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Abstract: The use of clean and renewable energy sources is increasingly important, for economic and
environmental reasons. Wind plays a key role among renewable energy sources. Hence, the location,
monitoring and maintenance of wind turbines are areas that have received more and more attention
in recent years. The paper presents a survey of datasets of wind resources, wind farm installed
capacity and wind farm operation, which contain generous amounts of data. Those datasets are
important tools, freely available for analysis of wind resources and study of the performance of wind
turbines. A short analysis of one of the datasets is also presented, identifying different operational
regions, and the ones more likely to aggregate failures. Principal Component Analysis (PCA) is used
to study wind turbines’ behavior.
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1. Introduction

Energy supply chains are fundamental for modern human societies, which require large amounts
of energy per capita. In the last centuries, fossil fuels were the main energy source for electricity
production, transportation and other economic sectors. The trend, however, is not sustainable because
of the environmental footprint and rising exploration costs for oil. To overcome or minimize the
limitations of non-renewable energy sources, different renewable sources were proposed, such as
biomass, hydropower and wave, geothermal, solar and wind energy. Although energy supply
chains have been changing for a renewable reality, there are still many barriers to renewable energy
development, such as the conversion cost and efficiency, location selection and distribution network,
among others. Wee et al. [1] report the performance of these new renewable energy supply chains,
the existing barriers and how to surpass them.

Wind energy took a key position in the new trend and wind turbines have been widely deployed
to generate electric power. Numerous, large and small, wind farms were created in recent decades,
in different countries, as part of the global effort to expand production of clean energies from renewable
energy sources. Many of the wind farms are offshore, in order to collect higher wind power values
and have a lower environmental impact on land usage.

Planning a wind farm is a difficult task. Among other challenges, it is necessary to choose an
adequate location. A good location will have good wind power density, stable wind speed, a small
environmental footprint and easy access for maintenance, among other requirements.

For optimal performance of a wind farm, it is also important to monitor several variables such
as wind speed and temperature of key parts of the wind turbines. Good monitoring and adequate
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maintenance of wind turbines allow to optimize production and prevent malfunctions that could lead
to downtime or even endanger people and property. It can also considerably reduce the maintenance
costs of the turbines and support infrastructure. Hau & Erich [2], and Letcher [3], offer a comprehensive
overview and insight into aspects of wind energy, from historical background to the fundamental
science behind the modern industry, covering technical and economic aspects.

Predictive maintenance has been considered to be the best answer for maintenance of wind farms.
It allows the extension of components’ lifetime, the maximization of energy output and the reduction
of maintenance costs, leading to the performance of corrective maintenance just before equipment
failure [4]. For determining the expected point of failure, it is important to monitor wind turbines and
analyze the data collected, using data analysis techniques.

The present paper proposes a survey of the state-of-the-art datasets of wind resources and wind
farms. Most of the datasets are available for public use, and they offer a wealth of information which
can and must be analyzed for optimal decisions in the process of planning wind farms and optimizing
maintenance plans.

The remainder of the paper is organized as follows. Section 2 presents a literature review. Section 3
describes some fundamentals about wind as an energy resource and wind turbines’ technology.
Section 4 discusses the characteristics of good datasets. Sections 5–7 report important open datasets
related to wind turbine capacity and wind farm projects, wind measurements and wind turbine/farm
monitoring Supervisory Control and Data Acquisition (SCADA) systems, respectively. Section 8
gathers other available datasets and a discussion about the existence of data, its quality and comparison
of all datasets. Section 9 presents a deeper overview of a specific dataset. Section 10 reports the main
contributions of the present work to the state of art. Section 11 draws some conclusions and proposes
future work.

2. Literature Review

Numerous research projects analyze existing wind resources and wind turbine monitoring
datasets, advancing the state of the art soon after the datasets are available for public use.

González-Aparicio et al. [5] propose a methodology to capture local geographical information and
generate meteorological derived wind power time series, allowing better understanding of the wind
resource at wind farms. The study followed up to develop a European wind power generation dataset
called European Meteorological derived HIgh RESolution (EMHIRES) [6]. Both studies mention
several sources of wind farm and wind resource databases, such as the Wind Power, Global Wind Atlas
and Merra dataset, operational forecast wind speed datasets, European Centre for Medium-Range
Weather Forecasts (ECMWF) dataset and wind statistics reports from different countries around the
world. Diffendorfer et al. analyze onshore wind turbine locations for the United States [7], with the
purpose of creating a free, centralized, national, turbine-level geospatial dataset, for scientific research,
land and resource management. In 2017, the USWTDB (United States Wind Turbine Database) [8] was
created, a national turbine capacity database. Van Vuuren & Vermeulen also report about investigation
of wind speed profiles for renewable energy development zones in South Africa [9].

Predicting the output of a wind farm is an important goal for wind energy industry, and one
of the most, if not the most, important variable to look at when deciding to move forward with a
wind farm project. Therefore, it is very important to develop performance models. However, it may
represent a challenge, since wind turbines’ power is essentially determined by variables which are
hard to predict with good accuracy, due to their stochastic nature. Kusiak et al. [10] examine time
series models to predict wind speed and power at different time scales, namely ten minutes and one
hour long. They use the wind speed as an input to compute an integrated k-nearest neighbors model,
for prediction of wind farm output. The author uses five different algorithms to construct the time
series models, in order to select the most suitable for the task. The algorithms used include Support
Vector Machine regression algorithm [11,12], Multilayer Perceptron [13], Reduced Error Pruning
tree [14], M5P Tree [13,15,16] and the Bagging Tree [13,17,18]. Research used data generated at a wind
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farm and collected by a SCADA system, resulting in 4455 recorded instances for wind speed and
power at 10 min intervals. The dataset was divided into a 3568 observations training dataset and an
887 observations test dataset.

Computation Fluid Dynamics (CFD) models have also been applied recently [19]. Most of the
models are related to prediction of wind turbines wakes and dynamic behavior, associated with
overall power generation. Wu et al. [20] use Large-Eddy Simulation (LES) to explore the effect of
turbine array configurations on the turbine wake characteristics, as well as the power extraction
efficiency. The paper associates the impact of the turbines’ hub arrangements and the wind farm power
generation. Lin & Porté-Agel [21] also use LES model to study wind turbine wakes, comparing the
prediction results between the two different yaw models. Li & Yang [22] use the Actuator Disk (AD)
model to simulate wind turbine wakes. They also present a study on AD and Actuator Surface (AS)
models and their capability to predict dynamic behavior, on utility-scale turbines, for both uniform and
turbulent non-uniform conditions. Uchida [23] also studies the wake characteristics of wind turbines,
by predicting them with LES models and parallel computation based on a hybrid LES/actuator line
(AL) model. The accuracy from both models is compared and the effects of inflow shear on the wake
characteristics is investigated.

When planning a wind farm project, another very important decision is the choice of the turbine
with the most suitable characteristics for the place and operating conditions. Pessanha et al. [24]
propose one methodology to analyze anemometer data and evaluate wind potential, in order to
help to identify which turbine characteristics should be chosen for maximum profit. The authors
use Weibull distribution as a wind speed frequency distribution model at 25 m and 50 m height.
Knowing wind speed values at two different heights facilitates estimating wind speed values for other
heights, using Equation (1).

v = vmeasured × (
hmeasured

h
)α (1)

In Equation (1), v is the wind velocity desired at height h, vmeasured is the wind velocity measured
at height hmeasured, and α is the power exponent. After wind power velocity, the authors calculate the
average power, from the turbine’s power curve and the Weibull distribution. From average power
values it is possible to calculate the Capacity Factor (CF), given by Equation (2).

CF =
Eactual
Eideal

=
Time× Paverage

Time× PN
(2)

Using data from different wind turbine models with different characteristics, the energy
production models are computed for each one. The data used are from Sistema de Organização
Nacional de Dados Ambientais (SONDA), a Brazilian project to implement infrastructures to survey
wind and solar energy resources, with 10 min sampling period, as described in Section 6.3.

The benefits of monitoring wind turbines are quantified in [4], where the authors show some of the
costs for different maintenance plans. Almost all data collections referenced in the present work have
10 min sampling period. That can be seen as a negative aspect, due to the possible loss of information.
Higher frequency data sampling offers more accurate information [25], although at the cost of using
additional computing power. Among other techniques, Principal Component Analysis (PCA) is a
useful statistical technique that is applied for data reduction with minimal loss of information [26,27].
It is often used in complement with machine learning algorithms [28,29].

3. Wind Power and Wind Turbines Fundamentals

3.1. Wind Power

Wind is atmospheric air in motion. Depending on the speed of the moving air it is possible to
determine the strength of the wind and estimate the amount of energy on it. The fundamental equation
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of wind power is given by Equation (3), in which ρ is the air density, v is the wind velocity and A is
the area covered by rotor’s blades.

