 Systems evaluation

To evaluate the systems in a real-world environment, both were tested in two
environments (forest and plain grass) and for 3 different distances to the target,
these targets being a human and a human walking a dog. The methodology for
the testing of the system is as follows:

• The testing scene has 3 positions with 3 meters between each other, in this
way: target standing 3 meters from the camera, 6 meters from the camera
and finally 9 meters from the camera as seen in figure 3.3.

• All the positions were measured using a measuring tape and the spots were
marked on the ground with a stone so the target knew where to stand when
testing.

26

Method

• The two cameras were positioned standing 50 centimetres from the ground
pointing in the direction planned for the test in question.

• After starting the recording the first shot is taken at 3 meters as a person
standing, crouching, and standing with a dog, repeating the process at the
6-meter mark and 9-meter mark.

3
m

3
m

3
m

Figure 3.3: Testing scene diagram.

27

Chapter 4

Results

4.1 Results

The developed system was tested in two environments (forest and plain grass)
and for 3 different distances to the target, these targets being a human and a
human walking a dog. In the forest test, the environment was shady because of
the populated terrain with trees; In the case of plain grass, the test was done in
a low-light environment in the evening. The forest test was done mainly with
a 50% detection threshold and the plain grass test presented a result of a 25%
detection threshold aswell as a 50% detection threshold detection result.

4.1.1 Forest

This test was executed in Souselas, Coimbra (40.305529, -8.428913). The recording
direction on the forest environment was 150º Southeast in the shade, at 4 PM on 2
of October of 2022. The following two images (figure 4.13) show the testing setup
for a human walking a dog.

29

Chapter 4

(a) Recording setup. (b) Human walking an animal setup and
output.

Figure 4.1: System being tested in the forest.

3 Meter

Next we present the detection for the 3-meter distance target from the camera
results. Being the closest area to the robot operational area, this distance is the
most important to be detected so we can prevent accidents efficiently.

(a) SSD Mobilenet V2, with a 52.1% detec-
tion confidence.

(b) YOLOv7, with a 74.0% detection confi-
dence.

Figure 4.2: Standing human at 3 meters and 50% threshold.

(a) SSD Mobilenet V2, with a 99.1% de-
tection confidence.

(b) YOLOv7, with a 75.0% detection
confidence.

Figure 4.3: RGB image of a standing human at 3 meters and 50% threshold.

30

Results

(a) SSD MBnet V2, with a 76.1% dog de-
tection.

(b) YOLOv7, with 81.0% detection con-
fidence for the human and 90.0% for the
dog.

Figure 4.4: Human walking a dog at 3 meters and 50% threshold.

(a) SSD Mobilenet V2, with 99.8% hu-
man detection confidence.

(b) YOLOv7, with 73.0% detecion confi-
dence for the human and 81.0% for the
dog.

Figure 4.5: RGB image of a Human walking a dog at 3 meters and 50% threshold.

31

Chapter 4

6 Meters

Next we present the results referring to the 6-meter distance from the target.

(a) SSD Mobilenet V2, with a miss detection. (b) YOLOv7, with a miss detection.

Figure 4.6: Standing human at 6 meters and 50% threshold.

(a) SSD Mobilenet V2, with a miss de-
tection.

(b) YOLOv7, with a 68.0% of detection
confidence.

Figure 4.7: RGB image of a standing human at 6 meters and 50% threshold.

(a) SSD Mobilenet V2, with a miss de-
tection.

(b) YOLOv7, with a 29.0% detection
confidence

Figure 4.8: Human walking a dog at 6 meters and 50% threshold for the the SSD
Mobilenet V2 and 25% threshold for the YOLOv7.

32

Results

(a) SSD Mobilenet V2, with a 63.3% de-
tection confidence for the dog.

(b) YOLOv7, with a 30.0% detection
confidence for the human.

Figure 4.9: Human walking a dog at 6 meters and 50% threshold for the the SSD
Mobilenet V2 and 25% threshold for the YOLOv7.

9 Meters

Next we present the results referring to the 9-meter distance from the target.

(a) SSD Mobilenet V2 miss detection. (b) YOLOv7, with a 71.0% of detection con-
fidence for the human.

Figure 4.10: Standing human at 9 meters and 50% threshold.

33

Chapter 4

(a) SSD Mobilenet V2, miss detection. (b) YOLOv7, with a 91.0% detection confi-
dence.

