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Nanopharmaceuticals and nanonutraceuticals research has been lately receiving a lot of scientific attention. We aimed
to identify the top 100 most cited original articles of the scientific area, analyze their research themes, major contrib-
utors regarding authors, institutions, countries and journals. The bibliometric data was extracted from theWeb of Sci-
ence electronic database. Data was further processed by a bibliometric software, VOSviewer, to generate bubble maps
to visualize the results. Inter-institutional and international collaboration networks were constructed to further under-
stand the cooperation between different study centers. Results revealed that over 60% of the articles were published in
the 2000s. As of November 2019, the articles were cited 576–3665 times, with 20.1–261.8 citations per year. The ma-
jority of the most prolific institutions were based in the United States. Besides the United States, China, South Korea,
Canada and Germany contributed heavily to the 100 articles. Some popular themes included drug delivery, tumor, tox-
icity/biocompatibility and biodistribution. Regarding composition materials, gold, silver and polymeric nanoparticles
were the most commonly used.
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1. Introduction

According to the European Commission, nanomaterials stand for
“materials which often have specific properties due to their small particle
size” (European Commission, 2019). They can be described as products
of nanotechnology with at least one dimension between 1 and 100 nm
(De Jong and Borm, 2008). Our recent analysis of the biotechnology re-
search literature identified nanotechnology and nanoparticles to be
among the trending research themes (Yeung et al., 2019a). Due to
their size-dependent properties, nanomaterials are being widely used
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in a range of applications offering several opportunities, but also posing
inherent risks (Marques et al., 2019). The nanomaterials are regarded as
chemical substances; hence they are regulated in Europe by the EU
REACH (European Regulation on Registration, Evaluation, Authoriza-
tion and Restriction of Chemicals).

What makes nanomaterials very interesting in both pharmaceutical and
food industries is the possibility to control their properties using different
types of raw materials. Several pre-requisites have to be considered upon
the design of nanopharmaceuticals and nanonutraceuticals (Fig. 1), which
involve the use of two main categories of organic materials: polymers and
lipids. Nanopolymers are polymer molecules arranged in nanoscale to
offer favorable properties, such as high biodegradability and biocompatibil-
ity, easy design, preparation and scale-up in a variety of structures with in-
teresting bio-mimetic behaviour (Larena et al., 2008; Yang et al., 2019a;
Ljubimova and Holler, 2012). These nanopolymers can be surface function-
alizedwith targetingmoieties for site-specific delivery or other useful prop-
erties. For instance, the superior properties of chitosan nanopolymers have
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Pre-requisites to consider upon the design of nanopharmaceuticals or nanonutraceuticals.
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been recently reviewed in the context of serving as potential carriers for
anti-cancer pharmaceuticals attributed to their biodegradability and bio-
compatibility (Shanmuganathan et al., 2019). Nanolipids have been put
forward as an alternative carrier over polymers, particularly for lipophilic
drugs, as the former use lipids existing in the human body in their compo-
sition (Souto et al., 2007), thereby reducing the risk of toxicological events
(Doktorovova et al., 2016; Doktorovova et al., 2014). As lipid
nanomaterials undergo similar metabolic pathways as lipids from food,
they offer the opportunity to improve the bioavailability of a range of
poorly soluble drugs (Muller et al., 2006; Muller et al., 2008). The nature
of the compound, the lipid excipients and gastrointestinal digestion are fac-
tors to be considered in the development of these systems. Nanostructured
lipid carriers (NLCs) and solid lipid nanoparticles (SLNs) represent two
major types of lipid-based nanoparticles (Souto and Doktorovova, 2009;
Souto and Muller, 2010). Meanwhile, inorganic nanomaterials (e.g., gold,
silver, iron) are also employed in nanomedicine, for instance in cancer ther-
apy, imaging diagnosis, drug delivery, and also to facilitate soft tissue repair
(Mody et al., 2010; Dreaden et al., 2012; Mioc et al., 2019; Arisawa, 2019;
Urie et al., 2018).