P =
1
2
× ρ× A× v3 (3)

Wind Power Density (WPD) is also used to compare wind resources, independently of the
turbine’s rotor size. It is the quantitative basis for the standard classification for wind resources.
WPD is given by Equation (4).

WPD =
P
A

(4)

The wind power class can be classified in several different levels of potential resource, according to
wind power density. Wind’s energy massively depends on its speed and mass of air. However, not all
the power in the wind is available for use and the Power Coefficient (Cp) quantifies the ratio of power
extracted by the turbine and the total wind power, according to Equation (5).

Cp =
PT

PWind
(5)

The Power Coefficient value is a percentage of the power that can be extracted. According to
the Betz Limit, there is a theoretical upper limit for a wind farm or wind turbine. According to this
theory, the maximum power coefficient is 59% [3]. Wind Power efficiency can be specified by another
variable, called capacity factor (CF). CF is represented by the ratio of actual generated energy to the
energy that could potentially be generated by the system in ideal environmental conditions. CF may
also be regarded as the fraction of the year the turbine generator is operating at its nominal capacity.
This nominal capacity is not overflown to avoid mechanical damage and parts wearing.

Usually, a realistic wind farm project has a 30% CF, but with good wind resources it could reach
values up to 50%. Weather conditions might be the primary driver for the CP, but in a long-term
period, it is always a design/economic decision. Over the 20–30 years lifetime of a wind farm,
weather conditions will average out leaving the wind farm developer trade-offs between the cost of
the blades, mechanics and electronics that compose the nacelle [30].

3.2. Wind Turbine Technology

Wind turbines are mechanical systems that capture wind energy and transform it in electricity,
using complex technology for maximum conversion efficiency. They involve different technical areas
including aerodynamics, mechanics, structure dynamics, meteorology and electrical engineering.
Wind turbine technology has evolved very fast since the 80s. The main differences from the modern
technology to the past technologies are in electrical design and control. Presently, wind turbines have
variable speed and active control. They can be installed onshore or offshore, particularly in constant
wind zones. Their operation can be summarized in three important steps:

1. Wind force against the blades causes them to rotate and propel the rotor. Connected to the main
shaft, the rotor is responsible for moving the generator;

2. Inside the turbine there is a speed multiplier, with capacity to spin at 1500 RPM (Rotations Per
Minute), allowing the generator to transform mechanical energy into electrical energy;

3. The electricity is conducted through the interior of the tower to the outside power lines.

A wind turbine will start working when the wind reaches the cut-in speed. There is no justified
energy conversion below the cut-in speed. The turbine’s power is also limited to its rated power and
whenever it reaches the cut-out wind speed, it stops working with the purpose of not doing extra
mechanical efforts and preserving mechanical quality. The wind turbine power curves are calculated
using the cut-in and cut-out wind speeds and the theoretical power outcome for different wind speeds.
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They show how the turbines will perform in function of the wind. Wind turbine technology mainly
consists of the following components [3]:

• Rotor—The rotor is the first element in the chain of functional elements of a wind turbine.
It captures the power from the blades and converts it to kinetic mechanical power. Typically, it has
two or three blades. The most popular design in wind technology today is the horizontal axis rotor;

• Transmission System—Comprises the rotor shaft, mechanical brake(s) and a gearbox.
The mechanical brakes are used as a backup system for the aerodynamic braking system.
The gearbox acts as a rotational speed auger, converting the slow high torque rotation of the
rotor into a faster rotation;

• Generator—Electromechanical component that converts the mechanical power into electrical
power. There are two main types of generator used in the industry, which are synchronous
and asynchronous:

– The synchronous generator operates at the synchronous speed, dictated by the connected grid
frequency, regardless of the applied torque’s magnitude. It is more expensive and mechanically
more complicated than an asynchronous generator of a similar size. It has one significant
advantage compared to the alternative, specifically, it does not need power compensation
equipment.

– The asynchronous/induction generator has several robustness advantages, mechanical
simplicity and it is produced in large series for a low price. However, the major disadvantage
is that the stator needs a reactive magnetizing current. The asynchronous generator consumes
reactive power to get its excitation, which may be supplied by the grid or by power electronics.
The interaction of the associated magnetic field of the rotor with the stator field results in a
torque acting on the rotor;

• Power Electronic Interface—The electrical power produced by the generator is fed into the power
grid through the power electronic interface. It is placed between the generator and the power grid,
satisfying both component requirements. The interface assures that the turbine’s speed rotation is
adjusted to extract maximum power from the wind and route it on to the grid, controlling active
and reactive power, frequency and voltage;

• Control System—Assures a proper operation of the wind turbine under all operational conditions.
It keeps the wind turbine within its normal operating range by passive or active means,
maximizing the power production and lifespan and reducing structural loads on mechanical
components and thus their costs.

4. Data Classification and Characteristics of a Good Dataset

The following sections list and describe important wind energy related datasets, which aggregate
substantial and important amounts of data. These data are fundamental for modern machine learning
applications and Big Data algorithms. There are different definitions of Big Data in the literature.
Although some authors focus on the ontological characteristics of the data, others focus on the
computational difficulties of processing data. According to Kitchin & McArdle [31], the concept
of Big Data is still being defined, but Big Data datasets must abide by a majority of general
traits, such as: (i) Volume (space required to storage data); (ii) velocity (considered a key attribute,
it represents the frequency of generation, handling, recording or publishing); (iii) Variety (weakest
characteristic attribute); (iv) Exhaustivity (seeking entire population within a system); (v) Resolution;
(vi) Relationality; (vii) Extensionality (flexibility of data generation, where a highly flexible data system
has a strong extensionality).

The quality of a dataset is directly related to the organization that creates it, and data quality is
often related to its value and accuracy. However, data quality has other dimensions, such as uniqueness,
completeness, validity and consistency. Also, a good quality dataset must not have errors due to
incomplete data, as well as syntactic or semantic errors.
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In summary, good open datasets offer a wealth of information that is easily available and should
comply with the characteristics referenced above and the following requirements:

1. Available on the web, in an open format and under a license that permits use for research and
other uses;

2. Available as machine-readable structured data, such as Comma Separated Value (CSV) files or
other common data format;

3. Available in non-proprietary formats, such as CSV or eXtensive Markup Language (XML);
4. Complies with common open standards and main international standards for the World Wide Web;
5. Contains enough information about where the data were collected, or link the data to a context;
6. Contains data points in sufficient quantity and quality for use in data mining, machine learning

or other computational methods. The more sensors are monitored the better;
7. Sampling frequency must be high enough to capture and describe the most important variables;
8. Ideally there are no gaps in the data, or the gaps are short enough not disrupting the patterns.

The most common definition of data quality is that which determines that the data can fulfill the
function for which it was collected.

5. Open Datasets of Wind Turbine Capacity and Wind Farm Projects

5.1. The Wind Power Database

The Wind Power database, with free access at www.thewindpower.net (accessed on
17 August 2020), is a comprehensive database of detailed raw statistics on the rapidly growing sphere
of wind energy and its supporting markets. Data are regularly updated. The database contains data
from a variety of players in the worldwide wind industry, such as wind farm developers, operators and
owners and turbine manufacturers. Also, it provides direct and immediate access to information about
regions, countries, types and number of turbines with their relative hub height, nominal power and
the capacity factor in which the operator lean on. It is not fully available for public use. A license must
be purchased to navigate and have access to all the data. The free access model represents a particular
complete data base in terms of labeling nominal power capacity around the world and the existing
wind farms, with mention to their manufacturers and owners. The data collected in this data base
come from different sources, mainly external:

• Developers, operators, and investors;
• Insurers and legal experts;
• Parts manufacturers, service providers, subcontractors;
• Heads of strategy, development, and R & D departments;
• Analysts, cartographers and meteorologists;
• Public organizations, universities, and research institutes;
• Professional associations.

