

Henrique Ferreira Cardoso

Dissertation within the scope of an Integrated Masters in Eletrical and Computer

Engineering supervised by Professor Jorge Batista presented to the Department of

Eletrical and Computer Engineering of the Faculty of Sciences and Technology of the

University of Coimbra

NEUROMORPHIC VISION-BASED

TRAFFIC ANOMALY DETECTION

February 2023

H
en

ri
q

u
e

F
er

re
ir

a
C

ar
d

o
so

N

E
U

R
O

M
O

R
P

H
IC

 V
IS

IO
N

-B
A

S
E

D
 T

R
A

F
F

IC
 A

N
O

M
A

L
Y

D
E

T
E

C
T

IO
N

Neuromorphic Vision-Based Traffic

Anomaly Detection

Henrique Ferreira Cardoso

February 2023

Neuromorphic Vision-Based Traffic

Anomaly Detection

Supervisor:

Professor Dr. Jorge Manuel Moreira de Campos Pereira Batista

Jury:

Prof. Dr. Hélder de Jesus Araújo

Prof. Dr. João Pedro de Almeida Barreto

Prof. Dr. Jorge Manuel Moreira de Campos Pereira Batista

Dissertation submitted in partial fulfilment for the degree of Master of Science in Electrical

and Computer Engineering.

February 2023

Agradecimentos

A conclusão desta dissertação e fase da minha vida só foi possível devido às pessoas à

minha volta. Como tal, gostaria de agradecer a algumas destas pessoas.

Em primeiro lugar, um grande obrigado ao meu orientador Professor Jorge Batista pela

sua ajuda, dedicação e orientação ao realizar esta etapa. Um obrigado também pela confiança

no meu trabalho e nas minhas capacidades. Agradeço também à equipa e colegas presentes no

laboratório, que apresentaram disponibilidade para acolher e também ajudar em momentos

de necessidade.

De seguida gostaria de agradecer especialmente aos meus pais, à minha irmã e à minha

tia, que constantemente fizeram de tudo para me proporcionar as melhores oportunidades

para alcançar o sucesso. Um eterno obrigado aos meus avós, que sempre me motivaram a

seguir em frente. Sempre desejaram conseguir ver-me concluir esta fase, no entanto tal já

não é possível.

Obrigado pelos meus amigos que sempre mostraram a sua presença em todas as vivências

e memórias, especialmente nos momentos de fraqueza ou fragilidade. Sempre me deram força

para seguir em frente e almejar um futuro com sucesso.

Obrigado a todos colegas e amigos de curso, que sempre me ajudaram a conquistar os

melhores resultados ao longo da licenciatura e mestrado, sem os quais não seria possível

chegar a esta meta.

Obrigado aos colegas da minha equipa de voleibol, que com o seu acompanhamento e

dedicação, sempre tornaram possível manter o equilíbrio necessário entre o intelectual e o

físico.

Por fim, um obrigado a todas as pessoas que se cruzaram comigo no decorrer da minha

vida e que, consequentemente, ajudaram a moldar a pessoa que sou hoje.

Um sentido obrigado a todos!

ii

Abstract

Anomaly detection is a crucial aspect of ensuring public safety in modern society. With

the increasing use of automated systems and intelligent technologies, the ability to detect

anomalous events in real-time has become more critical than ever. The proposed models in

this work demonstrate the potential of using Generative Adversarial Networks (GANs) for

Abnormal Event Detection (AED).

The data used in this work is obtained through the use of Event Cameras (ECs), which

are a significant advantage over traditional cameras, as ECs operate by measuring changes

in brightness in each pixel independently, allowing them to detect motion with a very high

temporal resolution, which makes them well-suited for tasks such as real-time monitoring

and other applications where high temporal resolution is important. The dynamic range of

ECs enables them to capture images with higher efficiency in challenging conditions, such as

low light or high contrast environments, surpassing the performance of conventional cameras.

This dissertation explores the use of GANs for AED in pedestrian contexts using event-

based data in order to demonstrate the potential of these techniques, attempting to help

improve the safety and efficiency of modern surveillance systems. Specifically, this work

validates two GAN models, a conditional GAN (cGAN) and the Pix2Pix model, both making

use of PatchGAN as a discriminator, to generate realistic and representative images from

event-based data. The generated images are then used to detect whether an event is normal

or abnormal, with the aim of seeing these events in real-world scenes.

Overall, this work benefits from the growing body of research on using GANs for computer

vision tasks and demonstrates their potential to be used in real-world applications such as

surveillance monitoring. The results of this work provide validation for existing research in

this area adapted for AED tasks.

Keywords: Anomaly Detection, Event Cameras, Generative Adversarial Net-

works, Monitoring.

iv

Resumo

A deteção de anomalias é um aspeto crucial da segurança pública na sociedade moderna.

Com o aumento do uso de sistemas automatizados e tecnologias inteligentes, a capacidade

de detetar eventos anómalos em tempo real tornou-se mais crítica do que nunca. Os modelos

propostos neste trabalho mostram o potencial do uso de Generative Adversarial Networks

(GANs) para a Deteção de Eventos Anómalos (AED).

Os dados utilizados neste trabalho são obtidos através do uso de Câmaras de Eventos

(ECs), sendo uma vantagem significativa relativamente às câmaras tradicionais, visto que

estas operam ao medir mudanças de brilho em cada pixel de forma independente, o que

lhes permite detetar o movimento com uma resolução temporal muito elevada, tornando-as

adequadas para tarefas como monitorização em tempo real e outras aplicações onde a alta

resolução temporal é importante. A gama dinâmica das ECs permite-lhes capturar imagens

com maior eficiência em condições aadversas, tais como ambientes com pouca luz ou com

alto contraste, superando o desempenho das câmaras convencionais.

Esta dissertação usa GANs para AED em contextos pedestres usando dados de eventos,

para mostrar o potencial dessas técnicas, ajudando a melhorar a segurança e eficiência dos

sistemas de vigilância modernos. Especificamente, são validados dois modelos de GANs,

uma conditional GAN (cGAN) e o modelo Pix2Pix, ambos fazendo uso de uma PatchGAN

enquanto discriminador, para gerar imagens realistas e representativas a partir de dados de

eventos. As imagens geradas são usadas para detetar se um evento é normal ou anómalo.

No geral, este trabalho beneficia da crescente pesquisa sobre o uso de GANs para tarefas

de Visão por Computador e demonstra o seu potencial para serem usados em aplicações reais,

tais como monitorização de vigilância. Os resultados deste trabalho fornecem validação para

a pesquisa existente nesta área, adaptada para tarefas de AED.

Palavras-Chave: Deteção de Anomalias, Câmaras de Eventos, Generative Ad-

versarial Networks, Monitorização.

v

Contents

Agradecimentos ii

Abstract iv

Resumo v

List of Acronyms viii

List of Figures x

List of Tables xiii

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Main Objectives and Achievements . 2