There are various methods for the synthesis of nanoparticles, which can
be mainly classified into two large groups based on the top-down and
bottom-up strategies (Fig. 2) (Souto et al., 2019; Paliwal et al., 2014; Zahin
et al., 2019). The top-down approach combines the use of some processes
such as milling to create structures on a nanoscale from bigger starting mate-
rials. The bottom-up strategy creates multifaceted compounds starting from
smaller materials based on synthetic processes (Biswas et al., 2012). For
each strategy, the operational procedure, reaction conditions and adopted
protocols can be varied, and the optimal procedures in each case are selected
based on the type of material taken to start production and the desired final
product (Khan et al., 2019).
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Due to their remarkable properties, working with nanomaterials is nowa-
days considered a daily challenge for researchers (Jeevanandam et al., 2018).
In the last decades, many research works dealing with nanomaterials were
applied in the fields of healthcare, agriculture and foodstuff, electronics,
and even cosmetics (Farokhzad and Langer, 2006). Often offering break-
through solutions, nanomaterials widen the opportunity to exploit other ad-
ministration routes of (nano)pharmaceutics (Davis et al., 2008), together
with the development of innovative nanotechnologies in terms of diagnosis,
imaging, and therapeutics (Petros and DeSimone, 2010). This new class of
products, the nanopharmaceuticals, are being applied to improved and per-
sonalized medicines, with nanoformulation-based therapies for cancer, neu-
rodegenerative diseases, infectious diseases, pain, and others being recently
developed (Shi et al., 2017; Hasanzadeh-Kiabi, 2018; Zakharova et al.,
2019; Sanchez-Lopez et al., 2019; Severino et al., 2016; Andreani et al.,
2017; Jose et al., 2019).

Nanopharmaceuticals can lead to a delivery of drugs with improved
physical-chemical properties i.e. solubility, pharmacokinetic enhance-
ments, and extended half-life, in order to obtain a reduction on dose and
toxicity (Weissig et al., 2014; Havel, 2016; Feng et al., 2019; Öztürk-Atar
et al., 2019). When a nanopharmaceutical is developed, a broad range of
parameters must be attained regarding the required characteristics of
safety, efficacy, improved delivery, bioavailability, and applicability on
human beings. Developments in the regulatory affairs of
nanopharmaceutical to legislate correctly these goods and tightly regulate
them according to the requirements for the human use are still needed.
Nonetheless, they have already resulted in great changes in the pharmaceu-
tical as well as nutraceutical industries (Abenavoli et al., 2018; Daliu et al.,
2018; Daliu et al., 2019; Durazzo et al., 2019; Santini et al., 2018; Santini
and Novellino, 2017a; Santini and Novellino, 2017b; Santini and
Novellino, 2018; Santini et al., 2017; Durazzo, 2018).

Image of Fig. 1


Fig. 2.Main production techniques used in the top-down and bottom-up approaches to obtain nanoparticles.
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Nanotechnology applications to nutraceuticals are intensively studied
in recent years, thus building up an emerging class of products: the
nanonutraceuticals (Durazzo et al., 2018; Pimentel-Moral et al., 2018;
Watkins et al., 2015; Pimentel-Moral et al., 2019). Nutraceuticals, a port-
manteau of the words ‘nutrition’ and ‘pharmaceutical’, can be defined as
“the phytocomplex if they derive from a food of vegetal origin, and as the
pool of the secondary metabolites if they derive from a food of animal ori-
gin, concentrated and administered in the more suitable pharmaceutical
form” (Daliu et al., 2018; Santini and Novellino, 2017b). Nutraceutical ap-
plications are also intensively investigated in numerous disease areas, in-
cluding cardiovascular diseases, cancer, and diabetes, among others
(Banach et al., 2018; Boots et al., 2008; Braicu et al., 2017; Rossino and
Casini, 2019; Yang et al., 2019b; Yeung et al., 2018a). The
nanonutraceutical formulations represent respectively a valuable strategy
used in managing health conditions, particularly for patients who are not
eligible for a conventional pharmacological therapy. Studies on the follow
up, use, and compliance of pharmaceuticals as described by recent works
(Menditto et al., 2018; Menditto et al., 2015; Iolascon et al., 2016;
Putignano et al., 2017), and the studies on communication strategies and
assessment (Scala et al., 2016), should be referred not only to drugs but
also to nutraceuticals in view of exploiting the field applicability to differ-
ent health conditions.

The nanotechnology could be applied for superior delivery of
nutraceuticals with the aim to improve their bioavailability thereby increas-
ing health benefits; examples of advantages of nanotechnology applied to
the nutraceuticals are: efficient encapsulation and smart delivery and release
from a nanoformulation. For instance, research on encapsulation of
nutraceuticals into biodegradable, environment friendly nanocarriers, is on-
going to increase their absorption and the therapeutic potential.
Nanonutraceuticals represent a promising challenge for the future. They
should be properly assessed in order to estimate the maintenance of the re-
spective nutraceutical properties at the nano-level, and to guarantee safety
and efficacy. Follow-up studies to evaluate possible unwanted side effects
are very important for both nanopharmaceutical and nanonutraceutical for-
mulations (Wiwanitkit, 2012; Helal et al., 2019; Jones et al., 2019).

To gain insides on the overall high-impact research landscape of
nanopharmaceuticals and nanonutraceuticals, this work identifies and
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analyzes the top 100most cited original research articles of the outlined re-
search area. Consequently, the overall aim of this report is to provide an
overview of the nanopharmaceuticals and nanonutraceuticals research
with a focus on the most important scientific outputs, as indicated by aca-
demic citations performance.

