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Abstract: Quantum Field Theory, as the keystone of particle physics, has offered great insights
into deciphering the core of Nature. Despite its striking success, by adhering to local interactions,
Quantum Field Theory suffers from the appearance of divergent quantities in intermediary steps of
the calculation, which encompasses the need for some regularization/renormalization prescription.
As an alternative to traditional methods, based on the analytic extension of space–time dimension,
frameworks that stay in the physical dimension have emerged; Implicit Regularization is one among
them. We briefly review the method, aiming to illustrate how Implicit Regularization complies
with the BPHZ theorem, which implies that it respects unitarity and locality to arbitrary loop order.
We also pedagogically discuss how the method complies with gauge symmetry using one- and
two-loop examples in QED and QCD.

Keywords: renormalization/regularization; renormalization group functions; BPHZ theorem

1. Introduction

In Feynman diagram calculations, the building blocks of the perturbative expansion,
the transition amplitudes, contain apparent divergences at intermediate stages, and yet all
physical quantities we compute in perturbation theory are expected to be finite. A technical
problem is immediately posed as one has to perform algebraic operations with divergent
quantities. The naive solution is simply to “regulate” the divergences or make them
“manifestly finite” so they can make sense at a mathematical level and hope that somehow
the physical answer is meaningful when the regularization is lifted. It is important to
note that ultraviolet (UV) and infrared (IR) divergences, in the high and low energy
domain, respectively, are unavoidable byproducts of the very construction of the quantum
field theoretical model as an effective theory. In building Feynman diagram amplitudes
using Feynman rules, the product of two distributions is no longer a distribution and
is, therefore, ill-defined in the short distance (UV) limit. It does not possess a Fourier
transform, for instance [1]. On the other hand, IR divergences cause massless theories and
are a consequence of idealizations of the physical situation: taking the region of space–time
to be infinite and supposing that massless particles can be detected with infinitely precise
energy–momentum resolution. Quantum field theoretical divergences arise in other ways,
for instance through the lack of convergence of the perturbation series, which at best is
an asymptotic series. Despite all that, the standard model of particle physics is the best-
tested physical theory ever. For instance, the theoretical and experimental deviation of the
anomalous magnetic moment of the muon aµ has recently been measured to be [2]:

∆aµ = aexp
µ − ath

µ = (25.1± 5.9)× 10−10. (1)

Most calculations in the standard model including some supersymmetric extensions’ (Ana-
lytical continuation in the space–time dimensions clashes with the invariance of an action
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with respect to supersymmetric transformations. It only holds in general for specific values
of the space-time dimension due to the fact that a necessary condition for supersymmetry
is equality of Bose and Fermi degrees of freedom) are performed using the variants of
dimensional regularization (DREG) although it is well-known that DREG has certain com-
plications with the definition of γ5 matrices (In d = 4 γ5 = γ5 = iγ0γ1γ2γ3) which are only
defined in the physical dimension, for instance, in d = 4 we have γ5 = γ5 = iγ0γ1γ2γ3.
and Thus the treatment of the chiral theories is subtle in those methods. In this case,
we have recently argued that care must be exercised even when we apply a framework
that works essentially in the physical dimension [3–5]. The essence of the dimensional
regularization is to extend the space–time dimensionality slightly away from the physical
dimension and then take the physical limit after the actual calculation [6,7].

UV and IR divergences are conceptually different in the sense that, unlike IR infini-
ties, UV divergences cannot be excused away for an idealization of a physical situation.
UV infinities can, however, be renormalized. The renormalization program allows for
unambiguously extracting numerical predictions for renormalizable quantum field the-
ories order by order in perturbation theory by redefining the physical constants in the
Lagrangian, such as masses, physical fields and coupling constants. Such a program is
so successful that renormalizability has become a criterium for a sensible theory after its
success in Quantum Electrodynamics. Today, we know that this is a simplistic view. A more
sensible way to understand is the effective approach to the problem of UV divergences in
which one has to declare explicit restrictions on the domain of energy scales of QFTs and ad-
just the sensitivity to high-energy phenomena with the tools of renormalization theory [8].
From the practical viewpoint, the problem is even more subtle. At the level of scattering
cross-sections, local cancellation of infrared singularities between the so-called real and
virtual emission processes in QED and QCD processes mixes UV and IR degrees of freedom
in dimensional methods. Whilst finitude is guaranteed by the Kinoshita–Lee–Nauenberg
theorem [9,10], which states that suitably defined inclusive quantities will indeed be free of
singularities in the massless limit, the physical origin of such cancellations is obscured in
DREG as UV and IR divergences can cancel each other out.