Figure 4.11: RGB image of a standing human at 9 meters and 50% threshold.

(a) SSD Mobilenet V2 with a miss detection.(b) YOLOv7, with a 26.0% detection confi-
dence for the human.

Figure 4.12: Human walking a dog at 9 meters and 50% threshold for the the SSD
Mobilenet V2 and 25% threshold for the YOLOv7.

34

Results

(a) SSD Mobilenet V2, with a miss detection.(b) YOLOv7, 41.0% detection confidence for
the human.

Figure 4.13: RGB image of a human walking a dog at 9 meters and 50% threshold
for the the SSD Mobilenet V2 and 25% threshold for the YOLOv7.

Table 4.1: SSD Mobilenet V2 results in forestry environment.

Conditions
Distance from the camera Thermal RGB Dog Standing Human Threshold Human IoU Dog IoU Miss-detection

3m

x x

50%

52,3%
x x 99.1%

x x x 76.1%
x x x 99.8%

6m

x x x
x x x

x x x 63.3% x
x x x x

9m

x x x
x x x

x x x x
x x x x

Average 83,73% 69,70%

As shown in table 4.1, the SSD Mobilenet V2 detection model showed good re-
sults in at 3 meters from the camera. For lengths longer than 3 meters the de-
tection model had some difficulties in achieving the detections. The average
intersection over union (IoU) for the human and dog were 83,73% and 69,70%
respectively.

Table 4.2: YOLOv7 results in forestry environment.

Conditions
Distance from the camera Thermal RGB Dog Standing Human Threshold Human IoU Dog IoU Miss-detection

3m

x x 50% 74,00%
x x 50% 75,00%

x x x 50% 81,00% 90,00%
x x x 50% 73,00% 81,00%

6m

x x 50% 68,00%
x x 50% x

x x x 25% 29,00% 63.3%
x x x 25% 30,00%

9m

x x 50% 71,00%
x x 50% 91,00%

x x x 50% 26,00%
x x x 25% 41,00%

Average 59,91% 85,50%

35

Chapter 4

As shown in table 4.2, the YOLOv7 model showed better results than SSD Mo-
bilenet V2 which was to expect because of the different complexity of the mod-
els. The detection model YOLOv7 only showed one miss-detection and showed
a lower average Human IoU (59,91%) than SSD Mobilenet V2 but a higher dog
detection IoU with 85,50%.

36

Results

4.1.2 Plain grass scenario

The garden of a house (40.304544, -8.427840), which was turned directly 192 de-
grees South at 5 PM on October 30, 2022, served as the background and testing
site for the local installation of the plain grass arrangement. In this instance, we
performed live inference detection utilizing the FLIR camera placed at 50 cen-
timetres from the ground attached to the Jetson Nano and RGB video recording
using the iPhone 11 camera. Below we can find a photo of the setup achieved
(Figure 4.14).

Figure 4.14: Plain grass live inference setup.

We performed live detection this time, and it was decided to change the threshold
of confidence required to be considered a detection. The threshold was varied
between 25% and 50%, and the results are shown below.

37

Chapter 4

3 Meters

Next are shown the detection results at the 3-meter distance between the camera
and the target.

(a) SSD Mobilenet V2, with
a 97.4% of confidence and a
25% threshold.

(b) SSD Mobilenet V2, with
a 57.4% of confidence and a
50% threshold.

(c) YOLOv7, with a 94.4%
of confidence and a 50%
threshold.

Figure 4.15: Standing human.

(a) SSD Mobilenet V2, with
a 88.1% of confidence and a
25% threshold.

(b) SSD Mobilenet V2, with
a 86.6% of confidence and a
50% threshold.

(c) YOLOv7, with a 86.0%
of confidence and a 50%
threshold.

Figure 4.16: Crouching human.

(a) SSD Mobilenet V2, with
a 72.1% degree for the hu-
man and 42.9% for the dog
featuring 25% threshold.

(b) SSD Mobilenet V2, with
a miss detection for the hu-
man and 84.9% for the dog
featuring 50% threshold.

(c) YOLOv7, with a 94.0%
degree for the human and
86.0% for the dog featuring
50% threshold.

Figure 4.17: Human and dog.

38

Results

To serve as a term of comparison, we show the results of the detection in RGB
using the YOLOv7 network.