2. Materials and methods

2.1. Literature search

In November 2019, a searchwas conducted through theWeb of Science
(WoS) Core Collection electronic database (Clarivate Analytics, Philadel-
phia, USA) to identify the nanopharmaceuticals and nanonutraceuticals
publications. The following search strings were used: (1) TOPIC =
(“nanopharma*” OR “nanomedic*” OR “nanodrug*” OR “nano-pharma*”
OR “nano-medic*” OR “nano-drug*” OR “nano pharma*” OR “nano
medic*” OR “nano drug*” OR “nanonutraceutic*” OR “nano-nutraceutic*”
OR “nano nutraceutic*”); (2) TOPIC = (“nanoparticle* OR “nano-parti-
cle*” OR “nano particle*”) AND TOPIC = (medic* OR pharma* OR
drug* OR nutraceutic*); finally, (1) OR (2). This search strategy identified
publications that mentioned the relevant words or their derivatives in the
title, abstract, or keywords. We limited the search to original research arti-
cles only. The final search yielded 90,248 original articles, and they were
sorted by descending order of citations. The articles were independently
screened for relevance by two authors (AY and AGA). A list of top 100
most cited nanopharmaceuticals and nanonutraceuticals articles was com-
piled. All of the top 100 articles were written in English.

2.2. Data extraction and analysis

The bibliographic data of the screened 100 most cited articles were re-
corded, such as the publication year, authorship, institutions, countries/re-
gions, journal title, publication count, and citation count. The “Analyze”
and “Create Citation Report” functions of the WoS platform were utilized
for the basic analyses. The “full records and cited references”were exported
to VOSviewer software (version 1.6.11, www.vosviewer.com) for further
bibliometric analyses.

http://www.vosviewer.com
Image of Fig. 2
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The VOSviewer software analyzes the terms used in titles and abstracts
(of the top 100 most cited articles), links them to the bibliographic data,
and visualizes the results by the means of a term map (Van Eck and
Waltman, 2009). In a term map, the bubble size reflects how frequently a
term is mentioned in the articles (multiple mentions in one article were
counted once). The bubble color reflects the average citations (citations
per article, CPA) of an article mentioning the term. The distance between
two bubbles reflects how frequently two terms were co-mentioned among
the 100 articles. Only words that appears in multiple articles (n = 2)
were analyzed and visualized. The frequencies of author keywords were
also analyzed by VOSviewer.

In addition, the collaboration networks of institutions and countries
were analyzed byVOSviewer. Each collaborationwas counted andweighed
equally. The bubble size represents the number of articles. The distance be-
tween two bubbles represents how frequently the two institutions or coun-
tries collaborated. Please refer to the respective figure legends for the
meaning of the bubble color.

3. Results and discussion

3.1. Overall results

The top 100 most cited nanopharmaceuticals and nanonutraceuticals
articles are listed in Table 1. The oldest and latest articles were published
in 1990 and 2013 respectively (Fig. 3). Over 60% of the 100 articles were
published in the 2000s. The articles were cited 576–3665 times (mean
= 975.8, SD = 582.3), with citations per year in the range of 20.1–261.8
(mean=78.7, SD=45.5). Themost prolific authors of the top 100 articles
were Professor Omid Cameron Farokhzad from Harvard Medical School
and Professor Robert Langer from Massachusetts Institute of Technology
(MIT), each with 6 contributions (Table 2).

3.2. Institutions

The majority of the most prolific institutions were based in the United
States. When institutions with at least 2 articles were considered, eleven in-
stitutions formed the largest collaboration network. MIT was in the center
of the network, having collaborations with local partners and international
partners, such as Gwangju Institute of Science and Technology (South
Korea) and University of Paris - XI (France) (Fig. 4). It should be noted
that University of California Los Angeles had 5 contributions to the top
100 articles but was not in the network as it collaborated with other part-
ners instead of the schools in the University of California system.