However, some authors propose that this worldwide database may have a significant number of
gaps, inconsistencies and inaccuracies [5]. Table 1 shows the wind power capacity installed in each
country, according to this database. As the table shows, the country with larger capacity installed
is China, with 133,799 GW installed. The country with more farms is Germany, with a total of
5253 wind farms.

www.thewindpower.net
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Table 1. List of wind power capacity installed in each country, according to The Wind Power database

Country Continent Wind Wind Country Continent Wind Wind
Farms Power (GW) Farms Power (GW)

China Asia 1848 133,799 Thailand Asia 25 1053
USA North America 1351 110,072 Egypt Africa 10 1048
Germany Europe 5253 62,777 Vietnam Asia 26 1039
United Kingdom Europe 1008 30,085 Croatia Europe 25 912
India Asia 624 29,983 Russia Asia 18 892
Spain Europe 1001 24,026 New-Zealand Oceania 21 811
France Europe 1251 17,157 Bulgaria Europe 47 645
Brazil South America 527 16,649 Pakistan Asia 9 637
Canada North America 280 13,827 Serbia Europe 9 604
Italy Europe 401 10,871 Lithuania Europe 65 536
Australia Oceania 102 10,212 Jordan Asia 7 470
Sweden Europe 943 9048 Philippines Oceania 11 457
Turkey Asia 195 8186 Costa Rica North America 18 414
Denmark Europe 1368 6717 Estonia Europe 28 412
Mexico North America 65 6533 Hungary Europe 35 385
Netherlands Europe 546 5991 Peru South America 6 373
Poland Europe 277 5916 Dominican Republic North America 7 366
Portugal Europe 255 5469 Kenya Africa 2 336
Belgium Europe 176 4196 Panama North America 3 336
Ireland Europe 236 3905 Czech Republic Europe 65 326
South Africa Africa 37 3428 Ethiopia Africa 3 325
Argentina South America 64 3211 Tanzania Africa 1 300
Romania Europe 68 2982 Iran Asia 13 284
Norway Europe 46 2956 Kazakhstan Asia 7 252
Austria Europe 256 2879 Tunisia Africa 3 243
Greece Europe 164 2858 Cyprus Europe 6 189
Japan Asia 245 2813 Nicaragua North America 5 187
Chile South America 41 2805 Honduras North America 3 180
Finland Europe 181 2382 Senegal Africa 1 159
Uruguay South America 46 1572 Mongolia Asia 7 156
Ukraine Europe 41 1502 Luxembourg Europe 19 151
Morocco Africa 15 1283 Albania Europe 1 150
South Korea Asia 59 1159 Indonesia Oceania 2 147
Taiwan Asia 29 1142 Mauritania Africa 3 137

5.2. United States Wind Turbine Database

China is currently the country that produces more electricity from wind power with a total of
approximately 199.50 GW per year. The United States of America is currently the second world
producer of wind energy, producing approximately 133.28 GW of wind power per year, according to
The Wind Power database. The USA is also one of the regions in the world where it is easier to find
information about wind energy, wind farm capacity and wind resources along the 50 states. One of
the most important databases available is the United States Wind Turbine Database (USWTDB) [8].
The USWTDB currently contains information of nearly 60,000 turbines that go from 30 m high
and 70 kW capacity to turbines towering 181 m high with 6 MW capacity. It covers onshore and
offshore installations. The US Department of Energy, in partnership with Lawrence Berkeley National
Laboratory (LBNL), United States Geological Survey and the America Wind Energy Association
(AWEA) developed the USWTDB in 2017, creating a comprehensive, accurate and regularly updated
wind turbine dataset. It includes not just the location of the turbines, but also the characteristics of
each turbine, such as the model, total and hub height, rotor diameter, year of installation and rated
capacity. All the technical specifications are listed in the Federal Aviation Administration and Digital
Obstacle File and collected via AWEA, LBNL and turbine manufacturers website. As new data become
available, the USWTDB is updated and can be accessed by researchers and public via its online portal
and in a variety of downloading file formats:

• Geographic Information System (GIS)—The shape file format is a popular geospatial vector data
format, compatible with a variety of GIS software;

• Tabular Data—CSV format of all the information that is provided in the USWTDB;
• Metadata, XML format—Background information which describes the content, quality,

condition and other appropriate data characteristics.
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5.3. United Kingdom Wind Energy Database

The United Kingdom Wind Energy Database (UKWED) [32] contains data about operational
onshore and offshore wind projects, which can be searched or browsed, with projects shown as a
list or on a dynamic map. Although UKWED only holds information on 100 kW and larger projects,
statistics on micro, small and medium wind turbines are published annually in an annual market
report. It is free to use for any purpose and the data creator is RenewableUK, a business group
focused on building a future energy system, powered by clean electricity, by ensuring increasing
amounts of renewable electricity that are developed across the United Kingdom and access markets to
export all over the world. Information on Project Status, Project Intelligence Hub and Wind Energy
Maps also exists, but it is available only for RenewableUK workers and members. The database
consists of a big list of projects, giving information about each wind farm technical specifications.
The datasets are not downloadable. However, there are summary reports about wind operations
in RenewableUK site’s publications section at https://www.renewableuk.com/search/all.asp?bst=
(accessed on 17 August 2020).

6. Wind Resource

The wind speed and direction are the most important variables that affect a wind turbine’s output.
Hence, accurate predictions and measurements of the wind behavior are fundamental for wind farm
planning and management. Among other important decisions, the turbine model must be adequate
for the wind available in the place, for maximum efficiency and life cycle.

6.1. OpenEI Dataset

OpenEI dataset [33] is a trusted source of energy data, specifically for renewable energy and
energy efficiency. The information provided is aimed at helping to make informed decisions on energy,
market investment and technology development. The data can be viewed, edited and added by the
users after the evaluation of content by experts. Open data is part of the core mission for OpenEI
and for that purpose, most accessed data on OpenEI comes from several different resources, such as
Department of Energy Open Data Catalog (DOE Data), International Utility Rate Database (IURDB)
and United States Utility Rate Database (URDB). OpenEI offers information about wind resources,
rather than wind farms characteristics. The contents include wind maps, meteorological data and wind
power maps, among other variables. In total there are 216 files available in the wind sector. Some of
the data used in the present research were extracted from OpenEI.

6.2. Native American Anemometer Loan Program

The Native American Anemometer Loan Program (ALP) was conducted by the U.S. Department
of Energy (DOE) and an initiative from Wind Powering America (WPA). The purpose of the ALP
was to provide native American tribes a low-cost, low-risk means of quantifying their wind resource,
since there were no data to make wind project production and economic performance estimations
with precision. The validation process is based on a quality control strategy adopted by the Baseline
Surface Radiation Network. By providing native American tribes a low-cost way of quantifying
the wind resource in their lands, it was expected that they would be encouraged to pursue wind
development, leading to the installation of wind turbines. The program was launched in 2000 and by
the end of 2011, 90 towers had been installed over 10 states.

The ALP’s anemometer towers record information about the wind, such as its speed, direction and
turbulence, with 10 min sampling periods. All the information was forwarded to the National
Renewable Energy Laboratory (NREL) of the USA and analyzed. Free access is given to 11 of the
144 locations that conducted this activity.

Table 2 shows some of the regions with free access to the raw data, available at OpenEI From
the regions mentioned in the table, the Navajo Indian Reservation has some missing data, due to

https://www.renewableuk.com/search/all.asp?bst=
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malfunction of one of the sensors. Almost all the anemometer towers are 20 m high, because the 20 m
high towers were considered adequate for wind turbine projects up to ∼100 kW. All the data of the
dataset are provided by NREL. The users are granted the right, without any fee or other cost, to copy,
modify, enhance and distribute the data, as long as the users agrees to credit the NREL. The dataset
contains monthly average values from more than 700,000 wind observations. The location with less
observations available is the Navajo India Reservation, with just 35,661 samples collected in 2004
and 2005. There is a gap in the data, due to a malfunction in the direction vane, which lasted from
18 November 2004 to 22 February 2005. The place with more observations recorded is Northern
Cheyenne India Reservation, with a total of 90,891 samples recorded in 2003 and 2004. The Pine Ridge
Indian Reservation does not mention how much observations it took to develop the monthly wind
speed, direction and turbulence average values.

Table 2. Regions included in the Native American Anemometer Loan monitoring program,
with observation towers at 20 m and 120 m.

Region State Observations Monitoring Height (m)Period

Keweenaw Bay India Reservation Michigan 54,025 7 June 2007 to 16 June 2008 20
Navajo India Reservation Arizona 35,661 13 April 2003 to 25 March 2005 120
Bethel Alaska 60,036 23 February 2003 to 15 April 2004 20
Wind River Indian Reservation Wyoming 56,147 7 March 2002 to 28 July 2003 20
Ugashik Traditional Village Alaska 60,455 6 June 2001 to 31 July 2002 20
Tanana Village Alaska 55,167 20 September 2001 to 13 October 2002 20
Table Bluff India Reservation California 70,983 23 September 2002 to 29 January 2004 20
Pine Ridge Indian Reservation S. Dakota - 29 October 2001 to 22 October 2002 20
North. Cheyenne India Reservation Montana 90,891 19 February 2003 to 11 November 2004 20
Fort Belknap India Reservation Montana 83,440 7 February 2001 to 6 November 2002 20
Potawatomi Indian Reservation Oklahoma 63,648 8 November 2004 to 21 January 2006 20

6.3. SONDA

The SONDA network was born from a Brazilian project to install resources that could track
data about wind and solar energy resources in Brazil. Every group of data available passed through
a validation process to ensure their reliability, since there are numerous factors that can affect the
reliability of the data. Project SONDA [34] provides wind speed, direction and air temperature at 25 m
and 50 m height, with a 10 min sampling frequency. The network has three different stations. Table 3
summarizes the monitoring period of each survey station of the SONDA dataset. The dataset contains
almost six years of good quality data about wind resource on the Brazilian west coast, up to a total of
385,488 observations, Table 4.

