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Featured Application: The work establishes the grounds for the spray characterization using
statistical analysis, how to explore it to improve the physical interpretation of spray processes,
and advance the methods to report it in a way that further advances spray science.

Abstract: The statistical characterization of sprays is an essential way of organizing data on drop size
and velocity to provide reliable information on the spray dynamics. A clear presentation of data using
statistical tools provides evidence of a clear research question underlying the spray characterization.
In this article, a review of the best practices to build histograms is presented, as well as three relevant
details on spray characterization: (i) the application of information theory to assess if we have enough
information (not data); (ii) the link between mathematical probability distributions and the physical
interpretation of spray data; (iii) and introducing, for the first time, the concept of drop size diversity,
with the quantification of the polydispersion and heterogeneity degrees. Finally, the view presented
is applied to the characterization of nanofluid sprays for thermal management.
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1. Introducing the Statistical Organization of Spray Data

A spray is a two-phase flow of droplets interacting with a gaseous continuous phase. The physical
process of liquid atomization depends on the atomizer type and breakup process, and once completed,
the droplets formed have multiple sizes and velocities, and statistical histograms are the most common
way of organizing the large amount of data on their characteristics.

In the sense of data organization, the histograms organizing the sizes and velocities of droplets
by classes do not represent a probability of occurrence, as in conventional statistical analysis,
but a probability of presence of droplets in a spray, since the atomization mechanisms already
occurred. This small language shift allows considering each probability value as representing the
degree of relevance of a certain class in the spray—a notion which will be essential to understand
drop size diversity.

In practice, after sorting data by classes, the way histograms represent the probability of presence
is dividing the counts in each class (1) by the total sample size (N), px = nx/N. However, if there is a
need to increase the detail of the distribution, one can build the discrete distribution in terms of density
of probability of presence by considering the bin width (§Dy) in the probability value as pdy = py/éDy.
The bin width is constant if size classes are regularly spaced within the spectrum, or can vary the size
if irregularly spaced.
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In the case of discrete probability distributions, the sum of all probability values associated with
each class k is equal to one, ) px = 1, which means that each probability value py corresponds to the
weight a number of drops within a characteristic class k has in the entire spray. It is why one designates
this way of presenting spray data as a number-weighted probability distribution. There are other ways
as shown later.

The interpretation of the probability as a number-weighted value of class k, for example, applied to
drop sizes dy, allows for calculating the moments of the size distribution, such as the average size
of droplets, dig = Yy dkpr = YL dxpdxdDy, whether using a probability discrete distribution or a
probability discrete density distribution, respectively. Although this is basic statistical knowledge,
in several research works, it is unclear which is the distribution reported, considering that each
approach (probability or probability density) reacts differently when we increase the detail of a
distribution by changing the bin width 5D, as illustrated in the example of Figure 1.

While a smaller bin size implies a higher number of classes, in probability distributions, it leads,
ultimately, to a uniform probability distribution with one class per sample (Figure 1a). However,
in probability density distributions, it increases the detail to allow identifying eventual multimodalities
dues to different drop cluster with similar characteristics, or increase the noise in pd) values,
as illustrated in the examples depicted in Figure 1b.
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Figure 1. Example of the effect of changing the bin size J in discrete probability (a) and probability
density (b) size distributions. The simulated data follow a lognormal distribution function.

The purpose of remarking the difference between probability and probability density distribution
is particularly relevant when comparing experimental with simulated drop characteristics. In the case
of using a probability distribution (py), the number of classes must be the same, or the representative
values of each class (dj for drop size and u; for one velocity component). Otherwise, if the presentation
of spray data opts for the probability density distribution, which is dimensional (pd; [pm~1]), it is
not necessary to use the same number of classes. Ultimately, to avoid erroneous comparisons
between experimental and simulated data, it is essential to be clear about the approach followed
when presenting spray data in statistical format. The question is why one should change or tune the
number of classes when describing the spray characteristics.

The underlying idea of increasing the number of classes is to obtain a greater detail of the
probability distributions and detect eventual multimodality associated with clusters of data with
dissimilar characteristics. In the case of drop sizes, an example generating such multimodality would
be the presence of multiple atomization mechanisms (e.g., aerodynamic and/or hydrodynamic).
In addition, in the case of the velocity, different two-phase flow events like the impact of droplets on
solid surfaces contain information about the axial velocity component with positive values from those
impinging on the surface, but the secondary droplets resulting after impact have a negative velocity
component. Therefore, what is the criterion for choosing a given number of classes, k? In addition,
should the spacing of these classes be regular or irregular?

Considering regularly spaced classes, one of the basic principles introduced by Sturges [1] stated
that the number of classes k > log,(N), with N as the total sample size. Doane [2] further elaborated
on Sturge’s rule, but the problem is the over-smoothing of histrograms produced and its applicability
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limited to a number of data samples below 200, as analyzed by Hyndman [3]. The alternatives for the
Sturge’s and Doane’s rules are the:

e Scott’s rule for the bin width as 6D = 3.49sN~1/3 where s is the standard deviation [4];

e  Freedman-Diaconis’ rule, also for the bin width as 6D = 2(IQR)N~1/3, with IQR as the
interquartile range [5];

e  Rice’s rule for the number of classes is k = 2N1/3 [6];

e and a rule based on | = 6 interlaced Fibonacci series with a number of classes defined as
k= JIn(N)/In(1.618) [7].

