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The Nocturnal Frontal Lobe Epilepsy (NFLE) is a form of epilepsy in which seizures occur predominantly during sleep. In other
forms of epilepsy, the commonly used clinical approach mainly involves manual inspection of encephalography (EEG) signals,
a laborious and time-consuming process which often requires the contribution of more than one experienced neurologist. In
the last decades, numerous approaches to automate this detection have been proposed and, more recently, machine learning
has shown very promising performance. In this paper, an original Convolutional Neural Network (CNN) architecture is
proposed to develop patient-specific seizure detection models for three patients affected by NFLE. The performances, in terms
of accuracy, sensitivity, and specificity, exceed by several percentage points those in the most recent literature. The capability of
the patient-specific models has been also tested to compare the obtained seizure onset times with those provided by the
neurologists, with encouraging results. Moreover, the same CNN architecture has been used to develop a cross-patient seizure
detection system, resorting to the transfer-learning paradigm. Starting from a patient-specific model, few data from a new
patient are enough to customize his model. This contribution aims to alleviate the task of neurologists, who may have a robust

indication to corroborate their clinical conclusions.

1. Introduction

Nocturnal frontal lobe epilepsy (NFLE) is a rare form of
epilepsy, typically inherited, which affects both sexes from 1
to 60 years, and is associated with cognitive decline. Crises
are characterized by frequent and brief hypermotor sleep
seizures, which may range from a simple awakening from
sleep to more focused motor movements, with dystonic and
tonic postures, grimaces, screams or groans, episodic noc-
turnal wanderings, and stereotyped agitated somnambulism,
among others [1, 2]. In this paper, the problem of detecting
NFLE seizures, using Electroencephalographic (EEG) signals
as inputs to an original Convolutional Neural Network
(CNN) prediction model, is addressed.

The use of EEG signals is corroborated by most of the
literature on epileptic seizure detection, which considers

indeed the EEG the gold standard to analyse the electrical
activity of the brain [3].

In the literature, there is a wide range of proposals for the
identification of general epileptic seizures [4-13], mostly
based on the machine-learning approach, which support the
doctors in the time-consuming manual labelling [4].
However, very few contributions specifically dealing with
NFLE are present, and they reach lower performance in-
dices. In [14], a detection system for NFLE seizures has been
proposed, which is based on accelerometer signals, obtaining
a value of sensitivity of 91.67% and specificity of 84.19% on
three pediatric patients. The accelerometers were already
proposed in [15, 16] to detect epileptic seizures with pros and
cons; even if they are more comfortable to wear, they can
only reveal seizures associated to motor activity. Moreover,
high false-positive rates are often possible due to motion
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artifacts that cannot be readily distinguished from convul-
sions. In [17], a machine-learning technique has been
proposed to classify NFLE seizures and nonseizures using
the C4/A1 EEG channel (according to the International
10-20 System [18]), which is one of the monopolar deri-
vations currently used for the conventional sleep staging and
arousal scoring [19], obtaining a value of specificity of 82.4%.
In [20], the Self-Organizing Maps (SOMs) are used to de-
velop patient-specific seizure detection systems for NFLE.
The proposed method allows the construction of maps that
contain important information on the current brain state,
showing the potential of the map to correctly cluster data
from seizure and nonseizure patterns. In addition, it also
suggests the use of SOMs for early crisis detection by
projecting the EEG trace onto it. Following the trajectory of
this projection on the map, it is possible to activate an alarm
depending on the composition of the cluster where the
current EEG sample is projected. The method has been
tested on nine patients obtaining a mean value of sensitivity
equal to 80.5% and a mean value of specificity equal to
90.2%.

Despite these quite good results, the cited literature
shows that the feature engineering phase is crucial for the
success of the machine-learning predictive models and the
identification of proper seizure indicators is a preliminary
due diligence. In fact, it highly influences the performance of
the classifier and it is often conditioned to a specific
knowledge and competencies on the pathophysiology under
study. Moreover, extracting features is usually carried out by
hand and it is very time consuming, requiring a high number
of scenarios simulations in order to choose the best com-
bination of features. To avoid this challenging phase, in the
present paper, CNNs have been used. In fact, CNNs are able
to automatically learn relevant low-dimensional features
from high-dimensional data by successively applying con-
volutional and downsampling operations.