1.3 Thesis Overview . 3

2 State of the Art 5

2.1 AED using Conventional Cameras . 5

2.1.1 AI City Challenge . 5

2.1.2 Context Cueing Generative Adversarial Network 7

2.1.3 Decision Trees . 9

2.2 AED Using Event-based Data . 12

2.2.1 Optical Flow approach . 12

2.2.2 GAN-based approach . 15

3 Background Knowledge 17

3.1 Event Cameras . 17

3.2 Event-based Data Processing . 19

vi

3.3 Generative Adversarial Networks . 20

3.3.1 GANs as Unsupervised Learning . 21

3.3.2 Generative Modelling . 21

3.3.3 Generator and Discriminator Models 22

3.3.4 PatchGAN Discriminator . 23

3.3.5 GANs in Real-World Applications . 24

3.4 Conditional Generative Adversarial Networks 25

3.5 Image-to-Image Translation with cGANs . 26

4 Material and Methods 29

4.1 Conditional GAN for Anomaly Detection . 29

4.1.1 DL Memory Surface Generation Network 30

4.1.2 Sparse Convolutional cGAN Network 33

5 Developed Work 37

5.1 Datasets Pre-Processing . 37

5.1.1 ActDataset . 39

5.1.2 PedDataset . 41

5.2 DL Memory Surface Network . 43

5.3 Conditional GAN Network . 46

5.4 Implementation Details and Metrics . 53

6 Experimental Results 57

7 Conclusion and Further Work 61

8 Bibliography 63

vii

List of Acronyms

AED Abnormal Event Detection

AUC Area Under Curve

CC-GAN Context-Cueing Generative Adversarial Network

CNN Convolutional Neural Network

cGAN Conditional Generative Adversarial Network

DVS Digital Video Stabilization

EC Event Camera

EER Equal Error Rate

EMST Event-based Multiscale Spatial-Temporal

FN False Negatives

FNR False Negatives Rate

FP False Positives Rate

FPR False Positives Rate

Forward KL Forward Kullback-Leibler

GAN Generative Adversarial Network

GFTT Good Features to Track

IOU Intersection Over Union

MSE Mean Squared Error

MOG Mixture of Gaussians

viii

MS Memory Surface

OF Optical Flow

ROI Region of Interest

SAE Surface of Active Events

SGD Stochastic Gradient Descent

SR Sparse Representation

SSC Submanifold Sparse Convolutions

TP True Positives

TPR True Positives Rate

TN True Negatives

TNR True Negatives Rate

TS Time Surface

YOLO You Only Look Once

ix

List of Figures

1.1 Example of a normal (left) and anomalous (right) event. 3

2.1 Representation of the hand-crafted framework pipeline, consisting of pre-

processing, dynamic tracking module and post-processing. 6

2.2 Structure of the CC-GAN approach. It shows the two generative networks,

the Scene Refining Generative Network and Region Synthesizing Generative

Network, and the two discriminative networks, the Scene-level discriminator

and Region-level discriminator, along with the pipeline of image manipulation

implemented. 8

2.3 Flow chart of the suggested implementation. 10

2.4 Decision tree algorithm for anomaly detection. 11

2.5 Framework of the NeuroAED system. 13

2.6 Normal (a) and abnormal ((b),(c),(d)) events from NeuroAED’s Walking sub-

dataset. 14

3.1 Comparison between the output from traditional frame cameras and DVS

when capturing a moving dot (a), a stopped dot (b), or a dot moving at a

fast pace (c). 18

3.2 Comparison between the output from traditional frame cameras (a) and DVS

(b) when in a real context. 19

3.3 Abstract example of a GAN architecture. 22

3.4 Abstract example of a PatchGAN network. 24

3.5 Abstract example of a cGAN architecture. 26

3.6 Examples of the Pix2Pix model results when applied to different situations in

image-to-image translation. 27

x

3.7 U-net architecture. Each blue box corresponds to a multi-channel feature

map. The number of channels is denoted on top of the box. The x-y-size

is provided at the lower left edge of the box. White boxes represent copied

feature maps. The arrows denote the different operations. 28

4.1 Pipeline of the EvAn framework. C refers to the number of channels per layer

and k represents the kernel. 30

4.2 Discretized events (bottom) and noise filtered events (top) accumulated over

∆T of 10ms (a), 30ms (b) and 50ms (c). 31

4.3 Discretized events (left) DL memory surfaces (right) for bending (a) and run-

ning (b) activities. A colormap (c) is used for better visualization. (0: Black,

255: Yellow) . 32

4.4 TS for three different activities (one for each row). In red are represented the

zones in which a certain threshold is exceeded. 35

5.1 Discretized events (bottom of each sub-figure) and noise filtered events (top

of each sub-figure) accumulated over ∆T of 10ms (a), 30ms (b) and 50ms

(c), 70ms (d), 90ms (e), 100ms (f). 39

5.2 Consecutive frames of ActDataset’s Walking action to the right (top row), to

the left (middle row) and towards the camera (bottom row). 40

5.3 Examples of event-based frames present in the PedDatset. 42

5.4 Padding applied to a discrete volume of events with a depth of eight time

surfaces. 44

5.5 Time surfaces at instants t-8 (a), t-5(b), t-1 (c) and t+1 (e) and the obtained

memory surface that corresponds to instant t (d) for the Walking action of

ActDataset. 44

5.6 Time surfaces at instants t-8, t-5, t-1 (first to third columns, respectively)

and t+1 (last column) and the obtained memory surface that corresponds to

instant t (fourth column) for the Arm Crossing, Getting Up, Picking Up and

Jumping actions of ActDataset. 45

5.7 Time surfaces at instants t-8 (a), t-5(b), t-1 (c) and t+1 (e) and the obtained

memory surface that corresponds to instant t (d) on the PedDataset. 46

5.8 First implementation of the discriminator model. 47

5.9 Cosine Annealing Learning Rate. 48

xi

5.10 Real frames (left of each sub-figure) compared to generated frames (right of

each sub-figure) when trained for one direction. 49

5.11 Real frames (left of each sub-figure) compared to generated frames (right of

each sub-figure) when trained for two directions. 49

5.12 Real frames (left of each sub-figure) compared to generated frames (right of

each sub-figure) when trained for three directions. 49

5.13 Real frames (left of each sub-figure) compared to generated frames (right of

each sub-figure) when trained for the right direction of Walking on ActDataset. 51

5.14 Real frames (left of each sub-figure) compared to generated frames (right of

each sub-figure) when trained for the left direction of Walking on ActDataset. 51

5.15 MS (left) and real frames (middle) compared to generated frames (right) when

trained for the Arm Crossing action of ActDataset. 52

5.16 MS (left) and real frames (middle) compared to generated frames (right) when

trained for the Getting Up action of ActDataset. 52

5.17 MS (left) and real frames (middle) compared to generated frames (right) when

trained for the Picking Up action of ActDataset. 52

5.18 MS (left) and real frames (middle) compared to generated frames (right) when

trained for the Jumping action of ActDataset. 53

6.1 Loss curves of the generator (blue) and discriminator (orange) networks when

trained with standard parameters (a), extended epochs from 200 to 400 (b)

and a Cosine Annealing adaptive learning rate (c) on ActDataset. Loss curves

of the generator and discriminator networks when trained with standard pa-

rameters on PedDataset. 59

6.2 ROC curve for Pix2Pix model trained with standard parameters, being in-

ferred at epoch 10 (a), epoch 120 (b), epoch 200 (c) and epoch 400 (d), and

with a Cosine Annealing adaptive learning rate (e) on ActDataset. ROC curve

for Pix2Pix model trained with standard parameters, being inferred at epoch

200 (f), on PedDataset. 60

xii

List of Tables

2.1 Description of the events that are considered normal and abnormal in each

sub-dataset. 14

2.2 AUC and EER for each dataset using both Slice-Level and Pixel-Level mea-

surements. 15

5.1 Description of the events that are considered normal and abnormal in Act-

Dataset. 41

5.2 Description of the events that are considered normal and abnormal in Ped-

Dataset. 42

5.3 Description of the events that are considered normal and abnormal in Ped-

Dataset. 43

5.4 Parameters and structure of the DL memory surface generation network. . . 46

5.5 Parameters and structure of the DL memory surface generation network. . . 50

6.1 Metric results for the Pix2Pix model trained on PedDataset. 58

6.2 Metric results for the Pix2Pix model trained on ActDataset. 59

xiii

1 Introduction

This first chapter presents the context, main objectives and main contributions on which

the developed work is based on. It is also provided an overview of the thesis structure.

1.1 Context and Motivation

In a time of rapid technological evolution, there is an associated need for Computer

Vision to also evolve and advance its methods and algorithms. A widely explored area

for quite some time has been the capacity to detect anomalies in various situations using

conventional cameras, designated as AED. For example, if a street is being analysed in

which pedestrians are supposed to walk in one direction, if one person walks in the opposite

direction, such an event can be defined as an anomaly. If this same street is still under

watch and pedestrians are expected to walk, if a person is jumping or running is performing

an anomalous activity. This can be applied to the presented pedestrian situations to the

same degree that it can be used in multiple situations, such as surveillance cameras or traffic

contexts. Therefore, AED can grow to be an important part of safety in society. Since it

has been introduced as a challenge, researchers developed either hand-crafted patterns and

frameworks or Deep Learning (DL) algorithms, always improving their capacity to better

detect anomalous events.

Lately, a different type of camera technology has surfaced and it has attracted a lot

of interest due to its advantages. These are called ECs, bio-inspired novel sensors that

asynchronously record changes in illumination in the form of events [1]. This allows the

processing algorithms to only process the changes in a scene instead of working on the entire

scene every time, providing higher efficiency since it has a smaller computational burden. A

better description of the technology behind these cameras will be provided in Section 3.1.

A big concern of AED using conventional cameras is the privacy of individuals, due to

the cameras being able to capture the appearance of recorded people. Another great impact

1

of ECs in the future of Computer Vision is the fact that, since it detects movement, they

can mainly capture edges, presenting a way to perform the detection of anomalous events

without the need to discuss privacy transgressions.

The above-mentioned characteristics, along with the fact that there are very few published

articles and available online datasets concerning the use of ECs for AED, introduce not only

a challenge but also a motivation for this dissertation to explore the use of these cameras

with the implementation of a fitting DL algorithm to perform AED.

In the academic year 2020/2021, the author of the dissertation [2] thoroughly studied

some AED methods and was the first to use ECs in our department. These methods will be

presented in Section 2.2.

1.2 Main Objectives and Achievements

The use of DL algorithms has become a valuable asset in performing AED, due to its

results. Although event-based AED still is poorly explored, it has also started to progress

with the use of GANs, already existing a good performing method available in [3]. Further

explanation of GANs will be provided in section 3.3.

In a concise manner, the main objectives of this dissertation are the implementation and

training of a GAN model that makes use of supplied data in order to learn how to generate

normal situations similar to real data. With this model being able to only generate normal

events it is then possible to distinguish anomalous events when these are provided to the

model since it will not be able to generate these events. The data supplied to train this model

comes from a DL network that encodes the temporal information of event-based frames.

The fact that GANs are unsupervised models makes them an asset for AED since the

range of possible anomalous events is unknown. This means that a simple classifier cannot

be used to predict the existence of an anomaly. By generating new normal data in a GAN,

an error can be detected between the generated and real data, indicating an anomaly.

Figure 1.1 demonstrates an example of an anomaly. In this case, a walkway for pedes-

trians is shown in which pedestrians walking is considered a normal event and the presence

of other entities, such as cars, is considered an anomalous event.

2

Figure 1.1: Example of a normal (left) and anomalous (right) event.

In order to fulfil the desired objectives, the algorithms developed and presented in this

dissertation are:

• DL Memory Surface (MS)

• Conditional Generative Adversarial Network (cGAN)

These algorithms are based on the implementation detailed in [3] with an adaptation

based on [4].

A more detailed explanation of these algorithms is provided in Section 4.

1.3 Thesis Overview

This dissertation’s composition goes as follows:

• Chapter 2: The state of the art regarding AED using both conventional cameras and

ECs.

• Chapter 3: The required knowledge to fully understand the proposed methodologies.

• Chapter 4: The materials and methods required to develop the proposed work.

• Chapter 5: The implemented work and each step toward the final results.

• Chapter 6: The analysis of the results achieved during and after the developed work.

• Chapter 7: The final conclusions, limitations and future work to be done.

3

2 State of the Art

This chapter introduces previous work related to AED using conventional frame and

event-based cameras. Some of the techniques presented will be based on hand-crafted frame-

works but the most important ones utilise DL algorithms. It is to be noted that methods

regarding conventional frame cameras are vastly more explored, being presented more strate-

gies regarding these cameras.

2.1 AED using Conventional Cameras

Although the main objectives of this dissertation involve the use of event-based data

provided by ECs, it is reasonable to first analyse the methods developed for AED with

traditional cameras.

Anomaly detection is an unsupervised pattern recognition task in which the use of deep

generative models has a become valuable asset. These methods, along with their main focus

and performance, are discussed in [5]. Some of the most relevant methods will be presented

below.

It is worth noticing that the approaches that will be further explained mainly focus on

background and foreground modelling, providing spatial context. All these methods also use

Deep Learning algorithms for the detection of objects in each frame.

2.1.1 AI City Challenge

With the goal of making cities and their roads safer, the Nvidia AI City Challenge aims

to improve the efficiency of operations in city environments by challenging its competitors to

develop methods that solve certain problems and are part of intelligent city transportation

management systems. Since 2018, one of the problems present in this challenge has been the

detection of abnormal events.

5

5th AI City Challenge 2021

The framework that is going to be presented has ranked first place in the 5th AI City

Challenge Challenge 2021 [6] by using a hand-crafted framework presented and discussed in

[7].

The authors of [7] proposed an approach that consists of pre-processing, a dynamic

tracking module and post-processing. The pipeline for this implementation is visible in

Figure 2.1.

Figure 2.1: Representation of the hand-crafted framework pipeline, consisting of pre-

processing, dynamic tracking module and post-processing. (Taken from [7])

The pre-processing step incorporates video stabilization, background modelling, vehicle

detection and mask generation.

Since there can be adverse conditions on the camera that may affect the stability of

the video, the authors of [7] start by using Digital Video Stabilization (DVS) to correct

camera motion oscillations. This is accomplished by estimating the camera movements and

proceeding to correct and smooth these movements. They also use a combination of feature

point matching using Good Features to Track (GFTT) and estimate the sparse optical flow

to generate frame-to-frame transformations.

In order to perform the background modelling they need to distinguish foreground from

background, which requires an adaptive background representation, due to the possibility of

flawed video sources. This drives them to use background modelling based on the Mixture

of Gaussians (MOG). They concluded that background modelling makes stopped vehicles

clearer, whilst forward modelling can be used as an auxiliary to get a more precise start time

of the anomaly.

Vehicle detection is performed with the use of two two-stage detectors. Their main

6

detector for object detection was Faster R-CNN [8], whilst the Cascade R-CNN [9] was used

as a secondary way to improve the performance of the detection.

Mask generation is used with the goal of preventing stationary vehicles on the side of the

road and parking lots from being identified as anomalous events.

The dynamic tracking module has the object of filtering out suspicious events. This is

obtained by using the Intersection Over Union (IOU) algorithm to compare the position of

the current object with the position that resulted from the detection on the next frame.

Resorting to six matrices that record pixel regions and the timestamps of the detections,

they then filter true anomalous events.