Table 3. Data period for each survey station of the SONDA wind monitoring project, in Brazil.

Station Location 2004 2005 2006 2007 2008 2009

BJD 08° 22′ 02′ ′ S 36° 25′ 46′ ′ O Jul.–Dec. Jan.–Aug.
SCR 07° 22′ 54′ ′ S 36° 31′ 38′ ′ O Jan.–Dec. Jan.–Apr. Jun-Dec. Jan.–Dec. Jan.–Set.
TRI 07° 49′ 38′ ′ S 38° 07′ 20′ ′ O Jul.–Dec. Jan.–Aug. Jan.–Dec. Jan.–Apr.

Table 4. Number of observations from each station.

Station Observations

Belo Jardim (BJD) 62,488
São João do Cariri (SCR) 192,672
Triunfo (TRI) 131,328

Total 385,488
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6.4. Ethiopia Wind Measurement Data

Ethiopia Wind Measurement Data is a data repository for measurements collected from 17 wind
poles, placed in different regions of Ethiopia [35]. Data are updated in batches, monthly. Daily wind
speed, wind direction, air pressure, relative humidity and temperature reports are recorded.

The wind measurement campaign that generated the data was commissioned by The World Bank
with funding from the Energy Sector Management Assistance Program (ESMAP). It is available under
The World Bank’s open data policy. Each wind pole contains six different sensors, at different heights,
from six to eighty meters, as shown in Table 5.

Table 5. Height of the sensors installed for collecting data for the Ethiopia Wind Measurement.

Sensor Type Height (m)

Anemometer 80
Anemometer 80
Wind Vane 78
Thermometer 77
Anemometer 60
Wind Vane 58
Anemometer 40
Anemometer 20
Thermometer 10
Barometer 6
Relative Humidity 6

A predictive wind resource map can be built using the data collected by the sensors installed at
different locations. Table 6 shows the location of each data collection pole. The sampling frequency
is 1 Hz. However, data recorded are the average of 10 min of data samples. Until now there are no
known missing data samples. Hence, the available data should be of high quality for mining and
studying the variables during the recording period, which in some cases is more than one year and
a half.

Sensors installed in different poles may come from different manufacturers. Data for each pole
are aggregated in a metadata file that also contains information about the pole and the sensors’
manufacturer, model and serial number.

Table 6. Location of the data collection poles of the Ethiopia Wind Measurement project.

Region Latitude Longitude Start Date

Somali 10.434 42.231 26 December 2018
Gumuz 9.876 34.683 11 June 2019
Somali 10.823 42.503 3 June 2019
Somali 10.772 42.578 14 April 2018
Afar 11.882 41.567 5 May 2019
Somali 9.722 42.010 3 December 2018
Somali 9.753 41.883 12 December 2018
Somali 5.578 43.340 5 April 2019
Somali 8.973 43.250 15 April 2019
Tigray 13.560 39.563 16 June 2019
Oromia 4.339 37.792 16 June 2019
Amhara 9.949 39.630 26 April 2019
Somali 9.583 41.553 7 December 2018
Somali 9.652 42.719 18 April 2019
Somali 9.688 42.768 18 January 2019
Oromia 7.875 38.700 18 May 2019
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6.5. Global Wind Atlas

The Global Wind Atlas (GWA) is a free, web-based application developed as an aid for
policymakers, planners, and investors, to help identify high-wind areas for wind power generation,
possibly anywhere in the world [36]. It is available at https://globalwindatlas.info (accessed on
17 August 2020).

GWA provides an online service where users can search through different queries. It also provides
free downloadable datasets, grouped by different sections, based on the latest input data and modeling
methodologies. Table 7 shows a summary of the downloadable sections in the Global Wind Atlas.

Table 7. Downloadable sections in the Global Wind Atlas. From [37].

Section Description

Maps Map View for global or specific region, with different output layers.
Provides wind energy class, wind speed, and power density
and terrain surface layers

Selection of wind speed potential and power density potential maps.
Provides an estimate of mean wind power density at 100 m above surface level.

High resolution The map is derived from high-resolution wind speed distributions-based
poster map on a chain of models, which downscale winds from global models (≈70 km),

to mesoscale (9 km) and to microscale (150 m)

In the GWA it is also possible to download high-resolution maps of the wind resource potential
at a global and country level for 10 m to 200 m height. This wind resource database is maintained
in partnership by the Department of Wind Energy at the Technical University of Denmark and the
World Bank group. The mesoscale model mentioned on Table 7 uses ECMWF ERA-5 reanalysis
data for atmospheric sampling for the period 1998–2017. ERA5 provides hourly estimates of many
atmospheric, land and oceanic climate variables. The data cover the Earth on a 70 km grid and resolve
the atmosphere using 137 levels from the surface up to a height of 80 km. ERA5 includes information
about uncertainties for all variables at reduced spatial and temporal resolutions.

The output at 3 km resolution is generalized and downscaled further using WAsP software plus
terrain elevation data at 150 m resolution, and roughness data at 300 m resolution. The WAsP software
suite is the industry-standard for wind resource assessment, siting and energy yield calculation for
wind turbines and wind farms. Finally, the microscale is sampled on calculation nodes every 150 m.
However, this modeling process becomes more uncertain, most likely leading to an overestimation
of mean wind power values. Table 8 shows the spatial scales for different length scales of the GWA,
according to [3].

Table 8. Spatial scales and wind types found in the Global Wind Atlas. Reprinted with permission [3];
Elsevier, 2020.

Spatial Scales Wind Types Length Scale

Planetary scale Global circulation 10,000 km
Synoptic scale Weather systems 1000 km
Meso-scale Regional orographic or thermally induced circulations 10–100 km
Microscale Local flow modulation, boundary layer turbulent gusts 100–1000 m

7. Wind Farm Monitoring

The uncertainty on revenue of the existing wind farm installations pressures operation and
maintenance departments to reduce their costs, since they might come up to 30% in offshore
environments [4]. Due to factors like the ones mentioned, monitoring systems focused on wind
farms’ behavior and main components have been increasingly installed to optimize maintenance
planning. Their economic benefit has been investigated and proven to exist [4].

https://globalwindatlas.info
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7.1. ENGIE, La Houte Bourne Wind Farm

ENGIE is a company that produces and distributes energy from different sources, including renewable
sources. It is a major player in the production of green electricity, being the 1st wind power producer
with installed capacity of 1730 MW, representing approximately 8% of France wind power production,
according to power production in Table 9.

Table 9. ENGIE Turbines Technical Information, for the La Haute Borne wind farm, Vaudeville-le-Haut, France.

Wind Turbine Name Manufacturer Model Rated Power (kW)

R80711 Senvion MM82 2050
R80721 Senvion MM82 2050
R80736 Senvion MM82 2050
R80790 Senvion MM82 2050

According to the company’s strategy, ENGIE decided to open up, for public use, data of the
La Houte Borne wind farm, which is operated by ENGIE Green. The farm’s four wind turbines are
all from the same model and manufacturer, and have been providing electricity to the equivalent
of 7300 people since 2009, avoiding 12,000 metric tons of CO2 emission per year. The data set is
composed by two very big and complete spreadsheet files, one from 2013 to 2016 and another from
2017 to 2020. The files contain information about each wind turbine’s components, such as rotor speed,
nacelle temperature, mechanical information like the torque and, finally, wind speed, direction and
pitch angle. All the variables are cataloged and described in another file named “Data Descriptions”.
Finally, ENGIE provides the static information about each turbine: ID number, manufacturer, model,
rated power, hub height, rotor diameter and precise location, as described in Table 10. All the data are
recorded with a ten-minute period, and there is a total of 1,057,868 observations.

Data are in a file with SCADA data about component control variables and meteorological mast.
Data description is provided, with every variable abbreviation explained and units. Static information
contains some of the turbine’s technical characteristics.

Table 10. Information Available in the ENGIE Renewables open La Haute Borne dataset.