CNNs, which belong to the so-called deep neural net-
works [21-23], are now affirming themselves for the auto-
mated detection of epileptic seizures from EEG signals. In
[24], Acharya et al. proposed a one-dimensional (1-D) CNN
with 13 layers: 5 convolutional layers, 5 max-pooling layers,
and 3 fully connected layers. The CNN has been trained to
classify EEG epochs in three classes: normal, preictal, and
seizure. Using 100 single channel EEG traces of five patients
from the Bonn EEG database [25], an accuracy of 88.67%, a
sensitivity of 95%, and a specificity of 90% are obtained with
a ten-fold crossvalidation. Even if the results are promising,
comparison with the literature on the same database
revealed that the proposed detection system could be im-
proved provided that more EEG data are available. In [26],
Ullah et al. proposed an ensemble of pyramidal 1-D CNNs
(P-1D-CNN) to solve the same three classes’ detection
problem addressed in [24] on the same University of Bonn
database. Each P-1D-CNN has three convolutional layers
and two fully connected layers. Several simulations have
been performed to select the best model parameters. In order
to overcome the lack of data, already highlighted in [24], two
data augmentation schemes have been introduced. A ma-
jority voting strategy has been adopted to fuse the decisions
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of the ensemble of CNNs, reaching an average accuracy of
96.1%. In [27], the authors exploited the attitude of the
CNNs to process images, rather than 0-D temporal se-
quences. For this purpose, the raw EEG multichannels data
have been firstly filtered, then segmented using a prefixed
time window, and finally converted into a series of EEG-plot
images. The proposed CNN, which is based on the VGG-16
architecture of [28], has been trained to classify each image
into seizure or nonseizure class. The results, presented in
terms of median true positive rate labelling by seconds is
74%, which the authors claimed to be higher than that of
commercially available seizure detection software. In [29],
each single-channel EEG signal is converted into a 2D plot
and the plots corresponding to 22 different EEG channels are
combined in 3D images depending on the mutual corre-
lation of the intensities between the electrodes. Then, using
3D kernels, a 3D CNN, with 4 convolutional layers, 3 max
pooling layers, and 2 fully connected layers, has been built to
detect interictal, preictal, and ictal stages in 13 epileptic
patients. An accuracy of 90%, a sensitivity of 88.9%, and a
specificity of 93.8% is obtained using a ten-fold cross-
validation procedure.

As shown in the cited references, training CNN models
requires a huge amount of EEG records manually labelled by
skilled neurologists, which may be a tedious and time-
consuming task. Hence, as highlighted by most of the au-
thors, the major issues limiting the performance of these
deep-learning seizure detection methods are the amount of
training data, which may not be enough, and the feature
space of seizures, which may vary significantly across dif-
ferent patient EEG recordings and even for the same patient.
To overcome these limitations, in the present paper, a
transfer-learning strategy, which can significantly reduce the
quantity of data needed for training, is adopted. A survey on
the transfer learning is reported in [30], where it is defined as
“the ability of a system to recognize and apply knowledge
and skills learned in previous tasks to novel tasks.” Transfer
learning proved to be particularly useful in training deep
neural networks that can share some lower layers of a
network previously trained with data from other tasks, while
the upper layers are retrained and fine-tuned using task-
dependent data [31]. Transfer-learning techniques are still
largely unexplored although they seem to have a great po-
tential to overcome the issue of lack of data available for
epileptic seizure detection.

In the present paper, the CNNs have been firstly used to
build patient-specific seizure detection systems for three
patients affected by NFLE. The detection problem has been
modelled as a seizure and nonseizure classification problem,
obtaining performances that overcome those of other
methods presented in [20] for the same patients. The patient-
specific CNN model has been used also to find the seizure
onset, limiting the time-consuming manual labelling for
doctors. Then, a transfer-learning technique has been
adopted, allowing to fine tune one of the CNN models,
trained with data from one patient, to obtain a detection
predictor for a different patient. The results obtained in the
present work indicate that even just a seizure is enough to
customize the CNN to the new patient.



Complexity

The rest of this paper is organized as follows. The da-
tabase used, the data augmentation schema, and CNN model
architecture are discussed in Section 2. Section 3 presents
and discusses the results obtained by the patient-specific and
the cross-patient detection systems. Section 4 concludes the
findings of the study.