Considering a simulated example of two clusters of droplets, each following a lognormal
distribution function
1 In(d/dy)?
de,7) = —=exp | ——5—5— 1
fLN( 8 ’)/) d'y\/277r p( 2,),2 ( )

with dg as the geometric diameter and v as the geometric standard deviation, the final distribution
function is a mixture between the two as f(d) = wy fin(40,0.5/1/6) + (1 — wy) fin(70,0.5/+/6) with
wy = 0.3. Figure 2 shows the effect of using different criteria to organize drop size data with (a) N = 10*
and (b) N = 10° measurements in the form of probability density distributions of drop size.
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Figure 2. Example of the effect of changing the number of classes in details obtained on the probability
density distribution of a mixture between two clusters described by distinct lognormal distributions,
considering different sample sizes of (a) N = 104 and (b) N = 10° droplets.

For the two sample sizes tested, the Sturges’ rule clearly over-smooths the distribution’s bimodality.
The Scott’s rule generates less classes but is enough to capture the multimodality of the drop size
distribution while producing the minimum number of empty classes. The Freedman and Diaconis
proposal, and the interlaced Fibonacci series, can provide greater detail, but the results with the lower
number of samples (Figure 2a) prove the cost of increasing the number of classes by a larger noise
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observed in probability density values. It is noteworthy that the best approach to represent drop size
distributions for comparison purposes is a probability density (pdf [um~1]), since the amplitude
of distributions with a different number of classes does not change as the amplitude of probability
distributions (py).

The second approach to define classes in drop size statistics (less so in velocity) is the use of
irregular bin widths. For example, in laser diffraction measurement systems, like Malvern’s Spraytec,
the ratio (dupperBaundmy - dlowergoundﬂ,y) /dy is constant, leading to broader classes for larger diameters
representing each class. However, a systematic method for using irregular bin width to improve the
description of drop size and velocity distributions is still open for further research. These details
seldom appear reported in the literature when authors present the results of spray characterization
and compare sprays obtained in different operating conditions. In this sense, the approach less prone
to error would be to present the statistical data of the spray characteristics in terms of cumulative
probability distributions, as explored later in this introduction.

A final remark on the presentation and analysis of spray data in the form of statistical
distributions is to consider the weight given to each class. In the case of the velocity of spray droplets,
a number-weighted probability distribution is the most adequate. However, for histograms of drop size,
other weighting factors, such as the

e area-weighted p, = %

with s, = nnkd% and S = Y s;;
e and volume-weighted p, ; = UV"

with oy = (71/6)mdi and V = ¥y

applied to probability distributions improve the interpretation of its moments, as reported in the
work of Sowa [8]. The reason for organizing spray data with other weight values besides the
number-weighted case relates to the physics associated with the research question. Namely, if the
investigation involves phenomena occurring at the droplet surface area, such as heat and mass transfer
events, an area-weighted drop size distribution is more adequate. However, if the spray liquid volume
is more important, such as spray cooling applications, the most adequate is the volume-weighted drop
size distribution.

The characterization of a spray often involves moments of the measured discrete probability
distribution using single-point diagnostic techniques, like the Phase-Doppler Interferometry, or field
diagnostic techniques using imaging. In the case of drop size, the calculation of each moment from
drop size raw data corresponds to

1

T AN
dap = (Z:I\i d%) Vasb{apyert (2)

where d; is a measurement of drop size in the sample acquired. If these moments use, instead,
the number-weighted probability distribution values, the expression is

Ay = <Zk 1 (dg)”

Lk (i)

with n; as the number of measurements counted within the size class k where dj represents the
mid-point in the interval between a lower and an upper bound.

The characterization of the spray droplets using the average size obtained from a
number-weighted probability distribution—d;p—means considering all droplets have, on average,
the same size of d1g. For example, when comparing dyg for different locations in the spray, or the
same location for different sprays, any increase implies more droplets of larger sizes. When analyzing
the physics of droplet transport while interacting with the surrounding environment, the arithmetic

a—b
) ’ va>b,{a,b}€Z+ (3)
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mean diameter might be a valuable characteristic measure to consider. However, when the research
aims at combustion applications, with evaporation and mass diffusion phenomena occurring at the
surface area of each droplet, the best characteristic size is d3p, since it is the average of an area-weighted
probability distribution—or else, if the research points to spray cooling applications, where the mass
deposited on the surface is the relevant parameter due to its contribution to the formation of liquid
films and their dynamic behavior, the best characteristic size for analyzing the heat and mass transfer
involved would be dy3, the average of a volume-weighted probability distribution.

The main point when choosing the best way to present spray data is the awareness that each
characteristic parameter, obtained statistically, has an underlying physical meaning, depending
on the thermofluid phenomena involved. Finally, it is noteworthy that providing the moments
of drop size and velocity distributions may limit the use of spray data in future works and spray
simulations because of the inability to reconstruct the original distributions from the moments reported.
Therefore, the next section discusses the implications for spray science of the attempt to fit a probability
distribution functions to the histograms of drop size.