File Variables

Data Pitch Angle; Converter Torque; Power Factor; Generator Speed and Temp;
Gearbox Bearing/Oil Temp; Nacelle Angle; Grid Freq/Voltage;
Active/Reactive Power; Rotor Speed and Bearing Temp; Wind Speed (2 sensors)

Data Description Every variable in La Houte Bourne Data file
The file’s name clarifies its purpose.

Static Information Wind Turbine’s Name; ID; Model; Manufacturer; Rated Power;
Rotor Diameter; GPS Location

7.2. Sotavento Wind Farm

Sotavento wind farm [38], was put into operation in 2001 by Sotavento Galicia, S.A, in Xermade,
Lugo, Spain, after the Galician Government had decided to increase investment in renewable energy,
especially wind-based energy. Composed by 24 onshore turbines with a total nominal power of
17,560 kW it has an average annual generation of 33 MWh and produces the equivalent consumption
to 1051 families, avoiding 0.36 MT of CO2 emissions per hour and consumption of 0.68 barrels
of petroleum.

Sotavento’s platform is a reliable source of wind resource and wind farm output production.
With a high-quality monitoring program, the database provides real time data for wind speed and
direction, turbines’ production and capacity factor, and finally temperature and density of the air.
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All the information is given with a 10 s period. Additionally, it is possible to search for historical data,
allowing researchers to study wind farm and meteorological mast behavior.

Table 11 shows a summary of the turbines in use in the wind farm. The historical data is logged
with 10 min intervals, hourly and daily.

Table 11. Sotavento Turbines Technical Information.

Technology Model Rated Power (kW) Number of Units

Ecotecnia 44/640 640 4
Gamesa G-47 660 4
Izar-Bouns MK-IV 600 600 4
Izar-Bonus 1.3 1300 1
Made AE-46/I 600 4
Made Serie AE-52 800 1
Made AE-61 1300 1
Neg Micon NM 48/750 750 4
Neg Micon 52/900 750 1

7.3. EDP Wind Farm

EDP (Energias de Portugal) is an important player in the energy sector, especially in the Iberian
Peninsula, where it produces and distributes a large share of electricity. The dataset available provides
two years of SCADA records from five offshore wind turbines located in the West African Gulf of
Guinea [39]. The dataset consists of different files that give information about failure logs and technical
information about some of the main turbine’s components, such as the gearbox, generator and rotor.
Additional information includes meteorological data, namely wind speed and direction, air pressure,
humidity, temperature and component signals, namely generator RPMs and oil temperature in the
hydraulic group. All files available are summarized in Table 12, including listing of all variables logged.
The training set is from 2016 (all year) and the testing set consists of nine months of data, from 2017
(1 January 2017 to 1 September 2017). Meteorological mast data and component signals are recorded
with a 10 min period and there is a total of 69,962 observations.

The Wind Turbine Characteristics file contains wind turbine main characteristics, Table 13.
Also, it supplies wind turbine’s power curve, a defining variable, at a 1.225 kg/m3 air density.

The meteorological mast file logs important meteorological signals, namely: Anemometer
sensors 1 and 2 are at a 80 m and 77 m height; Weather vanes are located at 77 m and 40 m height;
and temperature and pressure sensors at 75 m and 100 m height.

The component signals file includes SCADA signals for each wind turbine’s most important
components and production values.

The failure logs file is an historical failure logbook for the wind farm. It logs replacement and
repaired processes, errors, high signal values and component failures.

Table 12. Information available in the EDP Open Dataset.

File Variables

Wind Turbine Characteristics Power; Rotor; Gearbox; Generator; Tower; Power Curve

Wind Speed and direction (2 anemometer sensors);
Meteorological Mast Ambient Temperature and Air Pressure (2 sensors);

Humidity; Precipitation

Generator RPM and Temp;
Component Signals Gearbox Oil Temp; Nacelle Temp;

Total active and Reactive Power; Pitch Angle

Failure Logs Every component from the wind turbine
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Table 13. Wind turbine technical information.

Power

Rated power (kW) 2000
Cut-in wind speed (m/s) 4
Rated wind speed (m/s) 12
Cut-out wind speed (m/s) 25

Rotor

Diameter 90
Number of blades 3
Max Rotor speed 14.9
Power density (W/m2) 314.4

Gearbox

Type Planetary/sour
Stages 3

Generator

Type Asynchronous
Max Speed (rpm) 2016
Grid frequency (Hz) 50

Tower

Hub height (m) 80
Type Steel tube

7.4. Yalova Wind Turbine Dataset

Yalova is an onshore Turkish wind farm, located in west Turkey. It comprises 36 wind turbines
and a total nominal power of 54,000 kW, with two different turbine models, according to http://www.
tureb.com.tr/bilgi-bankasi/turkiye-res-durumu (accessed on 18 May 2020). Table 14 summarizes the
turbine models and characteristics.

The Yalova wind farm has been operating since 2016. A SCADA system was used to measure
and save wind turbine’s data from one of the turbines—which model is monitored is not specified
in the dataset. The SCADA system logged wind speed and direction, generated power and the
theoretical power based on the turbine’s power curve. Each new line of data is stored at 10 min
intervals. However, there are a few gaps and some generated power is missing, which can be explained
as a wind turbine’s malfunction, maintenance or the wind speed being lower than the cut-in speed.
The dataset is available in CSV format and it is for a one-year period, at https://www.kaggle.com/ber
kerisen/wind-turbine-scada-dataset (accessed on 17 August 2020). All the information about the data
available is summarized on Table 15.

Table 14. Yalova wind farm turbine models, in Yalova, Turkey.

Turbine Manufacturer Turbine Model Turbine Capacity

SINOVEL SL 1500/90 1.5 MW
SINOVEL SL 1500/82 1.5 MW

Table 15. Yalova wind turbine dataset information, in Yalova, Turkey.

Author Not specified
Variables Active power; Theoretical power; Wind speed; Wind direction
Draft Frequency 10 min
Start Period 1 January 2018
End Period 31 December 2018

 http://www.tureb.com.tr/bilgi-bankasi/turkiye-res-durumu
 http://www.tureb.com.tr/bilgi-bankasi/turkiye-res-durumu
https://www.kaggle.com/berkerisen/wind-turbine-scada-dataset
https://www.kaggle.com/berkerisen/wind-turbine-scada-dataset
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7.5. Wind Turbine SCADA dataset

In Kaggle website there is a data file, downloadable at https://www.kaggle.com/wasuratme
96/turbine-fault-prediction (accessed on 17 August 2020). Kaggle is one of the world’s largest data
science communities. One of the community members released a massive SCADA dataset from
an unknown turbine. The turbine’s location or identification were not disclosed, but the data set
seems to provide a wealth of information, including wind speed, power production, operating hours,
component monitoring and different turbine status.

The data are divided in two files: one with wind and turbine’s behavior and the other with turbine
status, including status “under maintenance”. The former file contains logs of wind forecast, turbine’s
generating power, component’s temperature and available power in the wind. The latter file contains
logs of maintenance periods and failures. Table 16 shows some details of the files available in
the dataset.

Table 16. Details of the SCADA Kaggle dataset files.

Header SCADA Data Status Data

Draft Frequency 10 min Variable
Observations 49,028 1849
Start Period 5 January 2014 24 April 2014
End Period 4 September 2015 28 April 2015

8. Other Datasets

8.1. Elia

Elia is a Belgium’s high-voltage transmission system operator, operating over 19,271 km of power
lines and underground cables throughout Belgium. The company plays a crucial role in the community
by transporting electricity from generators to distribution systems and consumers. Due to their
location, Elia is a key player in the energy market and electricity system in Belgium. The company
sets up multiple initiatives promoting the development of an efficient, transparent and fair electricity
market, according to https://www.elia.be/en/company (accessed on 13 May 2020).

Elia continuously tracks and forecasts wind power generation in different turbines. It provides
monthly grid data for each onshore and offshore wind production. The data are made available online
at https://www.elia.be/en/grid-data (accessed on 4 July 2020).

8.2. NREL Data Catalog

The NREL Data Catalog contains descriptive information and public data, resulting from funded
research conducted by NREL researchers and analysts. Data are available at https://data.nrel.gov
(accessed on 14 May 2020). The site, however, contains some dead links.

8.3. Discussion

Most wind turbine capacity and wind farm projects are cataloged in large global databases,
of which there is a summary in Table 17. Wind energy is a growing energy source, and there are
important wind farms all around the world. Data from the existing wind farms, as well as wind
resources, is summarized in Table 18. It may be useful for improving wind turbine maintenance
policies as well as planning new wind farms. Table 19 shows a summary of the datasets that contain
monitoring data of the wind farms’ turbines.

https://www.kaggle.com/wasuratme96/turbine-fault-prediction
https://www.kaggle.com/wasuratme96/turbine-fault-prediction
https://www.elia.be/en/company
https://www.elia.be/en/grid-data
https://data.nrel.gov
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Table 17. Wind turbine capacity databases.