3.3. Countries

As expected, the United States (62%) and China (12%)were the twomost
prolific countries. Interestingly, in this list the articles contributed by the
United States and China had similar citations per article, without the high ci-
tation bias towards the former as observed in the literature of the common
nutraceuticals such as curcumin (Yeung et al., 2019b) and resveratrol
(Yeung et al., 2019c). The rest of the contributing countries are all from
Asia and Europe. Countries with 3 contributions included the United
Kingdom, France, Ireland, Japan and Netherlands. India and Singapore
each had 2 contributions. Countries with 1 contribution each included
Austria, Croatia, Italy, Norway, Russia, Spain, Sweden and Switzerland.
Thesefigures showed a different distribution as observed from the top 100 ar-
ticles of nutraceuticals and functional foods, in which the United States
topped the list with a smaller ratio (30%), the European countries had larger
contributions (e.g., United Kingdom: 11%; Belgium and Finland: 8% each)
and China played a smaller role (4%) (Yeung et al., 2018b). It was also differ-
ent from a nanoscience literature analysis published in 2007 that found China
only accounted for 1.73% of the top 1%of highly cited papers (Guan andMa,
2007). Perhaps these data imply that recent papers contributed by China
have gained much more citations than those published in the past.
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Meanwhile, for the 20 countries that contributed to the top 100 articles,
11 of them formed an international collaboration network (Fig. 5). The
United States collaborated with 8 countries (Norway, Switzerland,
Netherlands, China, Russia, Germany, South Korea and France), China col-
laborated with the United States and Germany, whereas South Korea col-
laborated with the United States and France. These countries tended to
publish the most cited articles more recently than the United Kingdom,
and were involved in collaborations between the Western and Asian
countries.

3.4. Journals

The top 100 articles were published in 39 journals, with the most pro-
lific journals having high impact factors in the range of 9.580–43.070
(Table 2). There was no single journal leading others by a large number
of articles. Among the top 10 most prolific journals, 3 were dedicated to
nanoparticles research, namely ACS Nano, Nature Nanotechnology, and
Nano Letters. Others werewith focus on chemistry,materials science ormul-
tidisciplinary sciences. When WoS journal categories were considered, the
leading categories were chemistry multidisciplinary (39%), materials science
multidisciplinary (34%), chemistry physical (30%), nanoscience nanotechnol-
ogy (28%), physics applied (17%), physics condensed matter (17%),multidisci-
plinary sciences (16%), and pharmacology pharmacy (9%). The summation of
the percentages exceeded 100% because some journals belonged to multi-
ple categories.

3.5. Term map

The term map visualizing words appeared in the titles and abstracts of
the 100 articles is shown in Fig. 6. In the lower left corner, biocidal action
(n = 2, CPA = 2077.5) and antimicrobial activity (n = 3, CPA =
2060.7) are some examples of the more highly cited terms. As mentioned
in the Introduction section, some of the more commonly investigated
themes included drug delivery (n = 18, CPA = 910.6), and also tumor (n
= 16, CPA = 984.5) and toxicity (n = 15, CPA = 829.9). Several
nanomaterials were more frequently mentioned, such as gold nanoparticle
(n = 14, CPA= 991.4), silver nanoparticle (n = 6, CPA= 1531.0), poly-
meric nanoparticle (n = 6, CPA= 780.0), silica nanoparticle (n = 3, CPA
= 891.3), and iron oxide nanoparticle (n = 3, CPA = 657.0). These find-
ings were consistent to a previous report that analyzed the
nanobiotechnology literature and found that inorganic nanoparticles had
more papers than polymer, carbon nanotube, and organic nanoparticles
(Takeda et al., 2009). Among the top 100 articles, gold nanoparticles
seemed to be most frequently investigated material, e.g., in the context of
cancer cell imaging (Huang et al., 2006; Niidome et al., 2006), site-
specific drug delivery (Paciotti et al., 2004), its cellular/organ uptake and
removal (Chithrani and Chan, 2007; De Jong et al., 2008), and application
as an x-ray contrast agent (Hainfeld et al., 2006).

3.6. Keyword map

Fig. 7 shows a map of author keywords. Nanoparticles (n = 10, CPA =
957.9), biocompatibility (n = 4, CPA = 710.3), biodistribution (n = 6,
CPA= 807.8) and drug delivery (n= 12, CPA= 792.5) were in the center.
Therewere 27 keywords that were listed in at least 2 articles, 9 of which have
had >800 CPA, namely nanoparticles and biodistribution as mentioned
above, silver (n = 2, CPA = 1905.0), surface charge (n = 2, CPA =
1434.0), prostate cancer (n = 2, CPA = 1035.0), cellular uptake (n = 2,
CPA = 916.0), fluorescence (n = 2, CPA = 826.0), nanostructures (n = 2,
CPA=826.0), and particle size (n=3, CPA=802.3). The remaining 18 re-
curring keywords were biocompatibility and drug delivery (mentioned
above), toxicity, mesoporousmaterials, sustained release, gold nanoparticles,
chemotherapy, targeting, PLGA [poly(lactic-co-glycolic acid)], photothermal
therapy, nanoparticle, nanomedicine, nanotoxicology, silica, graphene, con-
trolled release, vaccine, and mesoporous silica nanoparticles.



Table 1
Top 100 most cited nanopharmaceuticals and nanonutraceuticals research articles.