(a) YOLOv7, with a 92.0% of
confidence.

(b) YOLOv7, with a 88.0% of
confidence.

(c) YOLOv7, with a 85.0%
degree for the human and
54.0% for the dog.

Figure 4.18: Human and dog.

39

Chapter 4

6 Meters

Next are shown the detection results at the 6-meter distance between the camera
and the target.

(a) SSD Mobilenet V2, with a
61.7% of confidence for 25%
threshold.

(b) SSD Mobilenet V2, with
a 68.6% of confidence for
50% threshold.

(c) YOLOv7, with a 84.0% of
confidence for 50.0% thresh-
old.

Figure 4.19: Standing human detection results in plain grass.

(a) SSD Mobilenet V2, with a
35.4% of confidence for 25%
threshold.

(b) SSD Mobilenet V2, with
a 55.7% of confidence for
50% threshold.

(c) YOLOv7, with a 84.0% of
confidence for 50.0% thresh-
old.

Figure 4.20: Crouching human detection results in plain grass.

(a) SSD Mobilenet V2, with
a 70.7% degree for the hu-
man and 66.1% for the dog
featuring 25% threshold.

(b) SSD Mobilenet V2, with
miss detection for the hu-
man and 75.4% for the dog
featuring 50% threshold.

(c) YOLOv7, with a 90.0%
degree for the human and
86.0% for the dog featuring
50% threshold.

Figure 4.21: Human and dog detection results in plain grass.

40

Results

Again, as a term of comparison, we show the results of the detection in RGB using
the YOLOv7 network.

(a) YOLOv7, with a 88.0% of
confidence.

(b) YOLOv7, with a 83.0% of
confidence.

(c) YOLOv7, with a 76.0%
degree for the human and
57.0% for the dog.

Figure 4.22: YOLOv7 detection at 6 meters.

41

Chapter 4

9 meters

Next are shown the detection results at the 9-meter distance between the camera
and the target.

(a) SSD Mobilenet V2, with a
39.4% of confidence for 25%
threshold.

(b) SSD Mobilenet V2, with
a 54.0% of confidence for
50% threshold.

(c) YOLOv7, with a 84.0% of
confidence for 50% thresh-
old.

Figure 4.23: Standing human detection results in plain grass.

(a) SSD Mobilenet V2, with a
41.6% of confidence for 25%
threshold.

(b) SSD Mobilenet V2, with
a 54.7% of confidence for
50% threshold.

(c) YOLOv7, with a 86.0% of
confidence for 50% thresh-
old.

Figure 4.24: Crouching human detection results in plain grass.

(a) SSD Mobilenet V2, with
a 45.5% degree for the hu-
man and 36.1% for the dog
featuring 25% threshold.

(b) SSD Mobilenet V2, with
a miss detection on both ob-
jects featuring 25% thresh-
old.

(c) YOLOv7, with a 83.0%
degree for the human and
90.0% for the dog featuring
50% threshold.

Figure 4.25: Human and dog detection results in plain grass.

42

Results

Finally, we show the results of the detection in RGB using the YOLOv7 network
at the 9-meter from the target.

(a) YOLOv7, with a 52.0% of
confidence.

(b) YOLOv7, with a 52.0% of
confidence.

(c) YOLOv7, with a 45.0%
for the human and 35.0% for
the dog.

Figure 4.26: YOLOv7 detection at 9 meters.

43

Chapter 4

Table 4.3: SSD Mobilenet V2 results in plain grass environment.

Threshold
Conditions 25% 50% Miss-detection

Distance from the camera Crouching Standing Human W/ dog Human IoU Dog IoU Human IoU Dog IoU 25% 50%

3m
x 97,40% 57,40%

x 88,10% 86,60%
x 72,10% 42,90% 84,90%

6m
x 61,70% 68,60%

x 35,40% 55,70%
x 70,70% 66,10% 75,40%

9m
x 39,40% 54,00%

x 41,60% 54,70%
x 45,50% 36,10% x

Average 61,32% 48,37% 62,83% 80,15%

From table 4.3 it can be seen that the SSD Mobilenet V2 detection model showed
better results in plain grass than in the forest, achieving only one miss detection
being the 9-meter mark with the dog at 50% threshold to be considered a detec-
tion. Nevertheless, the model showed 61,32% human IoU at 25% threshold and
62,83% at 50% threshold, in the dog case it showed an average of 62,83% at 25%
threshold and 80,15% at 50% threshold.