The Wind Power USWTDB UKWTDB

Author - U.S. DoEnergy & LBNL & USGS & AWEA RenewableUK
Location Global United States United Kingdom

Information Developers, operators, Turbine 100 kW and
owners, manufacturers capacity database larger projects

Turbines 20,838 (Wind Farms) 63,794 10,607
Start Period - 2018 -
End Period - 2049 -

Table 18. Wind resource datasets summary.

ALP SONDA Ethiopia WMD Global Wind Atlas

Author U.S. DOE’s & WPA LABREN ESMAP DWE & World Bank
CCST & INPE

Location U.S Native Reservations Brazil Ethiopia Global
Information Wind Monthly Wind Speed Wind Speed Wind Power

Average Speed Direction Direction Density Maps
Frequency Temperature Air Pressure Wind Frequency
Direction at 25 m and 50 m Relative Humidity
Turbulence Temperature Mean Wind Speed

Turbulence

Draft 10 min 10 min 10 min average -

Frequency - - from 1 Hz draft -

Start period 2000 - 2018 -

End period 2011 - - -

Table 19. Wind farm/turbine monitoring datasets.

La Haute Bourne Sotavento EDP Yalova WT
ENGIE Data Set

Author ENGIE Group Sotavento, SA EDP Unknown Unknown
Location France Spain Guinea Gulf Turkey Unknown
Information Wind turbine’s Technical data SCADA records Wind Speed Wind Speed

component Wind resource divided and Direction Generated
monitoring output production training Generated and Wind Density
meteorological Wind farm and Theoretical Component’s
mast and CF test set Power Temperature

Failure Logs Turbine Status
Maintenance
Failures

Draft 10 min 10 min 10 min 10 min 10 min
Frequency variable
WF Type Onshore Onshore Offshore Onshore Unknown
WF 8 MW 17.56 MW 10 MW 54 MW Unknown
Capacity
Format CSV CSV CSV CSV CSV
File
Start 2013 - 2016 - 2014
End 2020 - 2017 - 2015

Developers and operators around the world are constantly making efforts to optimize the wind
farms to their maximum potential. Supervising production and monitoring the state of the turbines,
it is possible to develop a better insight into wind turbines’ operation. It is important not only to
monitor wind turbines’ operation, but also the main resource for this energetic system, which is the
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wind. Since the wind is the main variable and input, a better understanding of that resource will allow
the design of better wind farm projects, the discovery of patterns and the prediction of behaviors.

The meteorological mast is almost always monitored, due to its importance to the turbine’
operation. Some datasets, namely EDP and ENGIE, focus on wind turbines’ main components
operational data, alarm logs and failures. Monitoring systems are increasingly installed in
wind turbines to provide specific information that will help increase equipment availability [4].
That information is usually used for predictive maintenance plans, which means to do a prognostic and
find patterns in raw data, preventing faults and failures before they occur, avoiding the costs of failure.

Deciding which components to monitor is always important, but priority should be given to the
ones with higher failure rate and those which need more time to be repaired. The optimization of
wind power systems has had a considerable progress during the last decade and the costs to maximize
their production are viewed with growing concerns. Wind farms’ production costs are not negligible,
and the maintenance and optimization of the large power systems is very important, not only to make
it a profitable power system, but also to create competitive advantages against fossil fuels.

Each dataset is different, but they all have similarities. When it comes to meteorological mast,
wind speed and direction are monitored. All datasets have a 10 min sampling period. It is a normal
procedure for SCADA systems that store values of parameters and characterize operating and
environmental conditions. However, there are different opinions about which frequency should
be used to store the data. According to [25], most data contributions that rely on 10 min averaged
SCADA may be negatively affected due to rapid wind speed and power output fluctuations, leading to
a non-efficient understanding of wind turbines’ dynamic. On the other hand, some authors advocate
that when using high-frequency data it will be highly affected by “noise” and 10 min intervals will
smooth it. Using larger periods will result in loss of information and inaccurate data models. The study
shows that 30 s intervals provide reasonable balance between resolution and dynamic response,
but the mean absolute error shows lower values for 10 min training. Thus, highest accuracy is achieved
with higher sampling rate, but it also achieved a higher variance error [25]. A 10 min rate for sampling
SCADA systems is accepted.

9. A Deeper Overview of EDP Dataset

As mentioned in Section 7.3, EDP dataset is one of the most complete datasets available.
Among other information, it is possible to search for relations between turbine failures and their
behavior days before the failure.

9.1. Wind Turbine Operation Behavior

Wind Turbines have three main regions of operation, [40], as shown in Figure 1. The regions are:

• Region 1: Includes the time when the turbine is starting up;
• Region 2: Operational region in which it is desirable to seize as much wind power as possible;
• Region 3: Wind speeds are relatively high (rated wind speed) and force the turbine to limit the

fraction of wind power captured, for electrical and mechanical safety.
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Figure 1. Wind turbine operation regions.

Table 20 shows the number of failures counted in the EDP dataset, grouped by turbine component
group and sorted in descending order by number of failures counted. In the table it is possible
to identify three groups of components more often affected by failures. They are: (i) Generator;
(ii) Generator Bearing; and (iii) Hydraulic Group. Figure 2 shows that Turbine 06 and Turbine 09 are
the two most affected turbines—the former counts seven failures, the latter counts five failures.

Figure 2. Chronological plot of the failures recorded in the EDP dataset.
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Table 20. Number of failures for each component group, counted in EDP dataset.

Component’s Group Failures

Generator 7
Generator Bearing 6
Hydraulic Group 5
Transformer 3
Gearbox 2

Total 23

Figure 3a,b show plots that help identifying in which region the turbines were operating before
failure. Prior to failure in turbines T06 and T11, Region 2, the desirable operational region of operation,
is also identified as the one more prone to failure. Despite the fact that turbine T06 shows some prior
to failure behavior near Region 3 of operation, most of the observations still tend to Region 2.

(a)

(b)
Figure 3. Charts of Active Power and Rotor Behavior. Observations of the turbines’ normal behavior
are plotted in plus symbols, observations prior to failure in star symbols (a) Normal observations
(blue) and observations prior to generator failure (orange), for turbine T11; (b) Normal observations
(plus symbols) and observations prior to generator failure (star symbols), for turbine T06.
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9.2. Principal Component Analysis

PCA is a statistical method to identify patterns in data and express them in a way to highlight the
similarities and differences, through a graphical representation. PCA is also a method to compress the
size of the datasets, reducing the noise, removing outliers and simplifying data description.

Table 21 shows the correlations between different variables of the observations. The variables are:
(i) Generator’s rotations per minute; (ii) Generator’s bear temperature; (iii) Hydraulic oil temperature;
(iv) Gear oil temperature; (v) Nacelle temperature; (vi) Rotor’s rotations per minute; (vii) Wind speed;
(viii) Ambient temperature.

As the table shows, some of the variables have high percentage of correlation, which means their
behavior is highly correlated. For example, the Generator RPM shows very high correlations (R > 0.75)
with Rotor RPM, which is easily understood , since the behavior of one component is directly connected
with the other. Nacelle temperature has high correlation with other temperature-related variables, less
with the hydraulic oil temperature. Ambient temperature does not really correlate with any variable
chosen. We might have thought otherwise, but this case shows no behavior correlation.

Table 21. Correlation between variables of the EDP dataset.

Gen RPM Gen Bear Hyd Oil Gear Oil Nac Rtr Wind Amb
Temp Temp Temp Temp RPM Speed Temp

Gen RPM 1 0.6642 0.2672 0.7688 0.8678 0.9678 0.6727 0.1616
Gen Bear Temp 0.6642 1 0.6116 0.7802 0.8291 0.6929 0.8023 0.4522
Hyd Oil Temp 0.2672 0.6116 1 0.4590 0.4416 0.2793 0.5154 0.6592
Gear Oil Temp 0.7689 0.7802 0.4590 1 0.9555 0.7912 0.7488 0.3383
Nac Temp 0.8678 0.8291 0.4416 0.9555 1 0.8918 0.7935 0.3120
Rtr RPM 0.9678 0.6929 0.2793 0.7912 0.8918 1 0.7108 0.1530
Wind Speed 0.6727 0.8023 0.5154 0.7488 0.7935 0.7108 1 0.2616
Amb Temp 0.1616 0.4522 0.6592 0.3383 0.3120 0.1530 0.2616 1

Since there are more than 200,000 observations, it is not possible to plot the raw SCADA records.
An alternative is to compress the data to a lower number of dimensions, based on PCA approaches.