Rank Article Total
citations

Citations
per
year

1 Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. DOI: 10.1021/ja057254a 3665 261.8
2 In vivo cancer targeting and imaging with semiconductor quantum dots. DOI: 10.1038/nbt994 3546 221.6
3 Silver nanoparticles as antimicrobial agent: a case study on E-coli as a model for Gram-negative bacteria. DOI: 10.1016/j.jcis.2004.02.012 3169 198.1
4 Antimicrobial effects of silver nanoparticles. DOI: 10.1016/j.nano.2006.12.001 2424 186.5
5 Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. DOI: 10.1038/NMAT2608 2181 218.1
6 Shell-isolated nanoparticle-enhanced Raman spectroscopy. DOI: 10.1038/nature08907 1962 196.2
7 Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. DOI: 10.1038/nnano.2007.260 1930 148.5
8 The effect of particle design on cellular internalization pathways. DOI: 10.1073/pnas.0801763105 1708 142.3
9 Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. DOI:

10.1073/pnas.0608582104
1693 130.2

10 In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. DOI: 10.1038/nbt1377 1667 138.9
11 Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. DOI: 10.1038/nature08956 1645 164.5
12 A nanoscale optical blosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular

silver nanoparticles. DOI: 10.1021/ja020393x
1607 89.3

13 Shape effects of filaments versus spherical particles in flow and drug delivery. DOI: 10.1038/nnano.2007.70 1523 117.2
14 Reconstituting Organ-Level Lung Functions on a Chip. DOI: 10.1126/science.1188302 1413 141.3
15 Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. DOI: 10.1021/nl070363y 1397 107.5
16 A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of

neurotransmitters and drug molecules. DOI: 10.1021/ja028650l
1351 79.5

17 Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. DOI: 10.1021/nn800072t 1338 111.5
18 Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. DOI: 10.1073/pnas.0601755103 1220 87.1
19 Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. DOI:

10.1200/JCO.2005.04.937
1189 79.3

20 Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. DOI: 10.1016/j.biomaterials.2010.01.065 1160 116.0
21 Biodegradable luminescent porous silicon nanoparticles for in vivo applications. DOI: 10.1038/NMAT2398 1158 105.3
22 Accumulation of sub-100 nm polymeric micelles in poorly permeable tumors depends on size. DOI: 10.1038/NNANO.2011.166 1156 128.4
23 Graphene Oxide: Intrinsic Peroxidase Catalytic Activity and Its Application to Glucose Detection. DOI: 10.1002/adma.200903783 1134 113.4
24 Nanocrystal targeting in vivo. DOI: 10.1073/pnas.152463399 1105 61.4
25 ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of

the core composition on phagocytic uptake and plasma protein adsorption. DOI: 10.1016/S0927-7765(99)00156-3
1090 54.5

26 Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. DOI: 10.1021/la0513712 1031 68.7
27 Metal oxide nanoparticles as bactericidal agents. DOI: 10.1021/la0202374 986 54.8
28 Physical-Chemical Aspects of Protein Corona: Relevance to in Vitro and in Vivo Biological Impacts of Nanoparticles. DOI: 10.1021/ja107583h 984 109.3
29 Manufactured nanomaterials (Fullerenes, C-60) induce oxidative stress in the brain of juvenile largemouth bass. DOI: 10.1289/ehp.7021 972 60.8
30 Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. DOI: 10.1021/nl061412u 964 68.9
31 Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. DOI: 10.1016/j.

biomaterials.2004.07.050
909 60.6

32 Micellar nanocontainers distribute to defined cytoplasmic organelles. DOI: 10.1126/science.1078192 905 53.2
33 Titanium Dioxide Nanoparticles in Food and Personal Care Products. DOI: 10.1021/es204168d 904 113.0
34 Multifunctional Uniform Nanoparticles Composed of a Magnetite Nanocrystal Core and a Mesoporous Silica Shell for Magnetic Resonance and

Fluorescence Imaging and for Drug Delivery. DOI: 10.1002/anie.200802469
881 73.4

35 Nanoparticle Size and Surface Chemistry Determine Serum Protein Adsorption and Macrophage Uptake. DOI: 10.1021/ja2084338 869 108.6
36 Mediating Tumor Targeting Efficiency of Nanoparticles Through Design. DOI: 10.1021/nl900031y 868 78.9
37 Gold nanoparticles: a new X-ray contrast agent. DOI: 10.1259/bjr/13169882 865 61.8
38 Noninvasive imaging of quantum dots in mice. DOI: 10.1021/bc034153y 864 54.0
39 Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. DOI: 10.1038/7385 852 40.6
40 Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. DOI: 10.1016/j.biomaterials.2006.09.047 850 65.4
41 Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. DOI: 10.1016/j.biomaterials.2007.12.037 843 70.3
42 PEG-modified gold nanorods with a stealth character for in vivo applications. DOI: 10.1016/j.jconrel.2006.06.017 837 59.8
43 Aerosol-assisted self-assembly of mesostructured spherical nanoparticles. DOI: 10.1038/18410 835 39.8
44 Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. DOI:

10.1038/NNANO.2012.237
825 117.9

45 In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. DOI: 10.1038/nm.2933 797 99.6
46 Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. DOI:

10.1073/pnas.0707654105
782 65.2

47 Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. DOI: 10.1073/pnas.0509009103 777 55.5
48 Colloidal gold: A novel nanoparticle vector for tumor directed drug delivery. DOI: 10.1080/10717540490433895 776 48.5
49 Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. DOI:

10.1002/anie.200501819
771 51.4

50 In vitro toxicity evaluation of graphene oxide on A549 cells. DOI: 10.1016/j.toxlet.2010.11.016 767 85.2
51 Tailor-Made Dual pH-Sensitive Polymer-Doxorubicin Nanoparticles for Efficient Anticancer Drug Delivery. DOI: 10.1021/ja207150n 759 84.3
52 In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. DOI: 10.1093/toxsci/kfi256 756 50.4
53 Critical Evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the Measurement of Nanoparticles and Protein Aggregates. DOI:

10.1007/s11095-010-0073-2
746 74.6

54 Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. DOI:
10.1158/0008-5472.CAN-05-4199

742 53.0

55 Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. DOI: 10.1039/b821416f 741 67.4
56 Oops they did it again! Carbon nanotubes hoax scientists in viability assays. DOI: 10.1021/nl060177c 740 52.9
57 Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. DOI: 10.1002/smll.200700005 738 56.8
58 Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. DOI: 10.1096/fj.02-0088com 729 40.5
59 Exchange-coupled magnetic nanoparticles for efficient heat induction. DOI: 10.1038/NNANO.2011.95 712 79.1
60 Cytotoxicity of Graphene Oxide and Graphene in Human Erythrocytes and Skin Fibroblasts. DOI: 10.1021/am200428v 706 78.4

(continued on next page)
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Table 1 (continued)

Rank Article Total
citations

Citations
per
year

61 Quantum dot - Aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on Bi-fluorescence resonance energy
transfer. DOI: 10.1021/nl071546n

684 52.6

62 Near-infrared optical sensors based on single-walled carbon nanotubes. DOI: 10.1038/nmat1276 683 45.5
63 Preclinical Development and Clinical Translation of a PSMA-Targeted Docetaxel Nanoparticle with a Differentiated Pharmacological Profile. DOI:

10.1126/scitranslmed.3003651
676 84.5

64 Iron oxide nanoparticles for sustained delivery of anticancer agents. DOI: 10.1021/mp0500014 672 44.8
65 The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. DOI: 10.1038/NMAT2992 669 74.3
66 Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. DOI:

10.1073/pnas.0809154105
669 55.8

67 Mesoporous silica nanoparticles deliver DNA and chemicals into plants. DOI: 10.1038/nnano.2007.108 667 51.3
68 Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: A novel drug-carrier system for photodynamic therapy. DOI:

10.1021/ja0343095
667 39.2

69 PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. DOI: 10.1016/S0168-3659(98)00116-3 661 31.5
70 Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. DOI: 10.1158/0008-5472.

CAN-04-3921
660 44.0

71 Temporal targeting of tumor cells and neovasculature with a nanoscale delivery system. DOI: 10.1038/nature03794 656 43.7
72 Residual polyvinyl alcohol associated with poly (D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. DOI:

10.1016/S0168-3659(02)00127-X
655 36.4

73 Gastrointestinal uptake of biodegradable microparticles: Effect of particle size. DOI: 10.1023/A:1016085108889 651 27.1
74 Nanopartide-aptamer bioconjugates: A new approach for targeting prostate cancer cells. DOI: 10.1158/0008-5472.CAN-04-2550 647 40.4
75 Rapid biological synthesis of silver nanoparticles using plant leaf extracts. DOI: 10.1007/s00449-008-0224-6 641 58.3
76 Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. DOI: 10.1093/nar/gnh140 641 40.1
77 Time Evolution of the Nanoparticle Protein Corona. DOI: 10.1021/nn901372t 640 64.0
78 Biocompatibility, Biodistribution, and Drug-Delivery Efficiency of Mesoporous Silica Nanoparticles for Cancer Therapy in Animals. DOI:

10.1002/smll.201000538
637 63.7

79 Controlled Release of Biologically Active Silver from Nanosilver Surfaces. DOI: 10.1021/nn102272n 621 62.1
80 Mesoporous Silica-Coated Gold Nanorods as a Light-Mediated Multifunctional Theranostic Platform for Cancer Treatment. DOI:

10.1002/adma.201104714
613 76.6

81 Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo x-ray computed tomography imaging. DOI: 10.1021/ja071471p 612 47.1
82 Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. DOI: 10.1073/pnas.1106634108 611 67.9
83 Photothermally Enhanced Photodynamic Therapy Delivered by Nano-Graphene Oxide. DOI: 10.1021/nn201560b 609 67.7
84 Targeted Killing of Cancer Cells in Vivo and in Vitro with EGF-Directed Carbon Nanotube-Based Drug Delivery. DOI: 10.1021/nn800551s 609 55.4
85 Engineered Design of Mesoporous Silica Nanoparticles to Deliver Doxorubicin and P-Glycoprotein siRNA to Overcome Drug Resistance in a Cancer Cell

Line. DOI: 10.1021/nn100690m
608 60.8

86 An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. DOI: 10.1038/nmat1571 608 43.4
87 Multimodal Imaging Guided Photothermal Therapy using Functionalized Graphene Nanosheets Anchored with Magnetic Nanoparticles. DOI:

10.1002/adma.201104964
605 75.6

88 Nanoparticle uptake by the rat gastrointestinal mucosa - quantitation and particle-size dependency. DOI: 10.1111/j.2042-7158.1990.tb07033.x 604 20.1
89 The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. DOI: 10.1023/A:1012126301290 601 26.1
90 Coadministration of a Tumor-Penetrating Peptide Enhances the Efficacy of Cancer Drugs. DOI: 10.1126/science.1183057 600 60.0
91 Controlling surface morphology of electrospun polystyrene fibers: Effect of humidity and molecular weight in the electrospinning process. DOI:

10.1021/ma0351975
597 37.3

92 Interaction of Gold Nanoparticles with Common Human Blood Proteins. DOI: 10.1021/nn9011187 594 59.4
93 Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins. DOI: 10.1021/ja0719780 594 45.7
94 Size Effect on Cell Uptake in Well-Suspended, Uniform Mesoporous Silica Nanoparticles. DOI: 10.1002/smll.200900005 592 53.8
95 Size-Dependent Endocytosis of Nanoparticles. DOI: 10.1002/adma.200801393 590 53.6
96 Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. DOI:

10.1016/j.nano.2009.04.006
589 58.9

97 Biodistribution of colloidal gold nanoparticles after intravenous administration: Effect of particle size. DOI: 10.1016/j.colsurfb.2008.07.004 588 49.0
98 Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. DOI: 10.1016/j.biomaterials.2007.08.050 587 48.9
99 Tissue-Penetrating Delivery of Compounds and Nanoparticles into Tumors. DOI: 10.1016/j.ccr.2009.10.013 580 52.7
100 Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. DOI: 10.1126/science.1153307 576 48.0
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Fig. 3. Distribution of the top 100 articles in term of their publication years.
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3.7. Lack of clinical trials in the top 100 list

As mentioned in the Introduction section, application of nanoparticles to
cancer or tumor therapy and site-specific drug delivery have been important
topics. The current results supported these notions. In particular, the top 2 ar-
ticles were dealing with cancer imaging, targeting and photothermal therapy
(Huang et al., 2006; Gao et al., 2004). Meanwhile, the articles concerning
drug delivery in the top 20 of the list were dealing with the effects of
shape, size and structures of nanoparticles on biodistribution and drug deliv-
ery (Chithrani and Chan, 2007; Geng et al., 2007; Horcajada et al., 2010;
Liong et al., 2008). However, readers should be aware that there was only a
single human clinical trial among the top 100 articles, namely the one con-
ducted by Gradishar et al. (Gradishar et al., 2005) that showed a greater effi-
cacy in slowing down tumor progression in patients with metastatic breast
cancer and showed favorable safety profile of albumin-bound paclitaxel syn-
thesized in nanoparticle size, relative to the standard size. The number of
nanomedicine clinical trials is very small compared to non-nanomedicine, it

Image of Fig. 3


Table 2
Most prolific authors, institutions, countries, and journals of the top 100 articles.