Table 4.4: YOLOv7 results in plain grass environment.

Conditions
Distance from the camera Crouching Standing Human W/ dog Threshold Human IoU Dog IoU Miss-detection

3m
x

50%

94,40%
x 86,00%

x 94,00% 86,00%

6m
x 84,00%

x 84,00%
x 90,00% 86,00%

9m
x 84,00%

x 86,00%
x 83,00% 90,00%

Average 87,27% 87,33%

The YOLOv7 thermal camera results in plain grass showed to be very good as
well, averaging 87,27% for human IoU and 87,33% for the dog IoU, with no miss
detections in this case.

Table 4.5: YOLOv7 RGB results in plain grass environment.

Conditions
Distance from the camera Crouching Standing Human W/ dog Threshold Human IoU Dog IoU Miss-detection

3m
x 50% 92,00%

x 50% 88,00%
x 50% 85,00% 54,00%

6m
x 50% 88,00%

x 50% 83,00%
x 50% 76,00% 57,00%

9m
x 50% 52,00%

x 50% 52,00%
x 25% 45,00% 35,00%

Average 73,44% 48,67%

YOLOv7 RGB camera results were good but not as good as the thermal camera
results which prove how good the thermal camera can be when used for live-
detection purposes. Averaging 73,44% for the human IoU and 45,67% for the dog
IoU, with no miss-detections.

44

Chapter 5

Conclusion

The aim to develop a detection system for human and animal presence was ful-
filled. The testing of the system in a real-world environment was successfully met
accordingly. This chapter compares the results and goals met to the requirements
presented in chapter 1.

5.1 Requirement analysis

1. Successful detection at a distance of 3 meters from the target

The main system proved to efficiently detect the target at 3 meters from
the camera in both environments (forestry and plain grass). Showing better
results in plain grass because of the lack of bushes and trees.

2. Different testing environments (forestry, plain grass)

The system was tested in the forest environment and the plain grass envi-
ronment. Providing results for better comparison between environments as
well as serving as a reference for future studies.

3. Human and dog detection in different poses.

In this work, the effort of using an animal as a target was made possible,
providing two common targets for accidents using forest cleaning robots.

4. Detection with different light conditions (direct sunlight, shade).

The tests of the system were made on two different days with weeks be-
tween each other, providing a sunlight and shady environment in the forest
environment and a reduced lighting environment in the plain grass.

5. Detection with different distances from the target to the camera.

Detection with different distances from the camera to the target was pre-
sented in the results, providing a better understanding of how far the sys-
tem can detect consistently.

45

Chapter 5

6. Live inference and post-captured video inference as a benchmark.

The forest detection test was made using post-captured video and the plain
grass test was made using live inference for the SSD MobileNet V2, and the
post-captured video for the YOLO v7.

5.2 Future work

This work has been developed towards a target application, and for this appli-
cation in particular, some future adjustments are suggested. The performance of
the detector might be limited due to the quality of the currently available data,
and thus a quick fix will be to gather more diversified data from different envi-
ronments, as well as execute the respective detection tests.

To improve the detection quality, the use of transfer learning is suggested. Re-
training the SSD MobileNet V2 with thermal images can prove to be a strong
improvement to the system.

It would be interesting to further investigate how the system could be combined
with other sensors, such as sound or LIDAR.

The implementation of this work on the SafeForest robot and executing live de-
tection tests using the system mounted on the robot is a further suggestion.

46

References

[1] S.-M.-A. J, D. T, B. R, et al., “Forest fires in europe, middle east and north
africa 2020,” no. KJ-NA-30862-EN-N (online),KJ-NA-30862-EN-C (print),
2021, ISSN: 1831-9424 (online),1018-5593 (print). DOI: 10.2760/216446(online)
,10.2760/059331(print).

[2] C. A. Felsemburgh, “Empreendedorismo e inovação na engenharia florestal
3,” Ponta Grossa – Paraná – Brasil: Atena Editora, 2021, ISBN: 978-65-5706-
963-9. DOI: 10.22533/at.ed.639211404.

[3] D. Topolsky, I. Topolskaya, I. Plaksina, et al., “Development of a mobile
robot for mine exploration,” Processes, vol. 10, no. 5, 2022, ISSN: 2227-9717.
DOI: 10.3390/pr10050865. [Online]. Available: https://www.mdpi.com/
2227-9717/10/5/865.