The generator component is the one with more failures recorded. Hence, it was chosen for this
PCA implementation. Nine variables with high correlation levels were selected, from two distinct
turbines, creating a 9-dimension plot. Using PCA it was possible to reduce the observations-variables
plotting to only a 2-dimensional chart, without losing relevant levels of information. Figures 4b and 5b
show that by only using the first two principal components, it is still possible to have over 80%
of variance explained. PC plots in Figures 4a and 5a show that zero, one and two days before
failure, turbine’s behavior is clustered with approximately eight, nine and ten days before failure.
This observation might indicate that it may be possible to predict a high probability of failure 10 days
before it occurs.

(a) (b)
Figure 4. Principal Component Analysis for Turbine 06. (a) PCA for 10 days before T06 generator’s
failure; (b) Pareto’s variance analysis for each PC used.
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(a) (b)
Figure 5. Principal Component Analysis for Turbine 11. (a) PCA for 10 days before T11 Generator’s
failure; (b) Pareto’s variance analysis for each PC used.

T2 levels are often used for control charts, which give a statistical measure of the multivariate
distance between each observation from the center of the dataset. Figure 6 shows the plot of T2 for
both turbines. As the plots show, T06 has a less erratic behavior and, as a first reading and impression,
the process looks under control, with only two out of control moments. T11 has a more scattered T2

plot, but still it is possible to identify some peaks that might surpass control chart’s limits.
Although we do not have values for control charts, by looking at T2 plots, Figure 6, we see

similarities too and we can connect them it the PCA plot. The statistical measure has high peaks in the
first observations (ten, nine and eight days before failure) and further close to failure.

(a) T2 for T06 (b) T2 for T11
Figure 6. Statistical measure of the multivariate distance of each observation from the dataset center.

10. Main Contributions

The present paper proposes some novel contributions to the state of the art. These can
be highlighted:

• Survey of open datasets related to wind, wind energy and wind turbine’s operation, which can be
used for data analysis and knowledge extraction;

• Overview of correlations between variables deemed as more important for turbine monitoring;
• Insight into wind turbine´s behavior for different values of wind speed and identification of three

main operating regions, such as the one that causes more failures;
• Identification of data clusters, using PCA;
• Use of statistical measures to identify out of control/failure behavior.

11. Conclusions

Wind energy has been the main renewable energy source in recent decades and it has potential to
continue growing. Good quality open datasets of wind resources, wind farms and wind farm operation
are fundamental for researchers, to extract knowledge and advance future research. The present paper
proposes, therefore, a comprehensive survey of existing datasets, with their advantages and limitations.
A total of 15 open datasets were analyzed, 13 of which have good quality for machine learning
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applications. The main characteristics of good quality datasets have been pointed out. This is an
important contribution to facilitate future research in the field.

A deeper analysis of one of the most complete wind farm operation datasets available also
provides these conclusions:

• The performance of component groups differs, and the faultiest behavior was identified;
• Wind turbine’s region 2 of operation is where more failures occur, even though it requires less

mechanical effort;
• Using PCA it may be possible to predict a turbine failure up to 10 days before the actual failure.

Future work includes the use of the knowledge extracted from the datasets to improve turbine
maintenance plans, so that the number of failures, downtime and corrective maintenance costs
may be reduced.
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Abbreviations

The following abbreviations are used in this manuscript:

AD Actuator Disk
AS Actuator Surface
ALP American Loan Program
AWEA American Wind Energy Association
CF Capacity Factor
CFD Computational Fluid Mechanics
CSV Comma Separated Value (file format)
CCST Centro de Ciência do Sistema Terrestre/ Earth System Science Center
DOE’s Department of Energy’s
DOE Data Department of Energy Open Data Catalog DOE Data
DWE Department of Wind Energy
ESMAP Energy Sector Management Assistance Program
INPE Instituto Nacional de Pesquisas Espaciais/ National Institute for Space Research
IURDB International Utility Rate Database
LABREM Laboratório de Modelagem e Estudos de Recursos Renováveis de Energia/

Laboratory for Modeling and Studies of Renewable Energy
LES Large-Eddy Simulation
LBNL Lawrence Berkeley National Laboratory
NREL National Renewable Energy Laboratory
OEDI Energy Data Initiative OEDI
PC Principal Component
PCA Principal Component Analysis
RPM Rotations Per Minute
SCADA Supervisory Control and Data Acquisition
SD Standard Deviation
SONDA National Organization System for Environment Data (Brazil)
UKWED United Kingdom Wind Energy Data Base
URDB United States Utility Rate Database
USGS United States Geological Survey
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USWTDB United States Wind Turbine Data Base
WPA Wind Powering America
WPD Wind Power Density
WMR Wind Measurement Data
XML eXtensible Markup Language

References

1. Wee, H.M.; Yang, W.H.; Chou, C.W.; Padilan, M.V. Renewable energy supply chains, performance,
application barriers, and strategies for further development. Renew. Sustain. Energy Rev. 2012, 16, 5451–5465.
[CrossRef]

2. Hau, E. Wind Turbines: Fundamentals, Technologies, Application, Economics, 2nd ed.; Springer:
Berlin/Heidelberg, Germany, 2005; ISBN 978-3540242406.

3. Letcher, T.M. Wind Energy Engineering: A Handbook for Onshore and Offshore Wind Turbines; Elsevier:
Amsterdam, The Netherlands, 2017; ISBN 978-0128094518.

4. González-Aparicio, I.; Monforti, F.; Volker, P.; Zucker, A.; Careri, F.; Huld, T.; Badger, J.L.
Towards quantification of condition monitoring benefit for wind turbine generators. In Proceedings of the
European Wind Energy Conference & Exhibition, Milan, Italy, 7–10 May 2007; pp. 1–11.

5. González-Aparicio, I.; Monforti, F.; Volker, P.; Zucker, A.; Careri, F.; Huld, T.; Badger, J.L. Simulating European
wind power generation applying statistical downscaling to reanalysis data. Appl. Energy 2017, 199, 155–168.
[CrossRef]

6. EMHIRES Dataset Part I: Wind Power Generation. Available online: https://setis.ec.europa.eu/publication
s/relevant-reports/emhires-dataset-part-i-wind-power-generation (accessed on 1 July 2020).

7. Diffendorfer, J.E.; Kramer, L.A.; Ancona, Z.H.; Garrity, C.P. Onshore industrial wind turbine locations for the
United States up to March 2014. Sci. Data 2015, 2, 1–8. [CrossRef] [PubMed]

8. USGS; Berkeley Lab; AWEA. The U.S. Wind Turbine Database. Available online: https://eerscmap.usgs.go
v/uswtdb/ (accessed on 17 June 2020).

9. Van Vuuren, C.J.; Vermeulen, H.J. Clustered wind resource domains for the South African renewable
energy development zones. In Proceedings of the IEEE 2019 Southern African Universities Power
Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa
(SAUPEC/RobMech/PRASA), Bloemfontein, South Africa, 28–30 January 2019; pp. 616–623.

10. Kusiak, A.; Zheng, H.; Song, Z. Short-term prediction of wind farm power: A data mining approach.
IEEE Trans. Energy Convers. 2009, 24, 125–136. [CrossRef]

11. Shevade, S.K.; Keerthi, S.S.; Bhattacharyya, C.; Murthy, K.R.K. Improvements to the SMO algorithm for SVM
regression. IEEE Trans. Neural Netw. 2000, 11, 1188–1193. [CrossRef] [PubMed]

12. Smola, A.J.; Schölkopf, B. A Tutorial on Support Vector Regression. Stat. Comput. 2004, 14, 199–222.
Available online: https://alex.smola.org/papers/2004/SmoSch04.pdf (accessed on 17 August 2020). [CrossRef]

13. Witen, I.H.; Frank, E. Data mining: practical machine learning tools and techniques with Java
implementations. ACM Sigmod Rec. 2002, 31, 76–77. [CrossRef]

14. Mining, D. Practical Machine Learning Tools and Techniques; Morgan Kaufmann: Burlington, MA, USA, 2005.
15. Wang, Y.; Witten, I.H. Induction of Model Trees for Predicting Continuous Classes; (Working Paper 96/23);

University of Waikato, Department of Computer Science: Hamilton, New Zealand, 1996.
16. Frank, E.; Wang, Y.; Inglis, S.; Holmes, G.; Witten, I.H. Using model trees for classification. Mach. Learn.

1998, 32, 63–76. [CrossRef]
17. Hothorn, T.; Lausen, B. Bundling classifiers by bagging trees. Comput. Stat. Data Anal. 2005, 49, 1068–1078.