No. of
articles

Citations
per
article

Authors with ≥ 4 articles
Farokhzad, Omid Cameron 6 819.5
Langer, Robert 6 819.5
Labhasetwar, Vinod 5 690.0
Chan, Warren C.W. 4 1091.0
Lin, Victor S.Y. 4 865.3
Liong, Monty 4 844.3
Ruoslahti, Erkki 4 891.5
Trewyn, Brian G. 4 865.3
Zink, Jeffrey I. 4 844.3

Institutions with ≥ 4 articles
University of California System 13 1109.8
Massachusetts Institute of Technology 10 849.0
Harvard University 9 906.8
Brigham Women's Hospital 7 869.9
Chinese Academy of Sciences 5 1071.8
Georgia Institute of Technology 5 2356.6
United States Department of Energy 5 723.2
Gwangju Institute of Science and Technology (South Korea) 4 818.3
Sanford Burnham Prebys Medical Discovery Institute 4 891.5
University of Michigan 4 651.3

Countries with ≥ 4 articles
United States of America 62 991.0
China 11 1019.5
South Korea 9 1141.0
Canada 4 1031.3
Germany 4 934.8

Journals with ≥ 4 articles (Impact Factor)
Journal of the American Chemical Society (14.695) 9 1256.2
Proceedings of the National Academy of Sciences of the United
States of America (9.580)

8 1104.5

ACS Nano (13.903) 7 727.9
Nature Nanotechnology (33.407) 6 1091.9
Biomaterials (10.273) 5 890.6
Nano Letters (12.279) 5 953.0
Nature Materials (38.887) 5 1074.6
Advanced Materials (25.809) 4 749.5
Nature (43.070) 4 1314.8
Science (41.063) 4 898.8

Fig. 4. The largest collaboration network between institutions with at least 2 articles. T
frequently the institutions collaborated with each other. Bubble color indicates the aver
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was estimated that there were 1430 nanomedicine trials published from
2005 to 2014, equivalent to approximately 0.8% of the number for non-
nanomedicine (Woodson and Rodriguez, 2019). Among the nanomedicine
trials, cancer was most prevalent (19.3%), particularly breast cancer
(6.9%), whereas other diseases seemed to be much less prevalent
(Woodson and Rodriguez, 2019). The comparably small number of clinical
trials concerning nanoparticles is consistent to the situation for a popular nu-
traceutical - curcumin, for which 3.8% of the relevant literature were clinical
trials (Yeung et al., 2019b); and also for the ethnopharmacology literature, in
which 1.3% were clinical studies (Yeung et al., 2019d). We hope that more
clinical trials for nanopharmaceuticals and nanonutraceuticals will be con-
ducted in the near future, and they will gain high citations as a recognition
of the efforts.

Here, we would also like to draw readers' attention to the KeyWords Plus
feature of WoS, which are “words or phrases that frequently appear in the ti-
tles of an article's references, but do not appear in the title of the article it-
self… based upon a special algorithm” (https://support.clarivate.com/
ScientificandAcademicResearch/s/article/KeyWords-Plus-generation-
creation-and-changes?language=en_US). In other words, KeyWords Plus are
additional keywords added byWoS to the indexed articles. In the top 100 list,
3 articles had keywords related to clinical trials listed in the KeyWords Plus,
namely “clinical-trial” for (Cabral et al., 2011), which was an in vivo study;
“phase-I” for (Nasongkla et al., 2006), which was an in vitro study; and
both “phase-I” and “clinical-trial” for (Paciotti et al., 2004), which was
in vivo study. Meanwhile, the phase III trial mentioned above was tagged
with “in-vivo” in the KeyWords Plus. These findings show that KeyWords
Plus data should be used with caution for bibliometric purposes. Meanwhile,
readers should be aware of some other limitations of this study. For example,
some papersmay not be indexed byWeb of Science and thus not identified in
this study. Since different databases count the number of citations differently,
it was not possible to use multiple databases. Besides, citation count is dy-
namic, meaning that the top 100 list will be composed of different papers
in the future.

4. Conclusion

This bibliometric study identified the top 100 most cited original arti-
cles about nanopharmaceuticals and nanonutraceuticals research. Over
60% of the 100 articles were published in the 2000s. The articles were
cited 576–3665 times, with 20.1–261.8 citations per year. The majority
of the most prolific institutions were based in the United States. Besides
he bubble size represents the number of articles. Bubble position is based on how
age publication year of the articles.

https://support.clarivate.com/ScientificandAcademicResearch/s/article/KeyWords-Plus-generation-creation-and-changes?language=en_US
https://support.clarivate.com/ScientificandAcademicResearch/s/article/KeyWords-Plus-generation-creation-and-changes?language=en_US
https://support.clarivate.com/ScientificandAcademicResearch/s/article/KeyWords-Plus-generation-creation-and-changes?language=en_US
Image of Fig. 4


Fig. 5. International collaboration network between countries. The bubble size represents the number of articles. Bubble position is based on how frequently the countries
collaborated with each other. Bubble color indicates the average publication year of the articles.
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the United States, China, South Korea, Canada and Germany also contrib-
uted heavily to the 100 articles. Some popular themes included drug deliv-
ery, tumor, toxicity/biocompatibility and biodistribution. Regarding
materials, gold, silver and polymeric nanoparticles were the most com-
monly used.
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