DREG is a powerful regularization technique that is convenient not only to make
calculations but also to prove theorems to all orders in perturbation theory respecting
the relevant Ward–Slavnov–Taylor identities [11–14]. Any alternative regularization to
DREG should be consistent at an arbitrary order in perturbation theory in consonance with
the renormalization program of absorbing the infinities into the physical parameters of
the theory.

The renormalization program is mathematically established by the Bogoliubov–Parasiuk
–Hepp–Zimmermann (BPHZ) theorem [15–20]. This scheme was originally developed by
Bogoliubov and Parasiuk in terms of a recursive subtraction operation, often called Bo-
goliubov’s R-operation [15–18]. This framework makes it possible to subtract overlapping
and nested UV divergences in Feynman integrals in a consistent way with perturbation
theory . In the BPHZ scheme, the renormalization constants expressed by counterterms at
the Lagrangian level are identified with local counterterms at the level of the integrands
associated with Feynman graphs. In principle, to render an amplitude UV finite, the BPHZ
scheme can be carried out without the need for regularization. In practice, one must adopt
a regularization scheme to compute physical quantities. In the presence of a regulator, the
BPHZ-scheme provides a consistent way to separate the potentially complicated finite parts
of Feynman integrals from the divergent parts. An alternative proof for the finiteness of
the renormalized Feynman Integral was given by Zimmermann, by means of the recursive
Bogoliubov’s R-operation which leads to a sum over forests of graphs, giving rise to the
Zimmermann’s forest formula [15–18]. The latter is an elegant and comparably simpler
proof for the finiteness of Feynman Integrals and works directly in momentum space. A
nice review of the BPHZ method can be found in [21].

The purpose of this review is to show that a regularization scheme called Implicit
Regularization (IREG) [22], that works entirely in the physical dimension of the model can
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be implemented to all orders in perturbation theory. The distinguished feature of IREG
is that the UV divergences are displayed as loop integrals free of external momentum
dependence. While such a program is somewhat trivial at the one-loop level (as one
algebraic identity at the integrand level is enough to extract basic divergent loop integrals),
at higher-order in perturbation theory, this program is highly non-trivial as it must comply
with the BPHZ theorem. A crucial question is whether the divergences at each order in
perturbation theory can be expressed in terms of loop integrals according to Bogoliubov’s
recursion formula.

In this work, we show that IREG respects unitarity and locality in the BPHZ sense to
arbitrary loop order. The renormalization group functions can be obtained without explicit
evaluation of the basic divergent integrals by means of a characteristic renormalization
constant defined at the one-loop level. We illustrate our framework using a scalar field
theory and generalize to abelian and non-abelian theories. We verify that such a program
preserves symmetry evoking momentum routing invariance in the loops of Feynman
diagrams, which defines a constrained scheme where surface terms are set to vanish.

2. IREG and the BPHZ Algorithm

For simplicity, in the context of this review, we will only consider massless theories
and integrals that are free from infrared divergences. We will also be restricted to a space–
time with 2n dimensions, where n is an integer. In general, once a N-loop amplitude of
a Feynman graph with L external legs is known, the strategy of IREG is to remove all
external momenta from UV divergences, expressing them as a linear combination of basic
divergent integrals with one loop momentum only. To fulfill this objective, we are required
to perform (N − 1) integrations, even though the order in which they must be realized
is not immediately clear. In [23], we proposed a systematic procedure to categorize the
order of integration which, as a byproduct, displays automatically the counterterms to be
subtracted by Bogoliubov’s recursion formula. In this work, we will review its main steps.
In order to settle the notation, consider that the integral in kl is the l-th, and to deal with
whose general form is given by

Iν1 ...νm =
∫

kl

Aν1 ...νm(kl , qi)

∏i[(kl − qi)2 − µ2]
lnl−1

(
−

k2
l − µ2

λ2

)
, (2)

where l = 1 · · ·N,
∫

kl
≡
∫

d2nkl/(2π)2n (for n integer), qi is an element (or combination of
elements) of the set {p1, . . . , pL, kl+1, . . . , kN}, and µ2 is an infrared regulator.