[4] SAFEFOREST. “Semi-autonomous robotic system for forest cleaning and
fire prevention.” (2023), [Online]. Available: %5Curl%7Bhttps://safeforest.
ingeniarius.pt/#overview%7D (visited on 03/18/2022).

[5] G. O. Strawn, “Masterminds of deep learning,” IT Professional, vol. 24, no. 3,
pp. 13–15, 2022. DOI: 10.1109/MITP.2022.3172838.

[6] T. Hoeser and C. Kuenzer, “Object detection and image segmentation with
deep learning on earth observation data: A review-part i: Evolution and
recent trends,” Remote Sensing, vol. 12, no. 10, 2020, ISSN: 2072-4292. DOI:
10.3390/rs12101667. [Online]. Available: https://www.mdpi.com/2072-
4292/12/10/1667.

[7] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the recent
architectures of deep convolutional neural networks,” CoRR, vol. abs/1901.06032,
2019. arXiv: 1901.06032. [Online]. Available: http://arxiv.org/abs/
1901.06032.

[8] A. A. Süzen, B. Duman, and B. Şen, “Benchmark analysis of jetson tx2, jet-
son nano and raspberry pi using deep-cnn,” 2020 International Congress on
Human-Computer Interaction, Optimization and Robotic Applications (HORA),
pp. 1–5, 2020.

[9] Y. Wang, Y. Zhang, and K. Chen, “Real-time monitoring of ship targets at
sea based on jetson nano,” in 2022 IEEE International Conference on Artificial
Intelligence and Computer Applications (ICAICA), 2022, pp. 166–169. DOI: 10.
1109/ICAICA54878.2022.9844502.

47

https://doi.org/10.2760/216446 (online),10.2760/059331 (print)
https://doi.org/10.2760/216446 (online),10.2760/059331 (print)
https://doi.org/10.22533/at.ed.639211404
https://doi.org/10.3390/pr10050865
https://www.mdpi.com/2227-9717/10/5/865
https://www.mdpi.com/2227-9717/10/5/865
%5Curl%7Bhttps://safeforest.ingeniarius.pt/#overview%7D
%5Curl%7Bhttps://safeforest.ingeniarius.pt/#overview%7D
https://doi.org/10.1109/MITP.2022.3172838
https://doi.org/10.3390/rs12101667
https://www.mdpi.com/2072-4292/12/10/1667
https://www.mdpi.com/2072-4292/12/10/1667
https://arxiv.org/abs/1901.06032
http://arxiv.org/abs/1901.06032
http://arxiv.org/abs/1901.06032
https://doi.org/10.1109/ICAICA54878.2022.9844502
https://doi.org/10.1109/ICAICA54878.2022.9844502

Chapter 5

[10] H. T. Minh, L. Mai, and T. V. Minh, “Performance evaluation of deep learn-
ing models on embedded platform for edge ai-based real time traffic track-
ing and detecting applications,” in 2021 15th International Conference on Ad-
vanced Computing and Applications (ACOMP), 2021, pp. 128–135. DOI: 10.
1109/ACOMP53746.2021.00024.

[11] R. Nikhil, B. Anisha, and R. Kumar P., “Real-time monitoring of agricultural
land with crop prediction and animal intrusion prevention using internet of
things and machine learning at edge,” in 2020 IEEE International Conference
on Electronics, Computing and Communication Technologies (CONECCT), 2020,
pp. 1–6. DOI: 10.1109/CONECCT50063.2020.9198508.

[12] C. Rau. “NVIDIA tensorrt documentation.” (2022), [Online]. Available: https:
//docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.
html#overview (visited on 01/03/2023).

[13] M. Abadi, P. Barham, J. Chen, et al., “{Tensorflow}: A system for {large-
scale} machine learning,” in 12th USENIX symposium on operating systems
design and implementation (OSDI 16), 2016, pp. 265–283.

[14] W. Liu, D. Anguelov, D. Erhan, et al., “SSD: Single shot MultiBox detector,”
in Computer Vision – ECCV 2016, Springer International Publishing, 2016,
pp. 21–37. DOI: 10 . 1007 / 978 - 3 - 319 - 46448 - 0 _ 2. [Online]. Available:
https://doi.org/10.1007%2F978-3-319-46448-0_2.