2. Drop Size Distribution Functions and Spray Science

Spray characterization provides relevant information of droplets dynamics for the application
of its mean quantities in empirical correlations related with heat transfer and fluid flow processes.
The several optical diagnostic techniques acquire large amounts of data and the challenge is often how
to process it. The criterion for the sample size (N) of spray data recurs often to the notion of statistical
uncertainty. When its value is below a pre-defined threshold, the measurement stops because the
experimentalist has enough data. However, this criterion often interprets spray data as a random
probabilistic event, while spray statistics is more a method for organizing data. Therefore, the right
question is not whether there is enough data to post-process and characterize a spray, but whether
there is enough information. Section 2.1 reviews an approach based on information theory to make
this assessment.

Secondly, the meaning of using an average quantity to describe a spray, where droplets have
multiple sizes, is to assume that whatever physical phenomenon affects an average size represents
what occurs to the entire spray. The limitation of presenting the spray data based solely on mean
quantities is the loss of information of the local or global drop polydispersed sizes or velocities in
the spray and its potential usefulness in the development of numerical models that simulate sprays.
However, while it is difficult to retrieve information of the original statistical distributions from
their mean quantities, the ability to reconstruct drop size or velocity distributions from characteristic
parameters of the mathematical probability distribution functions (pdf), instead of its moments, allows
for obtaining the mean quantities without losing the information of the original distributions. Therefore,
approaching spray characterization from the point of view of reconstructing probability distributions
has significant advantages over the approach that uses solely moments retrieved from discrete
probability distributions that describe a spray (e.g., see Panao and Radu [9]). Section 2.2 reviews the
fitting of probability distribution functions to histograms of drop data to retrieve the characteristic
parameters allowing the reconstruction of spray data distributions, but introduces the argument of
whether or not such fitting can provide some insight into the physics of the atomization process.

The final Section 2.3 introduces, for the first time, the notion of drop size diversity, distinguishing
the polydispersion degree from the heterogeneity degree and presenting the best parameters for their
characterization. An accurate characterization of drop size diversity is relevant for the design of sprays.

2.1. Defining Enoughness in Large Data Samples

An experimentalist stops a measurement based of criteria related to a statistical uncertainty.
The definition of statistical uncertainty contains three conditions:

1. itis maximum for a uniform distribution where all classes have the same probability;
2. asmall variation in the probability of a class generates a small variation in the uncertainty;
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3. and, finally, it depends on the distribution itself.

The common measure used for the statistical uncertainty considers the standard deviation (sx )

and the sample size (N) as
Sx

VN
with Z; as the coefficient associated with the confidence interval considered (e.g., Z, = 1.96 for
a 95% Confidence Interval). When the mean value (¥) is different from zero, dividing ¢ by the
mean provides the uncertainty in percentage. Since the standard deviation depends on the spray
characteristics, reducing the statistical uncertainty implies adding more data to increase N. However,
as argued by Pando [10], if the spray begins to operate in a different way and the distribution changes,
the statistical uncertainty as defined in Equation (4) continues to decrease, without providing any
evidence to the experimentalist about the changes occurring in the spray. In a certain sense, it fails
to comply to the third condition defining a statistical uncertainty because it is more sensitive to the
sample size than the distribution itself. For this reason, an approach based on information theory is a
better option.

In information theory, the Shannon entropy complies to all the aforementioned characteristics
of a statistical uncertainty. Considering the probability values of any discrete distribution (p;), the
expression for calculating the Shannon entropy H is

e=7.

(4)

H=-Y (piln(p;)) (5)

1

As an example, if we consider drop size, the minimum value corresponds to a monosize spray with all
droplets having the same size, thus, p = 1, and H = 0. The maximum value occurs for a hypothetical
spray where all droplets have the same probability of being present, corresponding to a uniform
distribution with k classes, each for a different drop size. Therefore, the maximum Shannon entropy
is max(H) = 1/k. In sprays, while measuring size and velocity, considering the Shannon entropy
normalized by its maximum value, H, = H/max(H), it tends to stabilize (see Pando [10] for details).
The meaning is that adding more data does not mean adding more information because the shape
and scale of the distribution stabilized. However, as argued in Pando [10], the enoughness requires
a criterion with interpretative value and proposes the excess entropy (EE) because, as defined in
Feldman et al. [11], it is what best captures the nature of convergence of the entropy rate as the amount
of memory gained, or the cost of amnesia if all data would suddenly be lost. To evaluate the evolution
of EE while measuring,

e one calculates the entropy rate that quantifies the difference between the normalized Shannon
entropy with adding one value the N samples and the Shannon entropy with N samples-H,, =
[Hu(N +1) = Ho(N);

e considers the limit when N — oo, which is ;

e and the excess entropy EE is formulated as EE = Y.3_; (H,(N) — /1)

In the case of spray data, the stabilization implies /i = 0, thus, it simplifies EE. The method
proposed is setting a convergence criterion—¢ g and stop measuring when |EE(N) — median(EE)| < egg,
considering the number of samples corresponding to the median as the minimum required
(see Panao [10] for more details).