The post-processing step is responsible for vehicle collision detection and temporal bound-

ary refinement. The anomaly start time of a vehicle crash is at the moment of the crash

and not the moment when the car comes to a complete stop. In order to obtain the moment

of the crash, the authors of this method discovered that they could obtain the estimated

timestamp of when the cars completely stopped and trace the vehicle along the temporal

axis to obtain the time of the collision.

This algorithm proved to be effective when detecting traffic anomalous events like car

crashes and stationary vehicles, which is only able due to the use of conventional cameras

since ECs only detect movement.

2.1.2 Context Cueing Generative Adversarial Network

This approach was proposed in [10] and is based on the use of a Context Cueing Gener-

ative Adversarial Network (CC-GAN) to take advantage of the spatio-temporal context and

generate regions of interest (ROIs), in order to discriminate irregular ones, which correspond

to anomalous events.

The fundamentals of GANs and how they work will be further explained in Section 3.3,

by which this section will only provide a superficial explanation of how CC-GANs were

developed and used for AED.

The implementation proposed by this approach, demonstrated in Figure 2.2, presents a

CC-GAN, a variation of standard GANs, constituted of two generative networks and two

discriminative networks, taking into account that the generators are responsible for recon-

structing scenes by synthesizing ROIs based on the context clues, whilst one discriminator

has the goal to distinguish distorted regions not matching given moving trends, and the

other discriminator seeks to discriminate scenes containing incongruous events that conflict

7

with spatially adjacent surroundings [10].

Figure 2.2: Structure of the CC-GAN approach. It shows the two generative networks, the

Scene Refining Generative Network and Region Synthesizing Generative Network, and the

two discriminative networks, the Scene-level discriminator and Region-level discriminator,

along with the pipeline of image manipulation implemented. (Taken from [10])

Generative Networks

The generative networks aim to reconstruct scenes given enough data for them to find the

patterns from which they proceed with this reconstruction. In order to do so, the training

data sets may only contain normal data, which leads the generators to learn normal patterns

to restore normal scenes in the best way possible. As a consequence, during the test phase,

when given an abnormal example, the generative networks restore a distorted scene that can

be further identified by the discriminators as an anomalous event.

For the generators to produce the desired scenes, Mask-RCNN [11] was used for object

detection, providing the bounding boxes for the desired ROIs. With the ROIs obtained,

ROI Crop [11] was used with the intent to mask out the pixels inside of the bounding box,

resulting in a spatial layout without the objects detected.

The Region Synthesizing Generative Network, Gr, utilises temporal context to estimate

the cropped ROIs. Using a two-channel optical flow, ROI Align [11] is employed to crop the

ROIs and resize them to match the ROIs cropped from the original scene. These obtained

ROIs are fed to Gr as input, resulting in the apparent estimation of the cropped ROIs. ROI

Re-Assign is then used to fuse the estimated ROIs provided from Gr with the spatial layout

from which the original ROIs were cropped out. The fused canvas can then be assigned to

the Scene Refining Generative Network, Gs, as input, resulting in a refined estimated scene,

8

which takes into consideration the spatial context.

The pipeline of these proceedings can be analysed in Figure 2.2.

Discriminative Networks

The discriminators have the objective of distinguishing whether a scene or region is real

or anomalous, given spatial and temporal clues. The Scene-level Discriminator, Ds takes

the whole scene into consideration, learning to detect if the inputs fit the data distribution

of real scenes. The real/fake scenes used as input for Ds are concatenated with the optical

flow obtained from previous scenes. On the other hand, the Region-level Discriminator, Dr,

is used to focus on specific ROIs and determine whether they match their temporal context.

In order to do so, it concatenates the real/fake ROIs with their corresponding optical flow

and uses them as input, resulting in a binary classification.

This implementation is also demonstrated in Figure 2.2.

2.1.3 Decision Trees

Another approach to take into consideration is suggested in [12] and it is based on the

use of decision trees to identify anomalous by utilising information from detections on back-

ground and foreground images provided by traffic cameras. These detections are obtained

with the assistance of a Deep Learning algorithm. Figure 2.3 depicts a representation of the

flow chart this method proposes, which starts by using an automated video sorting system

on the data, followed by a simultaneous process of detection on foreground images and es-

timation of background features and potential anomalous events, ending in a decision tree

algorithm that detects and separates false anomalies. After identification, the start and end

times can be calculated by overlaying the foreground images with anomaly detection.

9

Figure 2.3: Flow chart of the suggested implementation. (Taken from [12])

The vehicle detection model was built using YOLOv5 [13]. YOLOv5 (You Only Look

Once) is the 5th version of a convolutional neural network (CNN) designed for real-time

object detection, that works by dividing an input image into a grid of cells and predicting the

presence and location of objects within each cell. By the time the authors of [12] published

the proposed approach, YOLOv5 was the state-of-the-art object detection algorithm.

For video sorting, the authors of this method acknowledged that different traffic condi-

tions may represent different performances in the detection of anomalous events. Therefore,

videos were sorted considering the type of road (freeways or intersections), weather condi-

tions (the existence of snow) and the time of day (day or night).

In its turn, anomaly detection was composed of three processes: background estimation,

road mask extraction and a decision tree. Since the background estimator learned to obtain

the background by masking out all the vehicles in normal conditions if a car vehicle is detected

10

in a background image, that may be an anomaly. Thus, the candidates for anomalous events

were acquired by passing each estimated background image through YOLOv5.

Lastly, the video foreground and background detections are used as input into the decision

tree algorithm, illustrated in Figure 2.4. The background detection score and its area are

compared to a selected threshold and if greater, an IOU is calculated between the anomaly

candidate and the foreground detections. The frequency of overlapping foreground and

background detections is used to decide whether it is an anomaly or not [12].

Figure 2.4: Decision tree algorithm for anomaly detection. (Taken from [12])

This methodology proved accurate at AED for anomalies near the camera while present-

ing some issues detecting distant anomalies.

11

2.2 AED Using Event-based Data

As the main objective of this dissertation is to implement, validate and discuss an ap-

proach to AED that makes use of event-based data, some already existing methods must be

presented. Event-based AED, also denominated as neuromorphic vision AED, is still poorly

explored, as the first published article [3] about the topic only emerged in November 2019,

being subsequently updated in February 2020. This article proposed a GAN-based approach

to perform AED. Another study [14] was later published in January 2021 and suggested a

different path that makes use of the Optical Flow (OF). Each of these strategies will be

further explained.

In the academic year of 2020/2021, Alessio Silva, in his dissertation presented in [2],

comprehensively studied and validated the OF-based approach [14] for anomaly detection,

amongst other work developed. This motivates this dissertation to study, and validate the

GAN-based approach [3], in addition to applying it to traffic context.

It should be noted that although these methods refer to the use of event-based data, none

of them makes real use of the sparsity of this data, since a technique is always applied to

condense the data into frames, that is, despite the data being from ECs, the algorithms adapt

them to be closer to conventional algorithms. In the algorithm on which this dissertation is

based, these frames are referred to as Time Surfaces, as it will be explained in Section 4.1.

2.2.1 Optical Flow approach

This technique, designated as the NeuroAED system, was presented in [14] and puts

forward a method that relies on the estimation of optical flow, capable of capturing fast-

moving entities in a scene. The authors of this method separate the training and testing

phases, both consisting of three main stages: optical flow extraction, activated event cuboid

selection, and event-based multiscale spatial-temporal (EMST) descriptor generation. These

stages are demonstrated in Figure 2.5.

The OF information is first extracted from the training sample and activated event

cuboids are selected based on the OF and event density. For each activated event cuboid the

EMST descriptor is extracted and fed into sparse representation (SR) models for them to

learn standard situations patterns. The trained models are then used to identify descriptors

of abnormal patterns extracted from the testing samples [14].

12

Figure 2.5: Framework of the NeuroAED system. (Taken from [14])

NeuroAED dataset

Easy access to publicly published datasets obtained using conventional frame-based cam-

eras has allowed computer vision algorithms to rapidly develop since it is possible for these

algorithms to commit direct comparisons in performance.

Considering the important role datasets play in the development of abnormal event de-

tection systems and the lack of a neuromorphic vision-based abnormal event dataset, the

authors of [14] built the first neuromorphic vision-based dataset dedicated to AED, desig-

nated as NeuroAED dataset.

The NeuroAED dataset is composed of 152 samples of four different indoor and outdoor

scenarios, being split into four sub-datasets: Walking, Campus, Square and Stair dataset.

Each of these sub-datasets presents training and testing samples. While the training sam-

ples are only comprised of normal events, the testing samples contain normal and abnormal

events. In each slice of the NeuroAED dataset, there is a corresponding ground-truth an-

notation in the form of a binary flag that indicates whether normal or abnormal events are

occurring.

In each sub-dataset, different actions are considered abnormal, for which Table 2.1

presents the normal and abnormal events for each one. Figure 2.6 illustrates the normal

and abnormal events referred to in Table 2.1.

13

Scenario Normal Events Abnormal Events

Walking dataset Walking

Running

Bicycle

Motorcycle

Campus dataset Walking
Bicycle

Motorcycle

Square dataset Walking Scattering

Stair dataset Walking downstairs
Running

Wrong direction

Table 2.1: Description of the events that are considered normal and abnormal in each sub-

dataset. (Taken from [14])

Figure 2.6: Normal (a) and abnormal ((b),(c),(d)) events from NeuroAED’s Walking sub-

dataset. (Taken from [2])

14

OF-based approach results

For the performance evaluation of the OF-based methodology, two commonly used mea-

surements were adopted: Slice-Level and Pixel-Level.

For the Slice-Level measurement, if one or more cuboids were detected as abnormal

cuboids in a testing event slice, it was labelled as an abnormal slice. If the ground truth

of this slice was abnormal, it was a True Positive (TP). Otherwise, it was a False Positive

(FP).

On the other hand, for the Pixel-level measurement, a detected abnormal slice was TP if

more than 40% truly abnormal pixels were detected. A normal slice was FP as long as one

pixel was detected as abnormal. Pixel-level measurement accentuates the correct detection

of abnormal objects.

The metrics used for each of the above-mentioned measurements were the Area Under

Curve (AUC) and Equal Error Rate (EER) based on the ROC curves. Table 2.2 displays

the metrics values for each measurement and each dataset.

Scenario Slice-Level Pixel-Level

AUC EER AUC EER

Walking dataset 95.8 12.5 87.9 18.7

Campus dataset 85.7 25.5 65.7 38.5

Square dataset 99.7 3.5 - -

Stair dataset 92.0 15.3 74.9 32.2

Table 2.2: AUC and EER for each dataset using both Slice-Level and Pixel-Level measure-

ments. (Taken from [14])

2.2.2 GAN-based approach

In [3] a GAN-based methodology, named EvAn, is presented for AED. In this method

the authors created a DL method that retains the sparsity of the event data, also encoding

the temporal information available. They also suggested the use of a GAN variation, which

receives the temporal information concatenated with the input, conditioning the output.

This GAN variation is designated as Conditional GAN (cGAN).

This procedure was chosen for this dissertation. Hence, it will be thoroughly clarified in

Section 4.1.

15

3 Background Knowledge

This chapter has the objective of providing some required knowledge relating to ECs,

the processing of event-based data and GANs in order to fully understand the proposed

methodology for this dissertation. An alteration of a simple GAN model is also presented,

along with a framework that makes use of it.