2. Materials and Methods

A combination of deep learning and transfer learning has
been used to build patient-specific and cross-patient seizure
detection systems. The detection problem has been for-
malized as a two-class classification problem, where the two
classes correspond to seizure (SZ) or nonseizure (NS) states
during the sleep and has been approached by training
Convolutional Neural Network models with long-term EEG
recordings including epileptic seizures.

2.1. Dataset. Data for this study comes from two epilepsy
centers: Unidade de Monitorizagdo em Epilepsia e Sono do
Centro Hospitalar e Universitario de Coimbra, Portugal,
Epilepsiezentrum, Universititsklinikum Freiburg, Germany,
on behalf of the EPILEPSIAE project [32]. The data concern
three patients affected by nocturnal seizures located in the
frontal lobe (NFLE). The same patients have been considered
also in [20], and the subject numbers refer to those in Table 1
of [20]. The relevant information on the patients enrolled in
this study is summarized in Table 1.

The initial and final time of a seizure (SZ) have been
identified based on the agreement between at least two
expert neurologists. For the nonseizure recordings, no in-
formation is available about the patient sleeping or awake
state. As in [20], also in the present study, it has been hy-
pothesized that the patients were sleeping in the ten minutes
preceding a seizure and these ten minutes are considered to
characterize a nonseizure state (NS).

The dataset includes eleven scalp EEG channels, placed
according to the International 10-20 System [33] with a
sampling rate of 256 Hz. According to the neurologists’
suggestions, the eleven selected channels, coloured in blue in
Figure 1, are those more suitable for the NFLE seizure
detection: three central channels (C3, C4, and Cz), two
frontal channels (F3 and F4), two frontal-polar channels
(Fpl and Fp2), two parietal channels (P3 and P4), and two
occipital channels (O1 and O2). All the channels are uni-
polar derivations with a common reference electrode.

2.2. EEG Segmentation and Data Augmentation. Data,
coming from the continuous 11 recordings, each one cor-
responding to an EEG channel, have been segmented using
an overlapping sliding window of 5 seconds. In this way,
each time window, or segment, has 1280 data points in the
11D space. The data segmentation allows to increase the
number of training samples, which is mandatory, especially
in deep learning [26, 29]. For the training of the network, the
data from seizures were segmented with an overlap with the
previous window of 0.1484s, 0.5508s, 1s, for patient #5,
patient #6, and patient #9, respectively. The overlap times

during seizures for the three patients have been differently
chosen in order to reduce the class unbalance due to dif-
ferent total seizure times (see Table 1). As the mean seizure
time is about 10% of the nonseizure recordings, the length of
the nonseizure segments is still equal to 5 seconds without
overlapping, whereas, for the seizure segments, the overlap
time has been dynamically set to produce a balanced number
of segments within the two classes. This operation can
produce windows with very similar data, so with few nov-
elties for the CNN training; however, in our opinion, it
seems to be the most effective way to balance the classes
while maintaining a high quantity of data for deep learning.
During testing, a sliding window of 5 s with an overlap of 1
second, for all patients and both phases (seizure/non-
seizure), has been used.

In order to improve the quality of the raw EEG signals, a
preprocessing step has been performed. After discarding
the windows with missing data, a standard thresholding of
potential values has been performed. Here, data have been
labelled as artifacts if the absolute value of any data point in
the trial exceeded a fixed threshold. This method is cur-
rently the most widely used artifact detection method in the
EEG community. It is most effective for detecting gross eye
blinks or eye movement artifacts. Since even a small
number of these extreme values can lead to inaccurate
results, the segments including these extreme values have
been discarded. Furthermore, filtering has been a necessary
step due to the presence of 50 Hz line noise and DC offset
(removal of the 0Hz). Thus, a Notch filter at 50 Hz with
bandwidth 1Hz has been applied to remove 50 Hz line
noise, and the average value of each electrode along the
preseizure phase has been removed as DC offset. The
cleaned dataset for each patient has been then partitioned,
in order to randomly assign the different seizures to the
training, validation, and test sets.