Once the experimentalist has enough information and organizes the spray data with histograms
of drop velocity and weighted distributions of drop sizes, depending on the physical process
under analysis, one of the methods to avoid losing information of the measured distributions is
fitting data to known mathematical or empirical distribution functions. However, the question is
whether such fitting can provide further insight into liquid atomization mechanisms. This is the topic
explored in the next sub-section.
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2.2. Underlying Physics of Probability Distribution Functions Applied to Sprays

An important consideration when characterizing sprays is the effect of the interaction between
droplets and the continuous phase on the local (or even overall) size and velocity distributions.
This interaction involves different transport phenomena, with momentum and energy exchanges
between the dispersed phase (spray) and the carrier phase (surrounding environment), generating
eventual secondary breakup of the spray droplets leading to changes in the shape and scale of drop size
distributions, or acceleration (positive or negative) captured by changes in local velocity probability
distributions. However, the physical reason why a certain distribution function might fit better than
another is still open for further research.

This work advances an argument in favor of distinguishing between modeling and characterizing
drop size distributions. The purpose of modeling drop size distributions is to predict them from
the information of the atomizer geometry and operating conditions. The simulation of sprays
using a numerical approach [12], or a statistical or stochastic approach [13] can produce data on
the droplets characteristics, but it is different from statistically processing such data. Therefore,
according to Déchelette et al. [14], there are four methods for modeling drop size distributions:

o the empirical;

e the Maximum Entropy Formalism (MEF);
e the Discrete Probability Function (DPF);

e and the Stochastic.

However, the purpose of characterizing a spray is to describe, as accurately as possible,
the polydispersion of sizes and velocities of its droplets. This description aims at obtaining mean
quantities for analyzing heat transfer and flow processes—or its aim is to improve our understanding
of the nature underlying the atomization mechanisms.

There are two categories of probability distribution functions used to describe droplets
characteristics: mathematical and empirical. Lefebvre and McDonell [15] provide a synthesis of
the main probability distributions in each category. Except for the Rosin-Rammler or Weibull, the
Nukiyama—-Tanasawa and Upper-Limit empirical distribution functions are complex and problems

’

arise when determining the best-fit values for their parameters. As to the mathematical distribution
functions, the simplest is the Log-Normal, while the Log-Hyperbolic is also complex and problems arise
with finding the best fitting parameters. One distribution absent from Lefebvre and McDonell [15]
and other review works is the Gamma distribution function which Villermaux et al. [16] associated
with the distribution of droplets resulting from the fragmentation of ligaments, generating a spray,
reviewed later in this section.

While most research on spray characterization focuses on the fitting process, few works such
as Villermaux [17] and Villermaux et al. [16] address the meaning of the mathematical distribution
function used and the physical background for such fitting. As mentioned in the Introduction,
instead of focusing our attention on probability or probability density functions, we propose a greater
focus on cumulative distribution functions (F(d)). Therefore, any comparison between different F(d)
becomes universal and if such distribution properly describes the local or global experimental results,
its digitization to simulate a spray is relatively accessible.

In the case of the Log-Normal distribution, its cumulative form given by

Fin(d,dg,v) = % (1 +erf <h1(\df2/;lg))> (6)

includes d; as the scale parameter, the geometric mean diameter, and *y as the shape parameter of the
distribution. Applied to spray characterization, the reason for using a Log-Normal distribution function
is related to the multiplicative effect of subsequent stages of droplets breaking up during atomization,
as a cascade process, where one drop breaks into two or more and so on. However, if we consider the
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interaction between droplets and the continuous gaseous phase, in time, the dragging of droplets leads
to secondary flows which eventually produce a vortical effect on the transport of subsequent droplets.
Namely, smaller droplets, with lower response times, dragged by secondary flows, may return to
upward locations, redistributing the counts of certain drop size classes in locations further downstream
of the spray trajectory. Therefore, even if it is not the result of a multiplicative breakup process,
the presence of these smaller drops affects the probability distributions describing the spray, having an
effect similar to that of a cascade of multiple breakup stages. One could even speculate whether or
not the reason for a Log-Normal distribution best fitting experimental results expresses the way the
multiphase flow organizes the transport of droplets according to their size in a cascade pattern.

Besides several breakup stages and transport phenomena, some atomization processes result
from the disintegration of liquid sheets or jets into ligaments, and those ligaments further fragmenting
into droplets. In this case, Villermaux et al. [16] argues each ligament constituted of several blobs,
and when it fragments into several droplets, the size distribution that reasonably fits is a Gamma
probability distribution function, which cumulative form is expressed by

1 4 1
Fr(d,a,b) = W/O x* " texp(—x/b)dx (7)
with a and b as the shape and scale parameter, respectively. In this case, a characteristic size corresponds
the product of both: dc = a - b.
Considering empirical distribution functions, this work focuses on the Weibull distribution,
first applied to describe the distribution of drop sizes by Rosin and Rammler,

q
FWB(drdcrq) =1 — exp ( (:C) ) (8)

where d. is a scale parameter related to a characteristic drop size and g is the shape parameter and
considered a measure of the spreading in drop sizes. The accuracy of this empirical probability
distribution is best related to drop size distributions with fewer smaller droplets or narrower size
distributions [15].