3.1 Event Cameras

ECs, firstly known as DVS, are presented in [1] as bio-inspired sensors that differ from

conventional frame-based cameras and provide an event-based vision, also known as neu-

romorphic vision. Simply put, conventional cameras capture the light intensity in a scene,

obtaining full images at a fixed rate, while on the other hand, ECs asynchronously capture

brightness changes in each pixel independently and output a stream of events. The output

of these cameras depends on the amount of motion or brightness changes in the scene, which

means that the faster the motion, the more events are produced.

Every time an event is detected in each pixel, the camera outputs its coordinates xi and

yi, the time, ti at which the event occurred, and the polarity, pi of the change in brightness.

The polarity is represented by a 1-bit that assumes the value 1 ("ON") if the brightness

increases or the value 0 ("OFF") if the brightness decreases.

In comparison with standard cameras, ECs present some characteristics that can be

valued as advantages [1], some of them being:

• High temporal resolution and latency, which allows for events to be detected with

microsecond resolution, due to the camera’s capacity to work each pixel in an individual

manner and consequently nullifying the motion blur conventional cameras usually have;

• Low power consumption, since it is only used to process pixels with brightness changes;

• Very High Dynamic Range (> 120 dB), in contrast with the 60 dB of high-quality

17

conventional cameras, which grants ECs the adequacy to adapt to either very dark or

very bright situations;

Figure 3.1 depicts a comparison between the captured output of conventional frame

cameras and event-based cameras when recording a moving or stopped dot. In each sub-

figure, it is possible to analyse some main differences between these two types of cameras.

In sub-figure 3.1a, due to the high temporal resolution presented by ECs, it can capture

the dot’s movement in greater detail, while the frame-based camera can only capture the

dot at a certain frame rate. Since ECs capture motion, as previously stated, when the dot

is stopped it cannot capture any movement, therefore it presents no events. On the other

hand, the frame-based camera is able to capture the entirety of the image, as expected and

demonstrated in sub-figure 3.1b. Lastly, if the dot is moving at a fast pace, traditional frame

cameras may experience the occurrence of motion blur, while ECs are not susceptible to this

effect, due to their high temporal resolution. This effect is portrayed in sub-figure 3.1c.

(a) (b)

(c)

Figure 3.1: Comparison between the output from traditional frame cameras and DVS when

capturing a moving dot (a), a stopped dot (b), or a dot moving at a fast pace (c). (Taken

from https://youtu.be/cffwH41ReF4)

Figure 3.2 shows the difference in output between the two types of cameras when applied

to a real context. In this case, the cameras represent the perspective from the inside of a car

into the road.

18

https://youtu.be/cffwH41ReF4)

(a) (b)

Figure 3.2: Comparison between the output from traditional frame cameras (a) and DVS

(b) when in a real context. (Taken from https://youtu.be/MjX3z-6n3iA)

These cameras are able to work in low light conditions, meaning they can be used in

different situations in which lighting levels cannot be controlled. Since conventional cameras

could not effectively work in more precarious situations, ECs open up a lot of new possibilities

for Computer Vision to grow and develop.

Some applications can be referred for ECs [15], such as:

• Liquid monitoring;

• Human tracking;

• Metal process monitoring;

• 3D measurement;

• Vibration monitoring.

The author of [1] also refers that these cameras can be used in real-time interaction

systems, in which the above-mentioned characteristics can be revolutionary.

3.2 Event-based Data Processing

As previously stated in Section 2.2, the algorithms presented in this dissertation do not

make real use of the sparsity of event-based data. Therefore, some techniques are used to

encode the sparse event data into frames, such as:

• Binning, which is a simple and widely used technique that divides the data into a

fixed number of time bins, and a count of the number of events that occurred within

19

https://youtu.be/MjX3z-6n3iA)

each bin is recorded. The resulting count vector can be used to represent the data in

a compact form and can be used for various analysis tasks, such as trend analysis and

anomaly detection.

• Interpolation, which is a technique used to estimate values at points where the data

is sparse. In this case, interpolation can be used to estimate the number of events that

occurred at times between the observed events. This allows for a more complete repre-

sentation of the data and can be useful for tasks such as prediction and classification.

• Encoding using temporal windows, which divides the event data into overlapping

or non-overlapping temporal windows, and features are extracted for each window.

The features can include, for example, the count of events, the mean and standard

deviation of the event timestamps, or other statistical measures. The resulting feature

vectors can then be used to represent the data in a compact form and can be used for

various analysis tasks, such as classification and clustering.

The main representation of event-based data into frames during this dissertation is the

use of Time Surfaces (TSs), which will be described in Section 4.1.1.

3.3 Generative Adversarial Networks

In simple terms, a GAN is an unsupervised deep-learning-based approach for a generative

model in which a model learns and finds patterns and certain features in input data, conse-

quently being able to generate new output data in such a way that it can’t be determined

whether it is from the original dataset or generated by the model.

For a GAN model to properly work two sub-models are required: a generator and a

discriminator, trained to compete with each other in a two-player minimax game. Both will

be further explained in Section 3.3.3.

GANs were introduced by Ian Goodfellow in June 2014 in [16]. The idea behind GANs

comes from the concept of a two-player minimax game, in which two players compete with

each other to minimize and maximize a certain loss function. In this case, the loss function is

the difference between the synthesised data generated by the GAN and the real-world data.

In order to fully understand the working of a GAN model, the following sections provide

the required concepts.

20

3.3.1 GANs as Unsupervised Learning

The main difference between supervised and unsupervised learning is the necessity for

human interaction during the training of a model.

Supervised learning is a machine learning method that uses labelled inputs and outputs

in order to learn how to classify or predict data for new and unseen examples drawn from

the same distribution, becoming more accurate over time. Two examples of contexts for

supervised learning are classification and regression.

Unsupervised learning makes use of machine learning algorithms to learn patterns and

distinctive features in unlabelled input datasets. Therefore, these models are not provided

with labelled training examples. These models are the ones learning the regularities without

the need for human intervention, hence being unsupervised. Unsupervised models are usually

applied in clustering and dimensionality reduction.

It must be noted that unsupervised learning still needs labelled data or human interaction

in such a way that infers and validates the output data.

A GAN model operates in an unsupervised learning manner since its objective is to learn

the common features of the input data and therefore be able to generate new data based on

the features it has learned.

3.3.2 Generative Modelling

In order to fully understand what a generative model is, its counterpart, discriminative

modelling, must also be comprehended.

Discriminative modelling aims to predict the probability of whether a certain input x be-

longs to a label y, in such a way that discriminative modelling can be classified as supervised

learning, following the above-explained notions.

On the other hand, generative models aim to describe how a dataset is generated, in terms

of a probabilistic model, being capable to generate new data from the learned distribution.

From a mathematical point of view, given a set of input data x and a set of labels

y, discriminative models estimate the probability of y given x, (P (y|x)), while generative

models estimate the probability of observing x, (P (x)).

21

3.3.3 Generator and Discriminator Models

Both the generator and the discriminator are usually Convolutional Neural Networks

(CNN) and are the essential models on which a GAN is based. The generator’s objective is

to learn the patterns from the input data and generate new data that could fit the original

dataset, whilst the discriminator aims to distinguish whether the data it receives is real,

from the original dataset, or fake, generated by the generator. The best description of

the relationship between these two models is a game scenario, in which both try to learn

and compete, the generator learning to create more realistic samples and the discriminator

improving its ability to differentiate real from fake samples [16].

Both models are trained together, one being necessary for the other to improve. The

generator starts by generating data from a random noise vector, which is provided to the

discriminator, along with examples from the original dataset. The discriminator proceeds to

classify the data as real or fake and is then updated to get better at classifying it if needed,

and the generator is updated on how well the generated data tricked the discriminator.

Figure 3.3 shows an example of an architecture for a GAN model that follows the train-

ing described above. It is possible to observe that the error, relative to the discriminator’s

ability to distinguish real and fake data, is utilised in both the generator and the discrimi-

nator models through backpropagation. In the case of the generator, it has the objective of

maximizing the error, whilst the discriminator tends to minimize it.

Figure 3.3: Abstract example of a GAN architecture. (Taken from https://

towardsdatascience.com/)

22

https://towardsdatascience.com/
https://towardsdatascience.com/

From a mathematical analysis provided by [16], to learn the generator’s distribution pg

over data x, previous input noise variables pz(z) are defined and mapped to data space

as G(z; θg), in which G is a differentiable function defined by a model with parameters

θg, representing the generator model. Another model, the discriminator model, is defined as

D(x; θd), which outputs a single value. D(x) represents the probability that x came from the

real data instead of pg. The model D is trained to maximize the probability of assigning the

correct label to both training examples and samples from G. t the same time, G is trained to

minimize log(1−D(G(z))). This training is represented by the following two-player minimax

game with value function V (G,D):

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (3.1)

In an ideal situation, the generator creates perfect samples from the real dataset, in

which the discriminator can’t classify with certainty each sample. This leads to a point of

convergence where the discriminator classifies about half (50%) of the times, analogously to

a coin flip, which means that the model cannot tell the difference based on any factor and

is forced to guess, converging to a 50% performance.

Since the main objective of a GAN is to generate data that can be perceived as real, once

the training is complete the discriminator is not needed anymore and therefore discarded.

3.3.4 PatchGAN Discriminator

Different models of neural networks can be used as generators or discriminators of GANs

based on the required application for it. A commonly used variation of a simple CNN

discriminator is the PatchGAN [17] classifier.

A regular classifier classifies the entire TS as real or fake. A PatchGAN, on the other

hand, separates the image into tiles and predicts whether each tile is real or fake. This

classifier works by generating an NxN output array, in which N represents the number of

tiles into which the TS is divided. The entire TS is declared as real or fake based on the

average of classifications for each tile.

An abstract example of PatchGAN can be analysed in Figure 3.4, in which a batch

of an image is selected, processed through the convolutional layers and the result of the

classification is output into an array.

23

Figure 3.4: Abstract example of a PatchGAN network. (Taken from [17])

The main advantage of a PatchGAN classifier is that it can be applied to tasks with

details in sharp, high-frequency variations. By operating on tiles, the classifier learns to

focus on the fine details in the TSs, therefore providing more detailed and realistic feedback

to the generator network, which leads to more realistic generated TS.

3.3.5 GANs in Real-World Applications

Since GANs appeared, due to their ability to generate data that is similar to a given

training dataset without supervision, the number of applications for these networks has

been expanding. Although there are many applications for GANs, a few examples of the

tasks they are capable of are:

• Image generation: GANs can be used to generate realistic images of objects, peo-

ple, landscapes, and other subjects, becoming difficult for humans to distinguish the

generated data from real photographs.

• Text generation: GANs have been used to generate text that is similar to a given

24

training dataset, allowing for language translation and text summarising.

• Audio generation: GANs can be used to generate realistic audio samples, including

music and speech.

• Anomaly detection: GANs can be used to detect anomalous events in data, such as

fraudulent transactions or malfunctioning equipment.

• Data augmentation: GANs can be used to generate additional training data for other

machine learning models, allowing them to improve their performance on a given task.

As will be further explained in Section 4.1, the main application for the GAN architecture

proposed in this dissertation is based on image generation.