[15] L. Weng, “Object detection part 4: Fast detection models,” lilianweng.github.io,
2018. [Online]. Available: https://lilianweng.github.io/posts/2018-
12-27-object-recognition-part-4/.

[16] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bilenetv2: Inverted residuals and linear bottlenecks,” 2018. DOI: 10.48550/
ARXIV.1801.04381. [Online]. Available: https://arxiv.org/abs/1801.
04381.

[17] A. Krizhevsky, “Convolutional deep belief networks on cifar-10,” May 2012.

[18] A. Srivastava, A. Dalvi, C. D. Britto, H. Rai, and K. Shelke, “Explicit content
detection using faster r-cnn and ssd mobilenet v2,” 2020.

[19] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, Yolov7: Trainable bag-of-
freebies sets new state-of-the-art for real-time object detectors, 2022. DOI: 10 .
48550/ARXIV.2207.02696. [Online]. Available: https://arxiv.org/abs/
2207.02696.

[20] Y. Wang, H. Wang, and Z. Xin, “Efficient detection model of steel strip sur-
face defects based on yolo-v7,” IEEE Access, vol. 10, pp. 133 936–133 944,
2022. DOI: 10.1109/ACCESS.2022.3230894.

[21] E. S. T. K. Reddy and R. V, “Pothole detection using cnn and yolo v7 algo-
rithm,” in 2022 6th International Conference on Electronics, Communication and
Aerospace Technology, 2022, pp. 1255–1260. DOI: 10.1109/ICECA55336.2022.
10009324.

[22] M. Hossin and S. M.N, “A review on evaluation metrics for data classifi-
cation evaluations,” International Journal of Data Mining Knowledge Manage-
ment Process, vol. 5, pp. 01–11, Mar. 2015. DOI: 10.5121/ijdkp.2015.5201.

48

https://doi.org/10.1109/ACOMP53746.2021.00024
https://doi.org/10.1109/ACOMP53746.2021.00024
https://doi.org/10.1109/CONECCT50063.2020.9198508
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#overview
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#overview
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#overview
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007%2F978-3-319-46448-0_2
https://lilianweng.github.io/posts/2018-12-27-object-recognition-part-4/
https://lilianweng.github.io/posts/2018-12-27-object-recognition-part-4/
https://doi.org/10.48550/ARXIV.1801.04381
https://doi.org/10.48550/ARXIV.1801.04381
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1801.04381
https://doi.org/10.48550/ARXIV.2207.02696
https://doi.org/10.48550/ARXIV.2207.02696
https://arxiv.org/abs/2207.02696
https://arxiv.org/abs/2207.02696
https://doi.org/10.1109/ACCESS.2022.3230894
https://doi.org/10.1109/ICECA55336.2022.10009324
https://doi.org/10.1109/ICECA55336.2022.10009324
https://doi.org/10.5121/ijdkp.2015.5201

References

[23] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and S. Savarese,
“Generalized intersection over union: A metric and a loss for bounding
box regression,” in Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 2019, pp. 658–666.

[24] T.-Y. Lin, M. Maire, S. Belongie, et al., Microsoft coco: Common objects in con-
text, 2014. DOI: 10.48550/ARXIV.1405.0312. [Online]. Available: https:
//arxiv.org/abs/1405.0312.

[25] Microsoft. “Common objects in context.” (2023), [Online]. Available: https:
//cocodataset.org/#detection-leaderboard (visited on 01/30/2023).

[26] G. Brazil, X. Yin, and X. Liu, Illuminating pedestrians via simultaneous detec-
tion amp; segmentation, 2017. DOI: 10.48550/ARXIV.1706.08564. [Online].
Available: https://arxiv.org/abs/1706.08564.

[27] S. Zhang, J. Yang, and B. Schiele, “Occluded pedestrian detection through
guided attention in cnns,” in 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2018, pp. 6995–7003. DOI: 10.1109/CVPR.2018.
00731.

[28] F. Altay and S. Velipasalar, “The use of thermal cameras for pedestrian de-
tection,” IEEE Sensors Journal, vol. 22, no. 12, pp. 11 489–11 498, 2022. DOI:
10.1109/JSEN.2022.3172386.