2.3. CNN Architecture. For the development of the CNN
architecture, the deep residual network (ResNet) structure
[34] has been adapted for the problem of seizure detection.
The CNN architecture is shown in Figure 2.

A first convolutional unit (CUy), made up of three layers,
transforms the input image of size 1280x11 into a 4-
channels image of size 320 x 11. The responsible of the size
reduction is the convolutional layer, having filters of size
5x1 and stride 4 x 1. A max pooling layer (MP), with pool
size 5 x 1 and stride 4 x 1, follows the first convolutional unit,
reducing again the image dimension to a 4-channel image of
size 80 x 11. A second convolutional unit (CU;) made up of
seven layers filters the 4-channel image of size 80 x11 by
means of a residual connection. Two following convolu-
tional units (CU, and CUj3), each one made up of nine layers,
filter out the 4-channel image of size 80 x 11 by means of a
residual connection, reducing the image dimension first to a
16-channel image of size 20 x11 and then to a 64-channel
image of size 5x11. An average pooling layer (AP), with
pool size 5 x 1, reduces the image dimension to a 64-channel
image of size 1 x 11, producing a set of 704 features. Finally, a
fully connected layer (FC) processes the 704 features, output
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TaBLE 1: Patients from European epilepsy database.

Patient Sex # of SZ SZ time (mean) (s) Total SZ time (s) Total record time (s) Epilepsy center
Pat #5 M 5 38.00 190.00 3190.00 Coimbra
Pat #6 F 8 89.66 717.29 5517.29 Freiburg
Pat #9 M 15 84.38 1265.75 10265.75 Freiburg

INION

FiGURE 1: The International 10-20 System [33] with the 11 selected channels (in blue).

I

SM CO

FIGURE 2: CNN architecture, where I is the image input layer; CUy is the k'™ convolutional unit; MP and AP are the max pooling and average
poohng layers, respectively; FC is the fully connected layer, and SM and CO are the SoftMax and classification output layer, respectively. In
the k™ convolutional unit, Cyj, Ny, Ry, and Dy are the ;' j b convolutional layer, the i j b batch normalization layer, the i j h ReLu layer, and the

dropout layer, respectively.

of the average pooling layer, and feeds a SoftMax layer (SM)
for classification (CO).

In this architecture, each channel of the input image is
filtered separately, obtaining a set of 64 features per elec-
trode. Features coming from different electrodes are com-
bined in the fully connected layer, ie., only after the
convolutional units, for classification.

Dropout layers with dropout probability of 20% have been
included inside CU;, CU,, and CUj; convolutional units in
order to reduce overfitting on the training set and improve

generalization. The algorithm used to train the network is the
stochastic gradient descent with momentum [35].

3. Results and Discussion

The performance of the deep models has been evaluated
using some metrics employed in most of the literature on
epilepsy and, in general, in classification by machine
learning, such as Accuracy, Specificity, Sensitivity, and
Gmean:
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N (AC) - TP+TN

Y A = TP L TN + FP + EN'
Specifici P)=——,

pecificity (SP) TN = FP

(1)
TP

Sensitivity (SS) = ——,

ensitivity (SS) TP 7 TN

Gmean = \/ Specificity x Sensitivity,

where TP (True Positives) are the seizure patterns (SZ)
correctly classified, TN (True Negatives) are the nonseizure
patterns (NS) correctly classified, FP (False Positives) are the
nonseizure patterns classified as seizure patterns, and FN
(False Negatives) are the seizure patterns classified as
nonseizure patterns.

3.1. Patient-Specific Seizure Detection. Firstly, patient-spe-
cific seizure detection systems have been developed for each
of the three patients. Table 2 reports the number of seizures
and the number of segments used for training, validating,
and testing. MATLAB R2018b deep-learning library has
been used to develop the CNN models. To train the models
an Intel® Core™ i7 CPU with 16 GB memory has been used,
with the help of a Nvidia GeForce GTX 960M with 4 GB
memory.

As an example, Figure 3 shows the performance for
patient #9, in terms of accuracy on training, validation, and
test sets, against training epochs. The training procedure
continues epoch after epoch only if the validation perfor-
mance increases with respect to the previous epoch. If not,
the training is interrupted. This very strong constraint helps
avoiding overfitting on the training set, which would occur if
the usual crossvalidation procedure is adopted, due to the
big size of the network. As shown in Figure 3, for patient #9,
the training has been stopped at the 8™ epoch since no better
performance has been obtained on the validation set. The
training time of the patient-specific models range from
approximately 1 hour to 5 hours depending on the seizures
in the training and validation sets.