A final note considers the Nukiyama—Tanasawa empirical distribution that is often used to fit
experimental data. Here, particular attention is given to the work of Li and Tankin [18] that derived
the expression using an information-theory approach, and for the spray liquid volume, its cumulative
form results in

Enr(d,de,q) =1 — (1 + gd®) exp (fng’) )

where g is also the shape parameter.

The average quantities referred to so far are related to moments in probability distributions,
but considering the cumulative distribution, any quantity corresponds to a representative diameter,
generally expressed as Dy, where x is the type of distribution, and w is the percent cumulative value
related to the representative diameter. Therefore, if the cumulative distribution is

e number-based, D, represents the size containing w% of the droplets in the spray;
e area-based, Dy represents the size containing w% of the spray surface area;
e  volume-based, Dy, represents the size containing w% of the liquid spray volume.

One of the most relevant representative diameters corresponds to 50% (Dy0.5, Dao.5, or Dy 5)
because dividing the classes by that number allows a better comparison between cumulative
distributions, useful for analyzing the effect of parametric variations in the spray.

2.3. Introducing Drop Size Diversity in a Spray

Drop size distributions are a way to organize the data acquired to characterize a spray.
The characterization of the diversity of drop sizes answers two distinct questions: (1) how many
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different sizes are relevant in a spray; (2) and how different are the relevant sizes in a spray. The word
relevant links to the probability of presence of certain drop size classes relative to others.

In the known textbook on Atomization and Sprays, Lefebvre and McDonell [15] refer to this diversity
as drop spray dispersion associated with the size range of droplets. On the other hand, several research
articles address the different sizes of the spray droplets as a polydispersed spray. In the authors” opinion,
these are two different things, which is why we introduce the concept of Drop Size Diversity (DSD)
measured by two different degrees:

e the polydispersion degree to quantify the multitude of different sizes that are relevant in a spray.
Thus, the maximum for the case where all different sizes have the same probability of being
present in the spray, and

o the heterogeneity degree to quantify how different are the relevant sizes in the spray. Therefore,
it is related with the size range or size dispersion.

The challenge is to devise the right indicators to measure both degrees. Among the several
indicators available and synthesized in Lefebvre and McDonell [15], the most known and used
indicator is the Relative Span obtained from the representative diameters of a volume-based cumulative
size distribution (D,x with 0 < X < 1 as the fraction of the spray liquid volume) as

DUO.9 - DvO.l

A =
’ Dyos

(10)

Considering the normalization of a representative diameter by the value representing half of the liquid
volume-Dy5-as D}y = Dyx/Dyo5, the interpretation of Equation (10) relative to the range of drop
sizes corresponds to a difference-A, = D}, o — D}, ; which is equal to zero when all droplets in the
spray have the same size, and maximum when all droplets have the same probability of occurrence
(a limit unrealistic case).

Panéo [19] proposed a different approach based on information theory, through the concept of
the normalized Shannon entropy, already defined in Section 2.1 as

H

Hy=—
" ln(Nbins)

(11)
In the information theory terminology applied to spray characterization, a spray where all
droplets have the same size, p = 1, resulting in a null normalized Shannon entropy, H, = 0, while
an unrealistic spray with all classes having the same probability of presence (uniform distribution),
H, = 1, because the Shannon entropy—numerator in Equation (11)-is maximum.
Finally, Garcia et al. [20] proposed a third approach based on the standard deviation of the
volume-weighted drop size distribution expressed as

SD, = \/d3, — di, (12)

where ds3 and dg3 are the second- and first-order moments of the volume-weighted drop size
distribution, respectively. The authors compared this standard deviation with Shannon entropy
and found inconsistencies. They state that the Shannon entropy has a main drawback, since the
information of the drop sizes representing each class is not explicitly included; thus, if these probability
values would be randomly rearranged, the H value would be the same. This is an important insight
because it allows to understand the difference between polydispersion and size dispersion in a spray.

To compare the three approaches, consider the simulation of a spray mixing two monosize droplet
streams of 10 pm and 20 pm. A weight parameter w, varying between 0 and 1, sets the percentage of
drops present in the mixed spray from each of the monosize sources. Therefore, if w = 0, all droplets
have the size of 20 um, and if w = 1, all droplets have 10 pm. Figure 3 shows the result for the Relative
Span (Ay), normalized Shannon entropy based on the volume-weight drop size distribution (Hy ,),
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and the volume-weighted standard deviation (SD,) with the variation of the weight w attributed to
the presence of droplets from each monosize source.

25—

g
=)

=
&

—_
(e]

0.5

Drop Size Diversity

w [-]

Figure 3. Variation of three Drop Size Diversity Indicators, the Relative Span (A;), the normalized
Shannon Entropy (Hy,»), and the volume-weighted standard deviation (SDy) for the mixing of two
monosize droplet clusters.

In the extreme cases where all droplets have the same size, the absence of polydispersed sizes
results in null values for all indicators. However, while a small portion of droplets of a different size
leads to a discontinuity in A, the normalized Shannon entropy and the volume-weighted standard
deviation show a continuous behavior. In Figure 3, points A and D in A, mark the limits of 10% and
90% of the spray volume, meaning until A, 10 um droplets do not make 10% of the spray volume, and,
at point D, these small droplets reached the mark of 90% of the spray volume. The maximum value of
Ay at point C has no evident meaning.