[29] M. Krišto, M. Ivasic-Kos, and M. Pobar, “Thermal object detection in diffi-
cult weather conditions using yolo,” IEEE Access, vol. 8, pp. 125 459–125 476,
2020. DOI: 10.1109/ACCESS.2020.3007481.

[30] D. Franklin. “Jetson nano brings ai computing to everyone.” (2019), [On-
line]. Available: https://developer.nvidia.com/blog/jetson-nano-ai-
computing/ (visited on 03/18/2019).

[31] NVIDIA. “Nvidia turing gpu architecture.” (2018), [Online]. Available: https:
//images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/
technologies / turing - architecture / NVIDIA - Turing - Architecture -
Whitepaper.pdf.

[32] F. ADK™. “Flir adk thermal vision automotive development kit | teledyne
flir.” (2022), [Online]. Available: https://www.flir.eu/products/adk/
(visited on 03/18/2019).

[33] Hexagon. “Flir adk specifications.” (2022), [Online]. Available: https://
autonomoustuff.com/products/flir-adk.

[34] Apple. “Iphone 11 pro - technical specifications.” (2019), [Online]. Avail-
able: https://support.apple.com/kb/SP805?viewlocale=en_US&locale=
pt_PT (visited on 01/18/2023).

[35] NVIDIA. “Nvidia jetpack documentation.” (2023), [Online]. Available: https:
//docs.nvidia.com/jetson/jetpack/introduction/index.html.

[36] D. Franklin. “Jetson nano brings ai computing to everyone.” (2019), [On-
line]. Available: https://developer.nvidia.com/blog/jetson-nano-ai-
computing/ (visited on 03/18/2019).

[37] D. Merkel, “Docker: Lightweight linux containers for consistent develop-
ment and deployment,” Linux journal, vol. 2014, no. 239, p. 2, 2014.

49

https://doi.org/10.48550/ARXIV.1405.0312
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1405.0312
https://cocodataset.org/#detection-leaderboard
https://cocodataset.org/#detection-leaderboard
https://doi.org/10.48550/ARXIV.1706.08564
https://arxiv.org/abs/1706.08564
https://doi.org/10.1109/CVPR.2018.00731
https://doi.org/10.1109/CVPR.2018.00731
https://doi.org/10.1109/JSEN.2022.3172386
https://doi.org/10.1109/ACCESS.2020.3007481
https://developer.nvidia.com/blog/jetson-nano-ai-computing/
https://developer.nvidia.com/blog/jetson-nano-ai-computing/
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.flir.eu/products/adk/
https://autonomoustuff.com/products/flir-adk
https://autonomoustuff.com/products/flir-adk
https://support.apple.com/kb/SP805?viewlocale=en_US&locale=pt_PT
https://support.apple.com/kb/SP805?viewlocale=en_US&locale=pt_PT
https://docs.nvidia.com/jetson/jetpack/introduction/index.html
https://docs.nvidia.com/jetson/jetpack/introduction/index.html
https://developer.nvidia.com/blog/jetson-nano-ai-computing/
https://developer.nvidia.com/blog/jetson-nano-ai-computing/

Chapter 5

[38] C. analytics. “Data science platform.” (2012), [Online]. Available: https:
//www.anaconda.com/ (visited on 10/18/2022).

[39] NVIDIA. “Nvidia cuda toolkit.” (2007), [Online]. Available: https://docs.
nvidia.com/jetson/jetpack/introduction/index.html.

[40] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7: Trainable bag-
of-freebies sets new state-of-the-art for real-time object detectors,” arXiv
preprint arXiv:2207.02696, 2022.

50

https://www.anaconda.com/
https://www.anaconda.com/
https://docs.nvidia.com/jetson/jetpack/introduction/index.html
https://docs.nvidia.com/jetson/jetpack/introduction/index.html

	Introduction
	Context and Motivation
	Proposed solution
	Requirements

	Fundamentals and concepts
	Deep learning
	Convolutional neural networks

	Edge machine learning
	Relevant work on edge machine learning
	TensorRT
	Detection Models

	Detection model evaluation
	Recall and precision
	Intersection over union
	COCO dataset evaluation

	Thermal cameras and human detection

	Method
	Hardware
	Graphic processing units (GPUs)
	Cameras

	Systems overview
	Benchmark system

	Systems evaluation

	Results
	Results
	Forest
	Plain grass scenario

	Conclusion
	Requirement analysis
	Future work