3.4 Conditional Generative Adversarial Networks

As the use of GANs develops, different variations have surfaced, each with its own advan-

tages and disadvantages, depending on the required task. Some of these variations are Con-

ditional GANs (cGANs), Adversarial Autoencoders (AAEs), Wasserstein GANs (WGANs),

StyleGANs, Bidirectional GANs (BiGANs) and CycleGANS.

The main focus of this dissertation will be cGANs, as it is the approach proposed in [3].

The introduction of cGANs was published in November 2014 in the article [18], proposing a

way of conditioning the GAN model on additional information, making it possible to direct

the data generation process.

In order to expand the GAN model into a conditional one, both the generator and the

discriminator are conditioned with some extra information y, known as labels. In the case

of the generator, this information y is concatenated with the random noise input pz(z). In

the case of the discriminator, it takes both the real data x and the condition y as inputs to

a discriminative function. These changes result in an alteration of the Equation 3.1 into:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x|y)] + Ez∼pz(z)[log(1−D(G(z|y)))] (3.2)

Figure 3.5 shows an example of an architecture for a GAN model that follows the training

described above.

25

Figure 3.5: Abstract example of a cGAN architecture. (Taken from https://

towardsdatascience.com/)

3.5 Image-to-Image Translation with cGANs

This section aims to present a model introduced in [4] used for image-to-image translation

tasks, named Pix2Pix. Image-to-image translation has the goal to transform one image into

another that has a similar structure and content, such as the transformation of a sketch into

a coloured image or a daytime image into nighttime.

Figure 3.6 displays some examples of image-to-image translations with the Pix2Pix frame-

work. It can be observed that, as already stated, the structure and content remains the same

between the input and output in each example, with the input being either a real image or

an abstract representation of what the output should be.

26

https://towardsdatascience.com/
https://towardsdatascience.com/

Figure 3.6: Examples of the Pix2Pix model results when applied to different situations in

image-to-image translation. (Taken from [4])

The Pix2Pix model employs a cGAN as the network responsible for image generation.

Although different models for the generator and discriminator can be used, the most robust

ones are the U-Net as the generator and PatchGAN as the discriminator.

The U-Net [19] architecture is a type of encoder-decoder commonly used in image-to-

image translation and image segmentation tasks. The U-Net, just like a normal encoder-

decoder, consists of an encoder responsible for passing the input through a series of convo-

lution and pooling layers, which reduce the spatial dimension of the image, downsampling

it into a lower dimensional representation until it reaches a bottleneck layer. This repre-

sentation contains high-level semantic information about the input image, such as object

shapes, edges and textures. After the encoder, the decoder is in charge of upsampling this

representation back into the output image.

The U-Net varies from normal encoder-decoders by adding skip connections from the

encoder layers to the corresponding layers in the decoder. These skip connections allow the U-

Net to preserve the spatial information and fine details of the input image by permitting the

decoder to access both the high-level semantic information from the decoder and the low-level

information from the input image. The skip connections are implemented by concatenating

the activation functions from the encoder and the corresponding layer in the decoder.

Figure 3.7 demonstrates the structure of a U-Net network.

27

Figure 3.7: U-net architecture. Each blue box corresponds to a multi-channel feature map.

The number of channels is denoted on top of the box. The x-y-size is provided at the lower

left edge of the box. White boxes represent copied feature maps. The arrows denote the

different operations. (Taken from [19])

The PatchGAN classifier used as the discriminator was already described in Section 3.3.4.

The Pix2Pix model is trained by using a combination of adversarial loss and L1 loss.

The adversarial loss prompts the generator to produce visually plausible images which are

difficult for the discriminator to distinguish from real images, while the L1 loss boosts the

generator to create images that are as close as possible to the target output image.

Some of the already existing applications for this model are: labels into a photo, map

into an aerial photo and otherwise, black and white photo into a coloured photo, edges or

sketch into a photo, day into night and otherwise, thermal photo into a colour photo.

These applications are depicted in Figure 3.6.

28

4 Material and Methods

This chapter aims to present the proposed methodologies for the development of this

dissertation. A cGAN network is proposed along with a Memory Surface network to encode

the temporal information of a series of event-based frames.

4.1 Conditional GAN for Anomaly Detection

As it was previously stated in Section 2.2.2, the proposed methodology for this disserta-

tion was published in [3] as the first baseline for AED using event-based data and suggests

anomaly detection as a conditional generative problem, making use of a cGAN network com-

posed of sparse submanifold convolution layers, trained to predict a future TS conditioned

on the current DL MS. This DL MS is used to adapt the event-based data as input to the

cGAN model, retaining the sparsity of the event data frames and also encoding the temporal

information.

The authors also provided an event-based anomaly detection dataset, named as An-

oDataset.

The pipeline for the EvAn framework is illustrated in Figure 4.1, in which is possible to

see that firstly the DL MS network has event volumes, TS, as input and output. The desired

DL MS is generated and extracted from the bottleneck layer and fed into the generator

network as a conditioning input. This network results in the prediction of the future TS,

which is then fed, along with the DL MS as a conditioning input, into the discriminator.

The discriminator network is exposed to the real TS as well, also conditioned with the DL

MS, resulting in the classification as real or fake.

29

Figure 4.1: Pipeline of the EvAn framework. C refers to the number of channels per layer

and k represents the kernel. (Taken from [3])

4.1.1 DL Memory Surface Generation Network

This section explains in greater detail the proposed DL MS network, an unsupervised

learning-based network that produces event data memory surfaces, which retains the sparsity

of the event data and encodes the temporal information available.

Time Surfaces

TSs [1] are 2D maps where each pixel stores a single time value in which events are

converted into an image that represents intensity as a function of the sequence of discrete

events that occur at specific points in time at that location, with larger values corresponding

to a more recent motion. The TS is constructed by plotting each event as a point in a 2D

space with the timestamp on the x-axis and the event feature on the y-axis.

The TSs are formed by accumulating the timestamp of events for a certain duration

∆T . Due to noise effects from the camera, the authors of [3] were required to perform pre-

processing on the event data, which led them to note that a smaller ∆T would lead to the

retaining of no information. In Figure 4.2 it is shown the discretized event slices for ∆T

30

of 10ms, 30ms and 50ms. This guided them to conclude that a ∆T of 50ms provided an

optimum trade-off between temporal latency and information content.

(a) (b) (c)

Figure 4.2: Discretized events (bottom) and noise filtered events (top) accumulated over ∆T

of 10ms (a), 30ms (b) and 50ms (c). (Taken from [20])

In Section 5.1 a validation of the optimal ∆T is studied and analysed.

Memory Surfaces

MSs make use of the event data sparsity present in the TSs to represent the temporal

structure of the events. In the proposed approach, batches of eight TSs are used to provide

input to the DL MS network, which, since each TS presents a ∆T of 50ms, results in a time

duration of 400ms. MSs are extracted from the bottleneck layer of the network. Analysing

Figure 4.3 it is possible to examine that the DL MS captures the information regarding the

history of event data. The examples used in the figure, bending activity and running activity,

come from an action recognition dataset the authors used to evaluate the performance of

the DL MS network.

31

(a) (b)

(c)

Figure 4.3: Discretized events (left) DL memory surfaces (right) for bending (a) and running

(b) activities. A colormap (c) is used for better visualization. (0: Black, 255: Yellow) (Taken

from [21])

Some examples of the obtained MSs during the development of this dissertation can be

observed in Section 5.2.

Network Architecture

In simple terms, the DL MS network aims to receive as input a discretized volume of

events provided by a batch of TS, learn to encode the important features of the volume of

events into a single image at the bottleneck layer, and decode the information in that image

to re-create the input data, as one can see on the top row of Figure 4.1.

This network presents a fully convolutional encode-decoder architecture. As already

mentioned and presented in [3], the discretized volume of event data (Ev = [ev0, ev1, ..., evB])

is produced by stacking events into TS (evi), given a time duration T and a set of B discrete

time bins [b0, b1, ..., bB], each with ∆T duration.

For the temporal history of the data to be preserved without altering the spatial distribu-

tion, the convolution operation is restricted to the time dimension, by which a convolution

of 1x1 is performed, known as 1D convolution.

The encoder convolution layer presents 64 channels and the above-mentioned 1D con-

volution, followed by the bottleneck convolution, from which the DL MS is extracted, and

ending in the decoder convolution layer with 64 channels.

32

Loss Function

The network tries to learn a function hθMS
(Ev) in a manner that the output values

[êv0, êv1, ..., êvB] are similar to the input values [ev0, ev1, ..., evB], while the bottleneck learns

to model the temporal information. The encoder and the decoder are defined by the trans-

formation functions ϕθE : Ev →MS and ψθD :MS → EV , with θE and θD representing the

parameters of the encoder and the decoder, respectively.

Simply put, this means that the decoder aims to output values as similar as possible to

the values used as input for the encoder.

To maximize the ability of the latent variable encoding, the authors use a data term

that tries to model the probability distribution [P(Ev|MS∗)] of getting the event discretized

volume, Ev, given the ideal DL memory surface, MS∗, by maximizing the forward Kullback-

Leibler (KL) divergence between the ideal distribution P(Ev|MS∗) and their estimate P(Ev|M̂s),

resulting in Equation 4.1.

The authors learned that Forward KL divergence results in the best latent variable.

Forward KL divergence is a measure that calculates the difference between two probability

distributions.

KL = EEv∼P(Ev|MS∗) log[P(Ev|MS∗)]− EEv∼P(Ev|MS∗) log[P(Ev|M̂S)] (4.1)

The output of the decoder can be modelled as a function of latent variable M̂S and noise

η ∼ N(0, 1) as ψθD(M̂S) + η.

The only term of the equation that depends on the estimated latent variable is the second

one, which means the first term can be discarded. This leads the equation to result in max-

imizing the log-likelihood of P(Ev|M̂S), which changes to minimizing −∥Ev − ψθD(M̂S)∥2.

The authors also introduce an activation regularization term that makes use of a com-

bination of both L1 and L2 regularization of activations in the bottleneck layer, in order to

maintain the sparsity of the event data.

4.1.2 Sparse Convolutional cGAN Network

The sparse convolutional cGAN architecture proposed for the EvAn framework comprises

a sparse convolutional generator and a conditional discriminator made up of convolution-

BatchNorm-ReLU. The structure cGANs are based on was already explained in greater detail

in Section 3.4, as well as their minimax optimization function in Equation 3.2.

33

Submanifold Sparse Convolution Generator

The generator network makes use of sparse convolutional encoder-decoder architecture.

Its objective is to predict the future TS conditioned on the DL MS. The generator is designed

to be computationally efficient by using pooling layers to decrease the spatial dimension,

increasing the number of channels as it progresses.

However, the decrease in the spatial dimension may lead to a loss of the spatial structure

of the sparse data. This motivated the authors to utilise Submanifold Sparse Convolutions

(SSC) convolutions. SSC convolutions were presented in [22] as an optimised solution for

the use of spatial sparsity present in the event data since these convolutions are computed

only on pixels termed as active sites. A pixel is only in an active site if the central site of

the used kernel is non-zero.

The blocks used for each layer of the generator are Minkowski layers [23], composed

of Convolution/Deconvolution-Pooling-Activation, wherein the activation functions are used

only on active sites and the deconvolution operations are defined as the inverse of the SSC

convolution operation.