Table 3 reports the performance in terms of Accuracy,
Specificity, and Sensitivity for the three patients.

Values greater than 94% have been achieved for all the
performance indices of all the patients with mean values
higher than 93%, except for sensitivity related to patient #9
which is equal to 83.94%. From Table 3, it can be seen that
patient #6 presents very high values for all the indices,
reaching even 100% of specificity. Patient #5 still has quite
high-performance values, even if it is less than the previous
case, due to relatively low value of specificity, whereas pa-
tient #9 presents an opposite behaviour with a high value of
specificity and the lowest value of sensitivity, showing that
EEG features vary from one patient to the other.

For each patient, the obtained results, in terms of geo-
metric mean of specificity and sensitivity (Gmean), have
been compared with those in [20], where SOM and SVM
have been used as classifiers. This last method is widely used

TaBLE 2: Dataset composition for training, validation, and test.

# #of #of #of #of # of # of
Patient of SZ SZ SZ segment segment segment

SZ train valid test  train valid test
Pat#5 5 3 1 1 1205 421 645
Pat #6 8 4 2 2 1193 710 1319
Pat#9 15 7 3 5 1009 486 3313

s
B
g
=
3
<
70
1 2 3 4 5 6 7 8
Epochs
—— Training
—— Validation
—— Test

FIGURE 3: Accuracy on training, validation, and test set for patient
#9 against training epochs.

TaBLE 3: Test performance (%) of the patient-specific models.

Patient Pat #5 Pat #6 Pat #9 Mean values
Accuracy 94.42 99.77 94.99 96.39
Speciﬁcity 94.12 100 96.32 96.81
Sensitivity 98.00 97.67 83.94 93.20

TaBLE 4: Comparison of Gmean (%) with some state-of-the-art
techniques.

Method SOM SVM CNN
Pat #5 86.02 87.05 96.04
Pat #6 90.57 89.84 98.83
Pat #9 82.92 82.13 89.92

in epileptic seizure detection systems [4, 36]. The results
reported in Table 4 show that CNN improves the perfor-
mance of both the methods by several percentage points.
These patient-specific models can be used to support
the neurologists in the time-consuming identification of
the seizure onset time. In particular, during the evolution of
the EEG recordings, the condition derived from the CNN
model is used to trigger the alarm (i.e., the seizure onset)
when the sliding window is classified as SZ for at least d
consecutive seconds. The assertion time d has been opti-
mized on the same set used to train the model. As an
example, Table 5 reports the difference At in seconds be-
tween the alarm time given by the algorithm (t,},,,) and the
seizure onset time provided by the neurologists (ts,) for the
EEG recordings of the patient #9. As it can be noted, in 87%
of cases, the alarm time differs from the seizure onset time
by less than 10's. In the other two cases, this difference is at
most 17s. Figure 4 reports the cumulative alarm time
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TasLE 5: Difference At (s) between the alarm time given by CNN and the seizure onset time provided by the neurologists for the three

patients.
SZ # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
At (s) —4 -2 17 -3 -7 14 1 -3 10 0 5 -3 -1 -5 0

Cumulative alarm time distribution
100 T T T T T

90 +
80
70 +
60 |
50
40
30
20

% of seizures

0 100 200 300 400 500
Latarm (8)

FIGURE 4: Cumulative alarm time distribution for patient #9. The dashed vertical line refers to the seizure onset time provided by the

neurologists.