We recall that only infrared safe amplitudes are considered, which implies that the
limit µ2 → 0 is well-defined for the amplitude as a whole, to be taken as the last step of
our calculation. The symbol λ stands for an arbitrary non-vanishing parameter that will
play the role of the renormalization group scale in the context of IREG. It first appears at
one-loop level, surviving to higher-orders due to the use of Equation (10) as we discuss at
the end of this section. The function Aν1 ...νm(kl , qi) may contain constants and all possible
combinations of kl and qi compatible with the Lorentz structure. In the context of gauge
theories, it would come from derivative couplings, Dirac algebra, etc. We argue in [24] that
the form of Aν1 ...νm(kl , qi), coming from a specific Feynman diagram, is unique after the
following steps are taken:

(A) Internal symmetry group and the usual Dirac algebra must be dealt with first.
As extensively discussed in [3], identities only valid in strictly n-dimensional spaces
(n integer) such as {γ5, γµ} = 0 must not be used inside divergent amplitudes [3–5].
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(B) The requirement of numerator/denominator consistency implies that terms with
internal momenta squared in the numerator must be canceled against the denomi-
nator. For instance,

∫

k,q

k2

k2q2(k− q)2

∣∣∣∣
IREG

=
∫

k,q

1
q2(k− q)2

∣∣∣∣
IREG

, (3)

where we consider n = 2,
∫

k ≡
∫

d4k/(2π)4. In the same vein, symmetric integration
in divergent amplitudes cannot be enforced. That is,

[ ∫

k
kµ1 · · · kµ2m f (k2)

]IREG

6= g{µ1µ2 · · · gµ2m−1µ2m}

(2m)!

[ ∫

k
k2m f (k2)

]IREG

, (4)

where the curly brackets indicate symmetrisation over Lorentz indices.

After these steps, the resulting multi-loop integrand can be manipulated consistently
in the framework of IREG, meaning that (1) each overall-divergent amplitude is separated
into a unique finite expression plus a divergent part; (2) power-counting finite expressions
are not modified; (3) linearity under the regularization operation R is preserved namely,
[aF + bG]R = a[F]R + b[G]R, where F and G are Feynman integrals, a, b are quantities that
may only depend on external momenta and/or masses, not the internal loop momenta.
Therefore, they can be safely pulled out of the integral. Moreover, the UV content ofAn will
be cast in terms of well-defined basic divergent integrals, which need not to be evaluated
as we will discuss soon.

Given that a normal form for Aν1 ...νm(kl , qi) was achieved, we apply the rules of IREG:

(a) Starting at one loop (which is equivalent to set l = 1 in Equation (2)), we assume an
implicit regulator which allows us to remove the external momenta dependence
(encoded in pi) from the UV divergent part of the amplitude by using the identity

1
(k− pi)2 − µ2 =

n(k)
i −1

∑
j=0

(−1)j(p2
i − 2pi · k)j

(k2 − µ2)j+1 +
(−1)n(k)

i (p2
i − 2pi · k)n(k)

i

(k2 − µ2)n(k)
i [(k− pi)2 − µ2]

, (5)

in the propagators (for simplicity, we have defined k1 = k). As briefly discussed
before, µ→ 0 is a fictitious mass (infrared regulator). It should be emphasized that,
since the starting integrals are IR-safe, the infrared regulator will only be needed in
intermediate steps of the calculation, canceling in the end result. Therefore, gauge
invariance will not be spoiled. After the first step, we can define basic divergent
integrals (BDIs) as

Ilog(µ
2) ≡

∫

k

1
(k2 − µ2)n (6)

Ilog(µ
2) ≡

∫

k

1
(k2 − µ2)n , Iν1···ν2r

log (µ2) ≡
∫

k

kν1 · · · kν2r

(k2 − µ2)r+n ,

Iquad(µ
2) ≡

∫

k

1
(k2 − µ2)n−1 , Iν1···ν2r

quad (µ2) ≡
∫

k

kν1 · · · kν2r

(k2 − µ2)r+n−1 .
(7)

(b) BDIs with Lorentz indices ν1 · · · ν2r are systematically reduced to linear combina-
tions of BDIs without Lorentz indices (with the same superficial degree of diver-
gence) since we comply with invariance under shifts of the integration momenta
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and numerator–denominator consistency [3]. Therefore, the total derivatives with
respect to the internal momenta must vanish, e.g.,