The encoder produces a batch of 512 feature maps, which are then fed to the decoder

in order to reconstruct the input through deconvolution and unpooling layers in the reverse

order of the encoder, as one can see in the middle row of Figure 4.1.

Discriminator

For the discriminator network, the authors implemented a PatchGAN [17] classifier,

instead of a regular one. This classifier was already presented in Section 3.3.4.

The ability this classifier presents of dividing the output into separate tiles was one of

the motives for the authors of the EvAn framework to choose it as the discriminator network

since it enables the model to gain additional information in each frame, such as the estimation

of the area of the frame where an anomalous event is located, as determined in Figure 4.4.

The discriminator network applied to the EvAn framework can be observed in the bottom

row of Figure 4.1, from which is possible to deduct a classification array with size 30x30 was

chosen for the output of the PatchGAN classifier.

34

Figure 4.4: TS for three different activities (one for each row). In red are represented the

zones in which a certain threshold is exceeded. (Taken from [3])

35

5 Developed Work

This chapter addresses the developed work in order to fulfil the main objectives proposed

for this dissertation. It contains the implementation for the DL memory surface generation

network and the Conditional GAN network, as well as a detailed explanation of the required

preprocessing for each dataset.

As the pipeline for the selected methodology demands and due to its significance in the

training and validation of DL models, the pre-processing of the datasets was the first step.

Afterwards, the DL MS network was the first DL model to be implemented since it is required

for MSs to be obtained in order to provide input for the cGAN network.

5.1 Datasets Pre-Processing

Datasets perform an important role in the development of computer vision algorithms

and deep learning models since they allow models to be trained to recognise and understand

images and videos. Typically, datasets include a large number of images, in which diversity

is a critical factor for models to learn patterns and generalise to new data. During the

development of the proposed methodologies for this dissertation, datasets that allow the

models to learn to identify anomalous events are required.

The first step was to obtain and process datasets for the required task. Therefore,

similarly to [3], ActDataset and PedDataset were utilised although they were not built with

the objective of AED. Thus, some pre-processing was required, which demanded manual

separation of the frames containing normal situations from anomalous events.

Both datasets were introduced in [24] and were captured using a Davis sensor with a

resolution of 346x260, in which ActDataset is a dataset conceived for action recognition

that presents 450 recordings with an average of 5 seconds each and PedDataset is a dataset

targeted for pedestrian detection and is composed of 12 recordings with an average of 30

seconds each.

37

The datasets are provided through .aedat files, which is a file format to store data provided

by ECs. These files encode the event-based data, representing each event by a timestamp

and a set of (x, y) coordinates that indicate the location of the event on the EC. Therefore,

the chosen technique to decode the data and visualise the events was the Surface of Active

Events (SAE), permitting the TSs to be obtained.

As previously stated, TSs are formed by accumulating the timestamp of events for a

certain duration ∆T and the authors of [3] concluded that a ∆T of 50ms provided an

optimum trade-off between temporal latency and information content.

However, a validation for the optimal ∆T was needed using the chosen decoding tech-

nique. Figure 5.1 depicts this validation for the same timestamp whilst using different

accumulation times (10ms, 30ms, 50ms, 70ms, 90ms, 100ms) before and after applying a

median filter to the event data frame. The display of these images used a colour map in

order to easily watch the data and its depth.

It became possible to conclude that for an accumulation time of 10ms, too much infor-

mation is lost, becoming an unreliable choice. As for the times of 70ms, 90ms and 100ms

the retained information is excessive even after the filter was applied to the image, which

permitted for these options to be discarded. From the two remaining possibilities, although

an accumulation of events of duration 30ms presents less noise when filtered, some intensity

on the edges and information may be lost. Thus, as stated in [3], the experimental validation

proves a ∆T of 50ms to be optimal.

38

(a) (b) (c)

(d) (e) (f)

Figure 5.1: Discretized events (bottom of each sub-figure) and noise filtered events (top of

each sub-figure) accumulated over ∆T of 10ms (a), 30ms (b) and 50ms (c), 70ms (d), 90ms

(e), 100ms (f).

5.1.1 ActDataset

After analysis of the data available in the ActDataset, it was inferred that for each

action, there is a total of three directions in which the action is recorded. That is, there is a

recording of each action to the right and to the left, both parallel to the camera plane, and

39

another recording towards the camera. In turn, different people were recorded performing

these actions in each direction. Figure 5.2 displays an example of the Walking action for

each direction.

It can be deduced beforehand that the generator will be unable to generate data when

trained with recordings made towards the camera, as it is possible to observe in the bottom

row of Figure 5.2 that the information in consecutive frames does not present a substantial

change.

Figure 5.2: Consecutive frames of ActDataset’s Walking action to the right (top row), to the

left (middle row) and towards the camera (bottom row).

For the training and testing of the DL models to be implemented, the Walking action of

ActDataset was chosen as the normal situation. In each video of this action the recorded

pedestrian stands still for some moments in front of the camera before and after the desired

action. Since ECs are only able to record movement there are some frame samples which

provide no information. Thus, a careful selection of the starting and ending moments of each

video was needed, which led to fewer available samples.

After this selection, anomalous situations were required. Besides Walking, ActDataset

40

provides the following set of actions: Arm Crossing, Getting Up, Jumping, Kicking, Picking

Up, Sitting Down, Throwing, Turning Around, Waving. Since one of the main goals is to

utilise a DL model that encodes the temporal information into an MS in order to perceive

the notion of movement, as described in Section 4.1, some of these actions proved to be

unreliable due to the lack of sufficient movement. Another factor to take into consideration

when choosing the number of anomalous actions was the number of available frame samples

in order to be approximately even with the normal events. The actions that were chosen to

use from this dataset and the number of event-based frames are depicted in Table 5.1, along

with the direction in which each action is recorded.

Situation Action Direction No. of Frames Total

Normal Walking

Right

Left

Towards the Camera

514

508

375

1397

Anomalous

Arm Crossing

Getting Up/Sitting

Picking Up

Jumping

Left

Towards the Camera

Right

Right

154

117

471

182

924

Table 5.1: Description of the events that are considered normal and abnormal in ActDataset.

5.1.2 PedDataset

PedDataset is comprised of a series of videos recorded from a high position relative to

the pedestrian walking area. Figure 5.3 displays some examples of the obtained event-based

frames. In these images, it is possible to see some of the activities present in the dataset,

such as walking in the direction away from the camera, which will be referred to as forward,

walking closer to the camera, which will be called backwards, walking parallel to the camera,

a motorcyclist and a cyclist.

It can be expected that when the pedestrians are far away from the camera the imple-

mented models will not be able to perform efficiently since there are not many changes in

the information between frames.

41

Figure 5.3: Examples of event-based frames present in the PedDatset.

Table 5.2 shows the events considered normal and anomalous in this dataset, as also the

number of event-based frames obtained for both situations. Table 5.3 displays the number

of frames that were selected for both the training and testing phases.

Situation Action Direction Total No. of Frames

Normal Walking Forward 5500

Anomalous

Walking

Bicycle

Motorcycle

Backwards/Parallel

Forward/Backwards

Forward/Backwards

8708

Table 5.2: Description of the events that are considered normal and abnormal in PedDataset.

42

Phase Situation No. of Frames

Training Normal 2136 (∼39%)

Test
Normal

Abnormal

3364 (∼61%)

8708 (100%)

Table 5.3: Description of the events that are considered normal and abnormal in PedDataset.

5.2 DL Memory Surface Network

With the TSs acquired, the next phase was to implement the network for MS generation.

Although its architecture is represented in Figure 4.1, some changes were required in order

to fully work.

The first step was to implement the architecture described in [3], followed by applying a

batch normalization layer and the ReLu activation function after each convolution. The dis-

cretized volume of event data used as input is composed of eight TSs (Ev = [ev0, ev1, ..., ev7]),

resulting in a duration of 400ms. The authors of [3] refer that the convolution layers per-

form 1D convolutions to restrict them to the time dimension while maintaining the spatial

distribution. Therefore, 3D convolution layers from the PyTorch library were used with a

kernel size of (8, 1, 1) considering the input data is organised in (depth, height, width), which

means it only convolutes across the depth dimension. However, the main change to the

architecture is the need for a padding before each convolution, due to the fact that the depth

convolution turns the data from 8x256x256 into 1x256x256. Since the desired kernel has a

depth of eight, the padding layer was used to transform the data into 15x256x256, which will

then be convoluted and result in 8x256x256. With this, the data keeps the same dimensions

across the entire network, varying only in the number of channels.

Figure 5.4 demonstrates the result of the padding on a discretized volume of event data,

with an example of the kernel (red squares) of size (8, 1, 1) on which the convolution is

performed.

43

Figure 5.4: Padding applied to a discrete volume of events with a depth of eight time surfaces.

The extraction of the MS is performed at the bottleneck layer, at which the data is one

channel of dimension 8x256x256. However, since the objective is to obtain a single frame

with the encoded temporal information, a mean of the eight 1x256x256 frames is calculated,

resulting in the desired MS.

Figure 5.5 shows the resulting MS of a pedestrian walking at an instant, t, as well as some

of the TS from which the MS was created and the TS corresponding to the following instant,

t+1. From a qualitative standpoint, it is possible to conclude that the DL MS network was

able to condense the temporal information into a single frame, displaying higher intensity

on the side corresponding to the direction in which the pedestrian is moving.

It is also an interesting aspect to note that the network was able to smooth out the noise

present on the left side of the frames, proving to be an added value by being able to eliminate

or smooth out the noise that remained present even after pre-processing.

(a) (b) (c) (d) (e)

Figure 5.5: Time surfaces at instants t-8 (a), t-5 (b), t-1 (c) and t+1(e) and the obtained

memory surface that corresponds to instant t (d) for the Walking action of ActDataset.

Similarly to Figure 5.5, Figures 5.6 displays the same situations for the obtained MSs

with other actions of ActDataset.

44

Figure 5.6: Time surfaces at instants t-8, t-5, t-1 (first to third columns, respectively) and

t+1 (last column) and the obtained memory surface that corresponds to instant t (fourth

column) for the Arm Crossing, Getting Up, Picking Up and Jumping actions of ActDataset.

This network was trained using the ActDataset, taking into account that for this training

the situation of the events is irrelevant, i.e., it is not important whether the network receives

normal or anomalous events, as the goal is to generate memory surfaces.

Different parameters, optimization functions and loss functions were attempted in the

training of the network in order to find which ones produced the best results. Table 5.4

demonstrates the parameters that best fit the network. The chosen optimization function

was the Stochastic Gradient Descent (SGD) with its momentum also referred to in the table.

As for the loss function, in [3] the authors used a variation of the Forward KL divergence

which turned similar to the Mean Squared Error (MSE) loss function, therefore the MSE

was used. It is important to note that a small subset of ActDataset was used to train

this network, which led to a bigger number of training epochs used to achieve the same

performance as when working with a larger dataset.

45

Parameter Value

No. of Time Surfaces 8

Volume of Events Duration 400ms

Learning Rate 1x10−4

Epochs 600

SGD Momentum 0.5

Table 5.4: Parameters and structure of the DL memory surface generation network.

Although it was trained using ActDataset the model proved to output good results when

used with the PedDataset, which proves the model can adapt and provide a good MS rep-

resentation from different perspectives. Figure 5.7 shows the resulting MS in the same

conditions as Figure 5.5.