SZ14
200 T T T T T T
0
=200 L L L L L L
0 100 200 300 400 500 600
— FP2
100 T T T T T T
0
-100 L L L L L L
0 100 200 300 400 500 600
— F4
500 T T T T T T
0 UJ
-500 1 1 1 1 1 1
0 100 200 300 400 500 600

0 100 200 300 400 500 600
Time (s)

FiGure 5: Example of the test seizure #14 of patient #9. Top three plots: raw signals of the channels FP2, F4, and C4 coloured on the basis of
the NS and SZ state; bottom plot: bar graph of the answer of the CNN model, where a blue bar represents a pattern classified as NS, whereas a
red bar characterizes a SZ pattern. The green vertical dashed line identifies the onset seizure time given by the CNN (£,1arm)-
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TaBLE 6: Test Performance (%) of the cross-patient seizure detection system of patient #5.
SZ #1 SZ #2 SZ #3 SZ #4 SZ #5
Accuracy 41.57 93.47 90.97 91.44 98.32
Speciﬁcity 28.03 85.92 95.70 85.56 98.22
Sensitivity 100 100 81.69 97.47 100
Gmean 52.94 92.69 88.42 91.32 99.11

Specificity (%) Sensitivity (%)
100 - F

%0 | SRR 2
I I

80 |- , L P
i | i |

70 - i i 70 - i i
1 1 1 1

1 1 1 1

s0. 1 - S0t -
I I I I

w0y i 0o i
I I I I

I I I I

20 ¢ | O 20 | | O
I I I I
o : oo :
. ! ! . ! !
1 2 1 2

1
Epoch
(a)

1
Epoch
(b)

FIGURE 6: Results of the cross-patient seizure detection procedure in terms of Specificity (a) and Sensitivity (b), starting from the seizure
detection model of patient #9 and fine-tuning it for patient #5. Figure shows the trend of Specificity and Sensitivity during the temporal
occurrence of the 5 seizures of patient #5. Blue line: trend on the training set; red line: trend on the validation set; green squares: results on

the test set.

distribution for patient #9. In the same figure, the seizure
onset time provided by the neurologists is reported. Note
that, because in each EEG recordings the first 10 minutes
correspond to nonseizure states (NS), ts; is always equal to
600s.

Figure 5 shows, as an example, the testing seizure #14
of patient #9 and the preceding 10 min. The three top
plots in Figure 5 report the raw signals of the channels
FP2, F4, and C4, which have been colored in blue for the
NS state and in red for the SZ state. The bottom plot in
Figure 5 shows a bar graph where each bar, corresponding
to one second, is colored depending on the answer of the
CNN: a blue bar represents a pattern classified as NS,
whereas a red bar characterizes a SZ pattern. By com-
paring the bars with the raw signals during the temporal
evolution of the EEG recording a very good correspon-
dence is found.

These results, showing a good performance of the CNN,
are obtained from models that have been trained using a
number of seizures. However, in case of a new patient,
instead of collecting a sufficient number of seizures to
customize a new patient-specific model from scratch (which
sometimes is difficult) transfer-learning capabilities can be
used. Starting from a model already trained for other pa-
tients, it may be retrained with new seizures of the new
patient, obtaining a cross-patient seizure detection system
with transfer learning among the patients.

3.2. Transfer Learning for Cross-Patient Seizure Detection.
Transfer learning is a technique consisting of pretraining a
model on one set of data and then fine-tuning it on another.
In this case, the deep cross-patient transfer learning
framework is applied to classify EEG data of a patient using
the CNN trained with the EEG of another subject. In par-
ticular, starting from a patient-specific CNN model, its
weights are used as the initial values for a second phase of
training using seizures of another patient. This could provide
many advantages when few seizures are available.

As an example, the patient-specific CNN model of pa-
tient #9 (CNN9) has been assumed as the starting model.
This choice has been done because on one hand patient #9
has the highest number of seizures and on the other its
model achieves the lowest performance in terms of Gmean.

Table 6 shows the results of the cross-patient seizure
detection procedure applied to detect the seizures of patient
#5 starting from the network pretrained on patient #9;
Figure 6 reports the trends of Sensitivity and Specificity
during the temporal occurrence of the five seizures of patient
#5, for the training set (blue line) and for the validation set
(red line). The green squares in the same figure represent the
performance obtained on the test seizures.

Starting from the CNN9 model, the first of the five
seizures of patient #5 are used as a test case. As expected, the
performance is quite low because the model has not been yet
customized to the new patient. In particular, the CNN9
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FIGURE 7: Results of the cross-patient seizure detection procedure in terms of Specificity (a) and Sensitivity (b), starting from the seizure
detection model of patient #9: trend of Specificity and Sensitivity during the temporal occurrence of the 8 seizures of the patient #6. Blue line:
trend on the training set; red line: trend on the validation set; green squares: results on the test set.