The evolution of H;, , is simple to interpret. The maximum normalized Shannon, H;, , = 1, occurs
when all droplets have the same probability of being present in the spray (w = 0.5), corresponding
to the uniform distribution. It is noteworthy that H;, , has no discontinuities as A, and the variation
with w shows a transition between the monosize spray droplets with 20 um to the monosize spray of
10 um droplets. It means that the size of droplets has no influence on H;, ;, only their relevancy in the
spray. On the contrary, the volume-weighted standard deviation depends on the maximum distance
between relevant drop size in the spray. In this case, with an evolution similar to H;, », the maximum
occurs at 5 um corresponding to the maximum distance between a mean quantity (15 um) and the
sizes of the monodispersed sprays (10 and 20 pm).

The Relative Span raises several questions, eventually pointing to its limitation if used to quantify
the droplets size diversity. Namely, the values depend on drop sizes. Why would a monosize
spray of smaller droplets, with a small portion of a monosize spray of larger droplets have a higher
Relative Span? In fact, Figure 4 helps to understand why this outcome is a result of the evolution of
the diameter representing 50% of the liquid volume of the spray (D).

The first observation from Figure 4 is the similarity between the other indicators (Hy;», SDy)
and the evolution of the difference D,p9—D,g1, in the numerator of A,, as a function of w with a
maximum value at w = 0.5. However, because the relative span normalizes this difference by D05,
which continues to decrease as the number of 10 um droplets in the mixed spray increases, A, grows
and indicates, for no reason, an increase of the drop size diversity until point C, when it is not the case.
This theoretical example shows the limitations of using the relative span as a reliable tool to quantify
the drop size diversity in a spray.
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Figure 4. Variation of the numerator difference of the relative span (D9 9—Dy 1), and the 50% spray
liquid volume representative diameter (D, 5), with the weight parameter w.

Although for the previous example, the H;, and SD, led to the same value of w = 0.5
corresponding to the maximum polydispersion and heterogeneity degrees, the parameters express
different meanings relative to the drop size diversity. Therefore, a second theoretical simulation uses
three monosize stream of droplets with 10, 20, and 40 pm, with weights w;, wy, and w3, respectively,
varying from 0.01 to 0.98 to ensure that a percentage of all three sizes, no matter how small, is present
in the spray.

Figure 5 shows the contour plots for each Drop Size Diversity indicator as a function of
wy and wy, and plots on the right are the distributions corresponding to the maximum value
obtained by each indicator. This simulation clarifies the difference between the polydispersion and
heterogeneity degrees. Namely, the maximum normalized Shannon entropy obtained for the maximum
number of droplets relevant in the spray corresponds to the uniform distribution where all relevant
drop sizes have the same probability of being present in the spray—thus an adequate parameter to
quantify the polydispersion degree.

The results for the volume-weighted standard deviation prove a maximum for the maximum
difference between relevant drop sizes. In this case, between 10 pm and 40 um droplets, with the
standard deviation value of 15 pm relative to the mid-point around 25 um—thus an adequate parameter
to quantify the heterogeneity degree.

The results for the relative span show its meaning is closer to the heterogeneity degree, expressed
by previous authors as size dispersion. However, it is a limited parameter to evaluate Drop Size
Diversity, as shown by the distribution representing its maximum value closer to 5, which is difficult
to interpret.

The next step would be to simulate a spray resulting from the mixture of two polydispersed sprays,
for example, using the Log-Normal distribution with different geometric mean diameters (dg) and
equal shape parameters 7 (see Equation (1)), and change the mixing through the weight parameter w
to simulate the transition between distributions.

Considering a total sample of N = 10° droplets, the simulated spray fixes the shape of both
distributions mixed with v = 0.5/ v/6, and uses distinct geometric mean diameters of d ¢ = 40 pm
and 70 um to mix sprays around larger and smaller drop sizes. The weight w = 0 corresponds to
the Log-Normal distribution of d; = 70 um and w = 1 to the distribution around smaller sizes.
Figure 6 shows on the top left the volume-weighted drop size distributions simulated with w =0, 1
and the distributions corresponding the the maximum values obtained for the normalized Shannon
entropy (Hy,»), volume-weighted standard deviation (SDy), and relative span (A;). The number
of classes used the Rice Rule (see Section 1). On the top right are the corresponding volume-based
cumulative drop size distributions. Below is the comparison of all indicators for the Drop Size Diversity
with the variation of the weight w attributed to each distribution.
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Figure 5. Variation of three Drop Size Diversity Indicators, the Relative Span (A;), the normalized
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monosize droplet clusters, and the corresponding distributions for the maximum value obtained by
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Figure 6. Results for the volume-weighted Log-Normal mixed spray, corresponding cumulative
drop size distributions for w = 0, 1, and the values corresponding the maximum H;,, (w = 0.735),
SDy (w =0.790) and A, (w = 0.915). Below is the variation of Hy, SDy, and A, with the weight
parameter w.
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The first observation concerns the results obtained for each distribution with w = 0 and w = 1.
Since the Log-Normal shape parameter 7 is the same for both distributions, the cumulative
distributions are equal when classes are divided by D, 5, which is why one obtains equal values for
the relative span A,,.