(a) (b) (c) (d) (e)

Figure 5.7: Time surfaces at instants t-8 (a), t-5 (b), t-1 (c) and t+1(e) and the obtained

memory surface that corresponds to instant t (d) on the PedDataset.

5.3 Conditional GAN Network

With the DL MS generation network fully functioning and providing the MSs, the next

step was implementing the conditional GAN. Although an SSC cGAN with a PatchGAN

discriminator is proposed in [3], a simple cGAN was implemented first, with the objective

of progressively altering it to include the PatchGAN.

Thus, the cGAN structure follows the description provided in Section 4.1.2 and showed

in Figure 4.1 (middle and bottom rows), presenting Convolution/Deconvolution-Pooling-

Activation blocks in the generator network, in which the pooling layers consist of max pooling

layers and the activation function is ReLu, with the exception of the final layer, which

utilises the Tanh activation function. On the other hand, the first implementation of the

discriminator varies in the sense that it outputs a single value to classify the image as real

46

or generated, instead of an NxN matrix. To output a single value, a fully-connected layer

was added which is then convoluted. The discriminator was also altered in the sense that a

kernel of size 3x3 was used instead of the one suggested in Figure 4.1. Figure 5.8 shows the

structure of the described implementation of the discriminator network.

Figure 5.8: First implementation of the discriminator model.

Training a GAN is a challenging task due to a number of factors that make it difficult to

find the optimal balance between the generator and discriminator. Some of these challenges

are the instability of GANs during the training phase, which produces a disequilibrium

between the two networks, or mode collapse, in which the generator becomes too powerful

too quickly and only builds limited variations of the same example instead of generating

a diverse set of data. A solution for mode collapse is training with a weaker generator or

stronger discriminator, however, if they are unbalanced the model also fails to learn properly.

With the objective of preventing these issues, some regularization techniques were added,

such as batch normalization layers after each convolution and a dropout layer in the gener-

ator. A Cosine Annealing learning rate was also implemented for the training phase, which

takes the form of half a cosine curve, starting at a large learning rate and rapidly decreasing

to a minimum value. The form this learning rate takes is depicted in Figure 5.9.

47

Figure 5.9: Cosine Annealing Learning Rate.

The loss curves for the generator and discriminator while training a GAN can provide

some information about the progression of the training but are not reliable indicators of when

it has converged to a good result since GANs are non-convex optimization problems, i.e.,

there can be multiple local minima and the global minimum may not produce the best output

sample. Therefore, while these loss curves can be useful to indicate whether the training is

converging to a minimum, the generated samples must also be evaluated qualitatively.

This first implementation was initially trained and tested on the ActDataset. This train-

ing was applied in three different situations, with these three dividing the cases considered

normal as the pedestrian walking to the right, the pedestrian walking to the left and to the

right, and the pedestrian walking to the right, to the left and towards the camera. These

situations are referred to as trained for one direction, two directions, and three directions,

respectively. Another method used to prevent the instability of the cGAN model is to in-

crease the size of the dataset, thus data augmentation was used for two directions through a

horizontal flip, which replicates the data and flips it along the height axis, resulting in twice

the size of the original dataset.

A qualitative evaluation of the samples generated by this model reveals that the results

obtained fall short of expectations, as demonstrated in Figures 5.10, 5.11 and 5.12. As

deduced in Section 5.1.1, when trained in three directions, which includes the movement

towards the camera, the model has the poorest ability to generate the expected. In the

training regarding one direction, is it possible to note that the model would still require

more training in order to learn a more detailed frame generation, however, due to hardware

48

limitations, it is not possible to infer this affirmation. In the two-direction training, it is

noticeable that the model is able to generate a blurred silhouette of a person in the correct

location, but fails to generate the person with better detail.

A possible explanation for the model to generate a blurred silhouette of a pedestrian

may be the need for the convolutions to make use of the sparsity of data instead of perform-

ing normal convolutions, meaning the use of SSC convolutions could improve the model’s

performance due to how these convolutions work, explained in Section ??. However, the

implementation of these convolutions was not taken into consideration.

Figure 5.10: Real frames (left of each sub-figure) compared to generated frames (right of

each sub-figure) when trained for one direction.

Figure 5.11: Real frames (left of each sub-figure) compared to generated frames (right of

each sub-figure) when trained for two directions.

Figure 5.12: Real frames (left of each sub-figure) compared to generated frames (right of

each sub-figure) when trained for three directions.

49

Although the model could improve with the fine-tuning of different parameters or the

implementation of SSC convolutions, due to time and hardware limitations a different ap-

proach was taken. Since the proposed methodology makes use of a cGAN to produce the

desired output, a Pix2Pix model was implemented, replacing the previous instance. This

model, already explained in Section 3.5, is built for image-to-image translation, which falls

in line with the desired result.

The authors of Pix2Pix [4] publicly provided their own implementation of this model

via GitHub repository, which made it possible to adapt and train it to this dissertation’s

objectives.

Two main training conditions were performed using ActDataset, one regarding the stan-

dard parameters provided by the model and the other making use of a Cosine Annealing

learning rate. Once again, only normal events were fed to the network during the training

phase. The standard parameters for this model, fine-tuned by its creators, are demonstrated

in Table 5.5. Unlike the previous implementation, this framework employs the Adam opti-

mizer as the optimization function.

Parameter Value

Epochs 200

Batch Size 1

Starting Learning Rate 2x10−4

Learning Rate Policy Constant

Generator Model U-Net

Discriminator Model PatchGAN

Table 5.5: Parameters and structure of the DL memory surface generation network.

Figures 5.13 and 5.14 depict the new results obtained with Pix2Pix for the right and

left directions of the Walking of ActDataset, in which a qualitative evaluation reveals a

significant improvement in the output, becoming possible to see a more distinct outline of a

person in the generated frames.

50

Figure 5.13: Real frames (left of each sub-figure) compared to generated frames (right of

each sub-figure) when trained for the right direction of Walking on ActDataset.

Figure 5.14: Real frames (left of each sub-figure) compared to generated frames (right of

each sub-figure) when trained for the left direction of Walking on ActDataset.

In Figures 5.15, 5.16, 5.17 and 5.18 it is perceptible that the model it is not able to

generate reliable frames when provided with anomalous actions during the testing phase.

In most of the provided anomalous MS, since the model does not know how to predict the

anomaly frame, it generates a frame that shares more similarities with the MS than with the

real frame. For this comparison, the figures show the MS provided as input, the generated

frame delivered as output and the real frame. It is especially noticeable in the Picking Up

action.

51

Figure 5.15: MS (left) and real frames (middle) compared to generated frames (right) when

trained for the Arm Crossing action of ActDataset.

Figure 5.16: MS (left) and real frames (middle) compared to generated frames (right) when

trained for the Getting Up action of ActDataset.

Figure 5.17: MS (left) and real frames (middle) compared to generated frames (right) when

trained for the Picking Up action of ActDataset.

52

Figure 5.18: MS (left) and real frames (middle) compared to generated frames (right) when

trained for the Jumping action of ActDataset.

Unlike the testing phase, during the training only normal cases were provided to the

network so that it could learn to generate normal events. After being trained for the described

conditions, the final step was to use the saved models to test the model to detect anomalies

with the normal cases and abnormal events being the ones referred to in Section 5.1.1.

The metrics used to evaluate the performance of each implementation will be described

in the following section and the results for all the tests with this model will be provided in

Section 6.

5.4 Implementation Details and Metrics

All the implementations and tests performed were developed using the Python program-

ming language with the assistance of the Pytorch library for DL models.

The training and inferences of the implemented models were executed on one of these

GPUs: Nvidia TITAN X or Nvidia RTX 3090.

The Matlab environment was also used since it provides an easier image and data ma-

nipulation, such as applying the median filter to the TSs or process and obtaining the ROC

curves displayed in Section 6.

The metrics used to evaluate the developed framework were recall, precision, f1-score

and accuracy. All these metrics were calculated based on True-Positive Rates (TPR), False-

Positive Rates (FPR), True-Negative Rates (TNR) and False-Negative Rates (FNR), in

which positive or negative indicates the presence or absence of anomalous events.

The recall is used to measure the proportion of the positive predictions made by a model

out of all true-positive instances and it goes by:

53

Recall =
TPR

TPR + FNR
(5.1)

The precision calculates the proportion of true-positive predictions made by a model out

of all positive predictions made by a model. It is estimated as:

Precision =
TPR

TPR + FPR
(5.2)

The f1-score is the harmonic mean of recall and precision, providing a balance between

the two. It is represented by:

F1 =
2 ∗ precision ∗ recall
precision+ recall

(5.3)

Lastly, accuracy indicates the proportion of correct predictions made by a model out of

all predictions made and its formula is:

Accuracy =
TPR + TNR

TPR + FPR + TNR + FNR
(5.4)

The authors also used the EER to summarise the performance of the anomaly detection

network. EER is the ratio of frames that are misclassified at FPR = 1− TPR.

As already stated, the training was performed with normal activities so that the model

learns to also generate TSs of normal situations. However, the inference was made with

normal and abnormal scenes, so that it generates a TS that corresponds to a normal situation

when given an abnormal DL MS, which allows for the inference to detect a difference between

the generated and the real TS.

To estimate the prediction error, the used measure was the normalised mean square error

(MSE) between the TS predicted by the generator and the ground truth TS. The MSE is

estimated as given in Equation 5.5, described in [3], and is expected to represent a lower

reconstruct error with normal situation sequences rather than with anomalous events.

MSE =
1

NxNy

Nx∑
x=1

Ny∑
y=1

ênxy − enxy (5.5)

In Equation 5.5, ênxy and enxy represent the predicted and original normalised times-

tamps at the location (x, y) in the TS and Nx and Ny are the number of rows and columns,

respectively.

A Receiver Operating Characteristic (ROC) curve is a graphical representation of the

performance of a binary classifier model, as is the case of the implemented method. The

54

ROC curve is a plot of the TPR against the FPR at various threshold settings. These are

obtained as previously explained. To obtain the ROC curve, multiple threshold settings are

evaluated and plotted to generate a smooth curve.

The AUC of the ROC is a scalar value that describes the performance of the classifier

network, providing a single metric for comparison across different models or datasets. AUC

is the area under the ROC curve and is equal to the probability that a randomly chosen

positive sample will have a higher predicted probability of belonging to the positive class

than a randomly chosen negative sample. AUC values range from 0.5 to 1, with a perfect

classifier having an AUC of 1 and a random classifier having an AUC of 0.5.

55

6 Experimental Results

This chapter aims to present the results that came from the developed training and infer-

ences for each implementation. As previously stated, a model’s performance can be expressed

by the AUC of a ROC curve. The ROC curves and their AUC values for each inference will

be analysed. Although the loss curves from both the generator and discriminator of a GAN

are not sufficient to evaluate the learning course of a model, as already discussed, these are

helpful to infer whether the model has converged to a minimum. Therefore, these curves

will also be presented.

As stated in Section 5.3, two training conditions for the Pix2Pix model were used on

ActDataset, being the main change between them the learning rate policy, in which the

standard one makes use of a linear/constant learning rate whilst the other employs a Cosine

Annealing learning rate.