TABLE 7: Steps of the cross-patient seizure detection process for patient #5.

Training SZ Validation SZ Test SZ # Epochs CPU time (s)
Step 0 — — 1 0 0
Step 1 1 1 2 1 14
Step 2 1 2 3 0 454
Step 3 1,2 3 4 0 960
Step 4 1,2,3 4 5 2 1528

TaBLE 8: Test Performance (%) of the cross-patient seizure detection system on patient #6.

SZ #1 SZ #2 SZ #3 SZ #4 SZ #5 SZ #6 SZ #7 SZ #8
Accuracy 88.53 99.26 97.75 99.63 95.94 98.82 92.07 96.37
Specificity 97.65 98.82 100 100 100 100 100 94.71
Sensitivity 83.22 100 95.04 99.01 89.11 97.63 81.82 100
Gmean 90.14 99.41 97.49 99.50 94.40 98.81 90.45 97.32

model performs a low specificity (about 28%), whereas the
value of sensitivity is very high (100%). This suggests refining
the starting model by using patient-specific information.
Hence, in the next step, two-thirds of the EEG segments of
the first seizure have been used as the training set and the other
one-third as validation set, whereas the performance of the
customized model has been tested on the second seizure,
showing an improvement of specificity that increases to 85.92%,
while sensitivity is not degraded. In the subsequent steps, the last
seizure has been used to test the model customized on the
preceding seizures. As it can be noted, during the testing of the
subsequent seizures, Specificity and Sensitivity values fluctuate
keeping always above 80% and providing an ever high Gmean
value up to the value of about 99% in the last tested seizure.
For each step of the procedure, Table 7 reports a
summary of the cross-patient seizure detection process: the
seizures used for training, validation, and test, the number of

epochs performed during the training, and the total CPU
time in seconds. If the number of epochs is zero, it means
that, during the training, no network configuration has been
found that improves the prediction accuracy on the vali-
dation step. Note that the process took less than 30 minutes
to fine-tuning the model with each new data pattern.

Table 8 and Figure 7 reports the same results of Table 6
and Figure 6 but referring to patient #6, starting again from
the CNN9 model.

In this case, the cross-patient seizure detection system
performs very well since the first seizure, especially con-
cerning the specificity, which always takes values above
about 95%.

This fluctuating trend, especially concerning the sensi-
tivity, demonstrates the diversity of seizures not only among
patients but also within the same patient, which challenges
all classifiers, whatever deep they may be.
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TaBLE 9: Steps of the cross-patient seizure detection process for patient #6.

Training SZ Validation SZ Test SZ # Epochs CPU time (s)
Step 0 — — 1 0 0
Step 1 1 1 2 2 17
Step 2 1 2 3 1 12
Step 3 1,2 3 4 1 622
Step 4 1,2,3 4 5 0 817
Step 5 1,2,3, 4 5 6 3 1206
Step 6 1,2,3,4,5 6 7 1 32
Step 7 1,2,3,4,56 7 8 5 415

In Table 9, the transfer-learning process from CNN9 to
patient #6 is shown, with the same information reported in
Table 7. Also, in this case, retraining the CNN9 with a new
seizure takes no more than 20 minutes.

4. Conclusions

A CNN architecture has been deployed, by adapting the
ResNet structure to the problem of seizure detection from EEG
traces in nocturnal frontal lobe epilepsy (NFLE). The adjust-
ment in the architecture consisted mainly in using 1D filters in
the convolutional layers, to filter separately the information
coming from different electrodes, and including dropout layers
to reduce overfitting on the training set and improve gener-
alization. An advantage of the deep-learning approach is that
the complex and time-consuming feature engineering step is
not required. Moreover, the developed patient-specific de-
tection systems have demonstrated to be superior to those in
the literature towards all the performance indexes, with ac-
curacy above 94% for all the considered patients. In our
knowledge, this is the first application of deep learning to
NEFLE seizure detection. Moreover, using the potentiality of the
transfer learning, the lack of an extensive EEG database has
been overcome and the possibility to develop a cross-patient
seizure detection system has been demonstrated. Indeed, a
patient-dependent system can be fine-tuned to a new patient
with few data and limited computational effort.
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