The second observation are the implications of probability values for each isolated distribution
for the normalized Shannon entropy and the volume-weighted standard deviation. Namely, the lower
probability values for the distribution with larger diameters, f;n(d,70,v) indicates a higher number
of relevant droplets in the spray relative to the distribution with smaller drop sizes, fin(d,40,7).
Accordingly, the values for H,, and SD; are higher for w = 0 compared to w = 1.

The third and final observation concerns the distribution with the highest polydispersion degree
obtained through the maximum value for H, ,, where the similarity of the two peak values of f, prove
a balanced mixing between clusters of droplets from each of the original distributions, resulting in a
spray with a larger polydispersion of drop sizes. Concerning the volume-weighted standard deviation,
the distribution with the maximum heterogeneity degree is similar to the distribution with maximum
polydispersion—however, with 5.5% more droplets around the distribution of smaller sizes since it
produces a slight increase in the largest difference between the smallest and largest relevant size classes
in the mixed spray. As to the relative span, due to a decrease of D, 5 as droplets from the distribution
with smaller sizes begin to constitute the larger part of spray liquid volume, the maximum reached
only at w = 0.915 has no apparent physical reason. In this sense, in this work, the advice is to gradually
cease to use the relative spam as an indicator to characterize drop size diversity.

The following and final section applies the guidelines outlined above to the characterization of
nanofluid sprays generated by a pressure-swirl atomizer.

3. Characterization of Nanofluid Sprays: An Example

The droplets in the nanofluid spray have multiple sizes and velocities. The measurement
technique used is a 1D Phase-Doppler Interferometer (PDI), which is a single point laser
diagnostic technique. Thus, the information provided has a mesh grid defined for the type of spray
being characterized. In this case-study, the PDI measurement system retrieves information of radial
profiles since the spray issued from a pressure-swirl atomizer is axisymmetric, considering two
different measurement planes perpendicular to the spray penetration direction (Z) below the injector
nozzle at Z =10 mm and Z = 20 mm. More details on the diagnostic technique can be found in
Maly et al. [21]. The first step of every standard spray characterization is to report the mean quantities
of size and velocity. Despite the loss of information relative to the size distributions, the quantitative
data are useful for validation of numerical simulations in sprays. In addition, it is a picture of the
global characteristics of the spray.

Figure 7 depicts the mean velocity of the droplets of the hollow cone spray structure for different
working fluids and the size of symbols is proportional to drop size. These fluids are distilled
water and a water based solution with a surfactant named CTAB-cetyltrimethylammonium bromide
(water + 0.05 wg% CTAB). Different mettallic nanoparticles added to the base fluid are what forms
the so-called nanofluids, i.e., liquid based suspensions of nanometer-sized particles (<100 nm).
The surfactant is added to stabilize the suspension, precluding particles clustering and delaying
their deposition. The purpose of nanofluids is to produce liquids with enhanced thermal properties,
for example, a higher overall thermal conductivity for thermal management applications like spray
cooling of high-power electronic devices. However, the addition of these nanoparticles may change the
liquid’s thermophysical properties, i.e., the viscosity, thus, is likely to alter the atomization processes
and the spray characteristics.

In this case, the mean diameter is dy3, obtained from a volume-weighted drop size distribution
because the application in mind is spray cooling. Therefore, any effect due to the size of droplets is
related to the liquid volume of the spray impinging on a heated surface. As to the mean velocity, this is
where the effects of adding a surfactant become noticeable.
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Figure 7. Mean velocity, (1) [m/s] of the spray droplets for Z = 10 mm (top) and Z = 20 mm (bottom).

The information given by the average velocities obtained for Z = 10 mm and Z = 20 mm mainly
allows for identifying the region of the faster droplets, after which the variation remains similar
regardless of the liquid used. Faster droplets are present in the region of the liquid sheet forming
the cone, where the number of droplets is also higher. This is actually the region where one can see
some differences between the various working fluids, particularly at Z = 20 mm, where the spray
is fully developed in terms of breakup atomization mechanisms [21]. The main difference observed
is due to the addition of the surfactant, which decreases the surface tension of the base fluid (water
and surfactant) in comparison with water. This property affects the size of droplets and, consequently,
how these interact with the surrounding environment, leading to changes in momentum transfer
expressed by the variations of the mean velocity.

Despite their value, reporting mean quantities limits spray characterization. The presentation
of the results should increase the informational value of data, and enable the reconstruction
of the measured distributions compared to reporting its moments alone. Therefore, one could
investigate if probability mathematical functions, such as the Log-Normal, Gamma, Weibull,
and Nukiyama-Tanasawa can describe the histograms organizing the spray drop sizes by classes.
Figure 8 shows examples for the distilled water spray in two radial locations, where the fitting
functions that best described the probability of presence of droplets in the spray at ¥ = 0 mm the
Log-Normal—Equation (6)—and at r = 6 mm Gamma- Equation (7), probability distribution functions.