Figure 6.1 displays the loss curves for the discriminator and generator during the training

phase with the standard conditions of the model. It is noticeable that the loss of the gener-

ator, although it does not decrease as it would be expected in a normal network, it oscillates

around the same value (∼ 200), which means the model converged to a minimum. In order

to infer whether the model would stagnate at this minimum or it would try to converge to

another, a second training was fulfilled in which the number of training epochs was increased

from 200 to 400. Figure 6.1 displays the loss curves for this training. It is possible to see that

around epoch 270 the loss of the generator was indicating that the GAN could be entering

a state of GAN mode collapse, i.e., producing limited or repetitive outputs, resulting in a

sharp increase in the loss curve. However, the model presents robustness in such a way that

it was able to stabilise and converge again.

It is important to notice that the model was able to rapidly converge and learn how to

generate normal events. Therefore, three inferences were made to these standard parameters,

one at the start of the training, in epoch 10, one in the middle, in epoch 120, and the last

one at the end, in epoch 200. An inference was also made at the end of the extended version

57

of these conditions, in epoch 400.

The ROC curves for these inferences can be seen in Figures 6.2. These curves allowed

for the AUC values to be obtained which are demonstrated in Table 6.2.

The second training performed on this model made use of Cosine Annealing and proved

to make almost no difference. In Figure 6.1 it is concluded that in a similar manner to

the standard version, the generator rapidly converged into approximately the same value,

although it is possible to note that near the end of the training the value at which the loss

oscillates around gained a slightly decreasing tendency. The performance represented by

the AUC value displays an increase, demonstrated in Table 6.2, meaning it was a valuable

addition to the model. The ROC curve for this inference is displayed in Figure 6.2.

In addition to the AUC values, obtained for a range of thresholds, Table 6.2 also shows

the metrics referred to in Section 5.4 for the optimal threshold. The optimal is chosen based

on the F1-Score metric, which represents a balance between recall and precision.

Training this model on PedDataset demonstrated unsatisfactory performance, as shown

by its ROC curve in Figure 6.2 and by its AUC value in Table 6.1. In Figure 6.1 the loss

curve for this training is depicted and it is possible to conclude that the model was unable

to converge into a minimum, gradually increasing the generator’s loss. This failure in the

performance of this dataset may possibly be due to the inability to encode the information

into MSs when pedestrians are away from the camera. Two achievable ways that may help

surpass this problem are a deeper selection of the frames available for training and testing,

and an alteration of the events considered normal and anomalous, becoming normal events

all frame with pedestrians walking, independently of the direction of the movement, and

abnormal every frame with non-pedestrians in it, such as motorcycles and bicycles.

Model Epoch AUC Threshold Recall Precision F1-Score Accuracy

Standard 200 0.5633 0.4074 0.4692 0.9993 0.6386 0.6533

Table 6.1: Metric results for the Pix2Pix model trained on PedDataset.

58

Model Epoch AUC Threshold Recall Precision F1-Score Accuracy

Standard 10 0.8471 0.9670 0.3336 0.9990 0.5002 0.6001

Standard 120 0.8098 0.9610 0.4005 0.9993 0.5719 0.6253

Standard 200 0.8247 0.9399 0.3338 0.9981 0.5003 0.6002

Standard 400 0.8023 0.8278 0.3766 0.9968 0.5467 0.6162

Cosine 200 0.8583 0.9740 0.3339 0.9990 0.5002 0.6001

Table 6.2: Metric results for the Pix2Pix model trained on ActDataset.

(a) (b)

(c) (d)

Figure 6.1: Loss curves of the generator (blue) and discriminator (orange) networks when

trained with standard parameters (a), extended epochs from 200 to 400 (b) and a Cosine

Annealing adaptive learning rate (c) on ActDataset. Loss curves of the generator and dis-

criminator networks when trained with standard parameters on PedDataset.

59

(a) (b)

(c) (d)

(e) (f)

Figure 6.2: ROC curve for Pix2Pix model trained with standard parameters, being inferred

at epoch 10 (a), epoch 120 (b), epoch 200 (c) and epoch 400 (d), and with a Cosine Anneal-

ing adaptive learning rate (e) on ActDataset. ROC curve for Pix2Pix model trained with

standard parameters, being inferred at epoch 200 (f), on PedDataset.

60

7 Conclusion and Further Work

This chapter seeks to provide an overview of the suggested goals and the completed

work, as well as the challenges encountered in carrying out this work and any future work

proposals.

Although one can conclude that validating incorporation of a DL MS network with a

Pix2Pix model to perform AED demonstrated effective results when used on one of the

available datasets, it falls short of expectation when compared to the base model on which

this dissertation was based.

An important aspect to notice is that the validation of the DL MS generation network

has proven to be successful, being able to properly encode the temporal characteristic of the

sparse event-based data into a single TS frame. This temporal information is valuable be-

cause it allows us to take into account the temporal dependencies between different moments

in time.

The generative networks implemented were two different cGANs, although only the one

with the best qualitative results was inferred, corresponding to the Pix2Pix model. This

model productively generated normal situations with the detailed shape of the pedestrian

in the TSs when fed with normal MSs and proceeded to generate poorly when fed with

anomalous MSs.

Some limitations were felt regarding the available datasets. Since the used datasets were

not designed for anomaly detection, even though a careful separation of their data into

normal and abnormal events has taken place, it could have contributed to worse results.

A deeper and more cautious analysis of the available data may be helpful to improve the

performance of the model.

Due to the lack of time and hardware resources, not many instances of training and

inference were possible. With the proper resources, a greater fine-tuning of the model could

have been performed.

Therefore, one of the proposals for future work proceeding with this dissertation is the

61

validation of the developed model with different parameters to improve the obtained perfor-

mance results.

Another important suggestion for future work would be to make real use of the PatchGAN

discriminator, allowing it to detect the zone of anomalous events on each abnormal frame,

instead of using it as a simple classifier. This detection is possible because of its architectural

design, in which the output is divided into separate tiles.

62

8 Bibliography

[1] Guillermo Gallego, Tobi Delbruck, Garrick Orchard, Chiara Bartolozzi, Brian Taba,

Andrea Censi, Stefan Leutenegger, Andrew Davison, Joerg Conradt, Kostas Daniilidis,

and Davide Scaramuzza. Event-based vision: A survey. 4 2019.

[2] Alessio Rivetti Silva, Jorge Manuel Moreira, and Campos Pereira Batista. Neuromorphic

event-based activity and anomaly detection.

[3] Lakshmi Annamalai, Anirban Chakraborty, and Chetan Singh Thakur. Evan: Neuro-

morphic event-based sparse anomaly detection. Frontiers in Neuroscience, 15, 7 2021.

[4] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image transla-

tion with conditional adversarial networks. In Computer Vision and Pattern Recognition

(CVPR), 2017 IEEE Conference on, 2017.

[5] B. Ravi Kiran, Dilip Mathew Thomas, and Ranjith Parakkal. An overview of deep

learning based methods for unsupervised and semi-supervised anomaly detection in

videos. Journal of Imaging, 4(2):1–15, 2018.

[6] Milind Naphade, Shuo Wang, David C. Anastasiu, Zheng Tang, Ming-Ching Chang,

Xiaodong Yang, Yue Yao, Liang Zheng, Pranamesh Chakraborty, Christian E. Lopez,

Anuj Sharma, Qi Feng, Vitaly Ablavsky, and Stan Sclaroff. The 5th ai city challenge.

In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Work-

shops, June 2021.

[7] Yuxiang Zhao, Wenhao Wu, Yue He, Yingying Li, Xiao Tan, and Shifeng Chen. Good

practices and a strong baseline for traffic anomaly detection.

[8] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-

time object detection with region proposal networks, 2015.

63

[9] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving into high quality object

detection, 2017.

[10] Zhi Zhang, Sheng hua Zhong, and Yan Liu. Video abnormal event detection via context

cueing generative adversarial network. pages 1–6. Institute of Electrical and Electronics

Engineers (IEEE), 6 2021.

[11] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn, 2017.

[12] A vision-based system for traffic anomaly detection using deep learning and decision

trees.

[13] Glenn Jocher. YOLOv5 Github: https://github.com/ultralytics/yolov5, 2020.

[14] Guang Chen, Peigen Liu, Zhengfa Liu, Huajin Tang, Lin Hong, Jinhu Dong, Jorg

Conradt, and Alois Knoll. Neuroaed: Towards efficient abnormal event detection in

visual surveillance with neuromorphic vision sensor. IEEE Transactions on Information

Forensics and Security, 16:923–936, 2021.

[15] Event-based vision sensor (evs) technology | image sensor for industrial use | tech-

nology | sony semiconductor solutions group | https://www.sony-semicon.com/en/

technology/industry/evs.html.

[16] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sher-

jil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Com-

munications of the ACM, 63:139–144, 6 2014.

[17] Ugur Demir and Gozde Unal. Patch-based image inpainting with generative adversarial

networks, 2018.

[18] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets, 2014.

[19] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks

for biomedical image segmentation, 2015.

[20] Lakshmi Annamalai, Anirban Chakraborty, and Chetan Singh Thakur. Supplementary

of the paper evan: Neuromorphic event-based sparse anomaly detection.

[21] Supplementary material for evan !

64

https://github.com/ultralytics/yolov5
https://www.sony-semicon.com/en/technology/industry/evs.html
https://www.sony-semicon.com/en/technology/industry/evs.html

[22] Benjamin Graham and Laurens van der Maaten. Submanifold sparse convolutional

networks, 2017.

[23] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-temporal convnets:

Minkowski convolutional neural networks. 4 2019.

[24] Shu Miao, Guang Chen, Xiangyu Ning, Yang Zi, Kejia Ren, Zhenshan Bing, and Alois C

Knoll. Neuromorphic benchmark datasets for pedestrian detection, action recognition,

and fall detection. Frontiers in neurorobotics, 13:38, 2019.

65

	Agradecimentos
	Abstract
	Resumo
	List of Acronyms
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context and Motivation
	1.2 Main Objectives and Achievements
	1.3 Thesis Overview

	2 State of the Art
	2.1 AED using Conventional Cameras
	2.1.1 AI City Challenge
	2.1.2 Context Cueing Generative Adversarial Network
	2.1.3 Decision Trees

	2.2 AED Using Event-based Data
	2.2.1 Optical Flow approach
	2.2.2 GAN-based approach

	3 Background Knowledge
	3.1 Event Cameras
	3.2 Event-based Data Processing
	3.3 Generative Adversarial Networks
	3.3.1 GANs as Unsupervised Learning
	3.3.2 Generative Modelling
	3.3.3 Generator and Discriminator Models
	3.3.4 PatchGAN Discriminator
	3.3.5 GANs in Real-World Applications

	3.4 Conditional Generative Adversarial Networks
	3.5 Image-to-Image Translation with cGANs

	4 Material and Methods
	4.1 Conditional GAN for Anomaly Detection
	4.1.1 DL Memory Surface Generation Network
	4.1.2 Sparse Convolutional cGAN Network

	5 Developed Work
	5.1 Datasets Pre-Processing
	5.1.1 ActDataset
	5.1.2 PedDataset

	5.2 DL Memory Surface Network
	5.3 Conditional GAN Network
	5.4 Implementation Details and Metrics

	6 Experimental Results
	7 Conclusion and Further Work
	8 Bibliography