[CrossRef]
18. Dietterich, T.G. An experimental comparison of three methods for constructing ensembles of decision trees:

Bagging, boosting, and randomization. Mach. Learn. 2000, 40, 139–157. [CrossRef]
19. Ti, Z.; Deng, X.W.; Yang, H. Wake modeling of wind turbines using machine learning. Appl. Energy

2020, 257, 114025. [CrossRef]
20. Wu, Y.T.; Liao, T.L.; Chen, C.K.; Lin, C.Y.; Chen, P.W. Power output efficiency in large wind farms

with different hub heights and configurations. Renew. Energy 2019, 132, 941–949. [CrossRef]

http://dx.doi.org/10.1016/j.rser.2012.06.006
http://dx.doi.org/10.1016/j.apenergy.2017.04.066
https://setis.ec.europa.eu/publications/relevant-reports/emhires-dataset-part-i-wind-power-generation
https://setis.ec.europa.eu/publications/relevant-reports/emhires-dataset-part-i-wind-power-generation
http://dx.doi.org/10.1038/sdata.2015.60
http://www.ncbi.nlm.nih.gov/pubmed/26601687
https://eerscmap.usgs.gov/uswtdb/
https://eerscmap.usgs.gov/uswtdb/
http://dx.doi.org/10.1109/TEC.2008.2006552
http://dx.doi.org/10.1109/72.870050
http://www.ncbi.nlm.nih.gov/pubmed/18249845
https://alex.smola.org/papers/2004/SmoSch04.pdf
http://dx.doi.org/10.1023/B:STCO.0000035301.49549.88
http://dx.doi.org/10.1145/507338.507355
http://dx.doi.org/10.1023/A:1007421302149
http://dx.doi.org/10.1016/j.csda.2004.06.019
http://dx.doi.org/10.1023/A:1007607513941
http://dx.doi.org/10.1016/j.apenergy.2019.114025
http://dx.doi.org/10.1016/j.renene.2018.08.051


Energies 2020, 13, 4702 24 of 24

21. Lin, M.; Porté-Agel, F. Large-Eddy Simulation of Yawed Wind-Turbine Wakes: Comparisons with Wind
Tunnel Measurements and Analytical Wake Models. Energies 2019, 12, 4574. [CrossRef]

22. Li, Z.; Yang, X. Evaluation of Actuator Disk Model Relative to Actuator Surface Model for Predicting
Utility-Scale Wind Turbine Wakes. Energies 2020, 13, 3574. [CrossRef]

23. Uchida, T. Effects of Inflow Shear on Wake Characteristics of Wind-Turbines over Flat Terrain. Energies 2020,
13, 3745. [CrossRef]

24. Pessanha, J.F.M.; Barcelos, G.F.B.; Faria, A.V.C.; Ferreira, V.M.F. Análise Estatística de Registros
Anemométricos e Seleção de Turbinas Eólicas: Um Estudo de Caso. In Proceedings of the XLII Simpósio
Brasileiro de Pesquisa Operacional, Bento Gonçalves, Brazil, 1–4 September 2009.

25. Gonzalez, E.; Stephen, B.; Infield, D.; Melero, J.J. Using high-frequency SCADA data for wind turbine
performance monitoring: A sensitivity study. Renew. Energy 2019, 131, 841–853. [CrossRef]

26. Smith, L.I. A Tutorial on Principal Components Analysis. University of Montreal. 2002.
Available online: http://www.iro.umontreal.ca/~{}pift6080/H09/documents/papers/pca_tutorial.pdf
(accessed on 17 August 2020).

27. Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459.
[CrossRef]

28. RodRigues, J.; FARinhA, J.T.; Mendes, M.; MARgALho, L. Predicting motor oil condition using artificial
neural networks and principal component analysis. Eksploat. Niezawodn. Maint. Reliab. 2020, 21, 440–448.
[CrossRef]

29. Kim, K.; Parthasarathy, G.; Uluyol, O.; Foslien, W.; Sheng, S.; Fleming, P. Use of SCADA data for
failure detection in wind turbines. In Proceedings of the ASME 2011 5th International Conference on
Energy Sustainability, American Society of Mechanical Engineers Digital Collection, Washington, DC, USA,
7–10 August 2011; pp. 2071–2079.

30. Smith, A.Z.P. What does the Capacity Factor of Wind Mean? Available online: https://energynumbers.info
/capacity-factor-of-wind (accessed on 24 June 2020).

31. Kitchin, R.; McArdle, G. What makes Big Data, Big Data? Exploring the ontological characteristics of
26 datasets. Big Data Soc. 2016, 3, 2053951716631130. [CrossRef]

32. RenewableUK. Wind Energy Statistics. Available online: https://www.renewableuk.com/page/UKWEDhome
(accessed on 15 June 2020).

33. United States Government; NREL; Alliance for Sustainable Energy. OpenEi Datasets. Available online:
https://openei.org/datasets/dataset (accessed on 1 July 2020).

34. INPE; CCST. SONDA—Sistema de Organização Nacional de Dados Ambientais. Available online:
http://sonda.ccst.inpe.br/index.html (accessed on 1 July 2020).

35. Ethiopia-Wind Measurement Data. Available online: https://energydata.info/dataset/ethiopia-wind-meas
urement-data (accessed on 15 May 2020).

36. World Bank Group; ESMAP; Technical University of Denmark; Vortex. Global Wind Atlas. Available online:
https://globalwindatlas.info (accessed on 1 July 2020).

37. Wikimedia Commons. Available online: https://commons.wikimedia.org/w/index.php?title=File:Global
_Map_of_Wind_Speed.png&oldid=401722013 (accessed on 3 September 2020).

38. Sotavento Galicia Foundation. Parque Eólico Experimental Sotavent. Available online: http://www.sotave
ntogalicia.com/en/ (accessed on 20 May 2020).

39. EDP Group. EDP Open Data. Available online: https://opendata.edp.com/explore/?refine.keyword=visibl
e&sort=modified (accessed on 1 May 2020).

40. Johnson, K.E.; Pao, L.Y.; Balas, M.J.; Kulkami, V.; Fingersh, L.J. Stability analysis of an adaptive torque
controller for variable speed wind turbines. In Proceedings of the 2004 43rd IEEE Conference on Decision
and Control (CDC) (IEEE Cat. No. 04CH37601), Nassau, Bahamas, 14–17 December 2004; Volume 4,
pp. 4087–4094.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/en12234574
http://dx.doi.org/10.3390/en13143574
http://dx.doi.org/10.3390/en13143745
http://dx.doi.org/10.1016/j.renene.2018.07.068
http://www.iro.umontreal.ca/~{}pift6080/H09/documents/papers/pca_tutorial.pdf
http://dx.doi.org/10.1002/wics.101
http://dx.doi.org/10.17531/ein.2020.3.6
https://energynumbers.info/capacity-factor-of-wind
https://energynumbers.info/capacity-factor-of-wind
http://dx.doi.org/10.1177/2053951716631130
https://www.renewableuk.com/page/UKWEDhome
https://openei.org/datasets/dataset
http://sonda.ccst.inpe.br/index.html
https://energydata.info/dataset/ethiopia-wind-measurement-data
https://energydata.info/dataset/ethiopia-wind-measurement-data
https://globalwindatlas.info
https://commons.wikimedia.org/w/index.php?title=File:Global_Map_of_Wind_Speed.png&oldid=401722013
https://commons.wikimedia.org/w/index.php?title=File:Global_Map_of_Wind_Speed.png&oldid=401722013
http://www.sotaventogalicia.com/en/
http://www.sotaventogalicia.com/en/
https://opendata.edp.com/explore/?refine.keyword=visible&sort=modified
https://opendata.edp.com/explore/?refine.keyword=visible&sort=modified
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review
	Wind Power and Wind Turbines Fundamentals 
	Wind Power
	Wind Turbine Technology

	Data Classification and Characteristics of a Good Dataset
	Open Datasets of Wind Turbine Capacity and Wind Farm Projects
	The Wind Power Database
	United States Wind Turbine Database
	United Kingdom Wind Energy Database

	Wind Resource
	OpenEI Dataset
	Native American Anemometer Loan Program
	SONDA
	Ethiopia Wind Measurement Data
	Global Wind Atlas

	Wind Farm Monitoring
	ENGIE, La Houte Bourne Wind Farm
	Sotavento Wind Farm
	EDP Wind Farm
	Yalova Wind Turbine Dataset
	Wind Turbine SCADA dataset

	Other Datasets
	Elia
	NREL Data Catalog
	Discussion

	A Deeper Overview of EDP Dataset
	Wind Turbine Operation Behavior
	Principal Component Analysis

	Main Contributions
	Conclusions
	References