Using a Kolmogorov—Smirnov test to evaluate the best fitting, including combinations of
probability distribution functions (pdf), Figure 9 maps the results for Z = 10 and 20 mm. On the right,
it shows an example for distilled water of the pdf characteristics allowing the reconstruction of spray
data at the measured locations, where C; and C; are the scale and shape parameters for each kind,
also included in the legend. It is noteworthy that the Nukiyama-Tanasawa empirical distribution did
not produce the best fitting in any measurement point, spray condition, or contribution to a mixed
cumulative distribution function.

The spray analyzed is a hollow-cone, which means the formation of a liquid sheet at the nozzle
exit further disintegrates into ligaments, and these fragment into droplets. In the central region,
the momentum exchanges between smaller droplets and air leads to a dragging effect of these droplets
into the central region of the spray, as expressed by the lower mean diameter shown in Figure 7.
According to the interpretation delineated in Section 2.2, the Log-Normal predominance in the central
region would be a expression of these transport phenomena, while in the regions of higher velocity,
likely the result of spray formation through the fragmentation of ligaments, the gamma produces
the best fitting. In the outer regions of the spray, the best fittings of the Weibull, in the case of
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Distilled water, and combination of pdfs indicate transition regions and, despite being unclear what is
the physical meaning of these transitions, the identification of their location within the spray structure
is a valuable insight.

Gamma Fit (r = 6 mm)

‘ Distilled Water Example

1 ! 1 ! 1
0 20 40 60 80 100

dk [ym]

1 1
120 140

Figure 8. Example of the results of the cumulative curve fitting for Distilled water, r = 0 mm where
the best fitting occurred with a Log-Normal, Equation (6), and r = 6 mm with a best fitting through a
Gamma function, Equation (7).

The final observation is the effect of the nanoparticles shape on the spray structure. While in the
mean sizes, these differences were negligible, in dynamic terms, they were not.

The results in Figure 9 indicated as WATER + CTAB + wt% Au correspond to the spray of the
base fluid and the base fluid plus different percentages of gold nanospheres (0.1, 0.5, 1 [wt%]), but the
best pdf fitting map was the same, which means that gold nanospheres are not likely to alter the
spray structure of the base fluid. However, gold cylindrical nanoparticles and silver triangular led to
changes in the spray structure, and these results are coherent with the mean velocity values, but adds
a substantial interpretative value.
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Figure 9. Radial profiles of the mathematical probability functions that best fitted the experimental
results for all experimental conditions and measurement planes considered. The table on the right
exemplifies the data that allows the reconstruction of each cumulative distribution. Some included
more than one function in different drop size ranges.
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Finally, in this work, we introduced the concept of drop size diversity to better understand the
many different sizes relevant in a spray, as well as how different the relevant sizes in a spray are.
The polydispersion degree given by the normalized Shannon entropy, H;, and spray heterogeneity
degree given by the volume-weighted standard deviation, SD, [um], can describe this diversity,
as depicted in Figure 10.
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Figure 10. Polydispersion degree given by the normalized Shannon entropy, H;, and spray
heterogeneity degree given by the volume-weighted standard deviation, SD, [ um], for the planes of
Z =10 mm (top) and Z = 20 mm (bottom).

In the case of distilled water, the results show a higher polydispersion degree around r = 8 mm,
where the spray heterogeneity degree also becomes higher. However, despite local changes in Hy,,
the behavior does not seem significantly affected by adding surfactant to produce the base fluid,
and further adding nanoparticles. However, in terms of heterogeneity, the results are different.
The addition of surfactant exerts a major effect on the heterogeneity of the spray characteristics.
However, the addition of nanoparticles produces a negligibly effect. Consequently, one may also
expect a minor effect of the nanoparticles during spray impact. This can actually be a beneficial feature,
for instance, in spray cooling applications, as it suggests that the nanoparticles can be used to alter the
thermal properties of the working fluids, without significantly affecting the main spray characteristics.

4. Conclusions

The characterization of a spray is not merely acquiring information on the size and velocity
of its droplets in several locations from single-point measurement techniques, or in several planes
from 2D- or 3D-measurement techniques. Although it is essential to acquire enough information,
as explored here through an information theory approach, the clarity of the research question associated
with the spray characterization is very much like the clarity in the display and analysis of data.
Therefore, a well-defined research question is what guides the kind of spray characterization performed.
In this article, we review the statistical language used in spray characterization, and:

e the differences between organizing spray data using probability histograms or histograms of
probability density;

e  how to choose the number of classes in histrograms;

e the different kinds of probability histograms considering the number of droplets, their area, or the
liquid volume, and corresponding moments;

e a method based on the excess entropy from information theory to assess if there is enough
information for post-processing;
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e the physical meaning of fitting mathematical probability distribution functions, namely the
Log-Normal, Gamma, and Weibull, to spray data;

e and introduce, for the first time, the notion of Drop Size Diversity with its polydispersion and
heterogeneity degrees quantified by the normalized Shannon entropy and volume-weighted
standard deviation, respectively.

Finally, the topics explored on spray characterization are applied to nanofluid sprays to explore the
effect of introducing a surfactant and nanoparticles on the spray structure and dynamic characteristics.
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