∫

k

∂

∂kµ

kν

(k2 − µ2)n = 2n

[
gµν

2n
Ilog(µ

2)− Iµν
log(µ

2)

]
= 0, (8)

∫

k

∂

∂kµ

kν

(k2 − µ2)n−1 =
(n− 1)

2

[
2

(n− 1)
gµν Iquad(µ

2)− Iµν
quad(µ

2)

]
= 0. (9)

(c) After the last step, the divergent part of the amplitude will be given in terms of scalar
BDIs only. However, since we still have to take the limit µ → 0, it can be noticed
that they are ultraviolet and infrared divergent objects. To isolate these divergences
defining a genuine ultraviolet divergent object, we use the identity below

Ilog(µ
2) = Ilog(λ

2) + b2n ln
λ2

µ2 , b2n ≡
i

(4π)n
(−1)n

Γ(n)
, (10)

which introduces λ > 0 as an arbitrary mass scale (renormalization group scale).
Iquad(µ

2) can be chosen to vanish as µ goes to zero [25]. By adding the divergent
part with the finite terms, the limit µ → 0 is now well defined since the whole
amplitude is power counting infrared convergent from the start. As we will present
in our examples, the BDI will be absorbed in the renormalization constants [26]
allowing renormalization functions to be obtained using

λ2 ∂Ilog(λ
2)

∂λ2 = −b2n. (11)

At higher loop-order (l > 1 in Equation (2)), the procedure is completely analogous.
The generalization of the previous formulas are

(a) After applying in the propagators the identity

1
(kl − qi)2 − µ2 =

n
(kl )
i −1

∑
j=0

(−1)j(q2
i − 2qi · kl)

j

(k2
l − µ2)j+1 +

(−1)n
(kl )
i (q2

i − 2qi · kl)
n
(kl )
i

(k2
l − µ2)n

(kl )
i [(kl − qi)2 − µ2]

, (12)

where qi is contained in the set {p1, . . . , pL, kl+1, . . . , kn}, the UV divergent part of
the amplitude is expressed as a linear combination of the objects below (We have
already set quadratic divergent BDIs to zero, as previously discussed.)

I(l)log(µ
2) ≡

∫

kl

1
(k2

l − µ2)n lnl−1

(
−

k2
l − µ2

λ2

)
, (13)

I(l)ν1···ν2r
log (µ2) ≡

∫

kl

kν1
l · · · k

ν2r
l

(k2
l − µ2)r+n lnl−1

(
−

k2
l − µ2

λ2

)
. (14)

(b) As before, higher loop BDIs are reduced to scalar ones by vanishing the total
derivatives

∫

k

∂

∂kν1

kν2 · · · kν2j

(k2 − µ2)n+j−1 lnl−1

[
− (k2 − µ2)

λ2

]
= 0. (15)
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For instance,

I(l) µν
log (µ2) =

l

∑
j=1

(
1
n

)j(l − 1)!
(l − j)!

{
gµν

2
I(l−j+1)
log (µ2)

}
. (16)

(c) We notice, once again, that the BDIs as defined in the last step are UV and IR diver-
gent in the limit µ→ 0. To define UV divergent terms only, we apply the identity

I(l)log(µ
2) = I(l)log(λ

2)− bd
l

lnl
(

µ2

λ2

)
+ bd

n−1

∑
k=1

(
n− 1

k

) l−1

∑
j=1

(−1)k

kj
(l − 1)!
(l − j)!

lnl−j
(

µ2

λ2

)
. (17)

The µ-dependence will cancel in the amplitude as a whole, since it was IR-safe from
the start. As already commented, BDIs can be absorbed in renormalization constants.
We take the opportunity to emphasize that a minimal, mass-independent subtraction
scheme in IREG amounts to absorb only I(l)log(λ

2). To evaluate renormalization group

constants, only derivatives of BDIs with respect to the renormalization scale λ2 are
required [27],

λ2
∂I(l)log(λ

2)

∂λ2 = −(l − 1) I(l−1)
log (λ2)− b2n α

(l)
2n , (18)

where n ≥ 2, α
(l)
4 = (l − 1)!, α

(2)
6 = 3/2 (a general formula for α

(l)
2n can be found

in [27]).

Once the rules of IREG are settled, we return to the discussion of our initial problem:
how do we identify the order in which the (n− 1) integrals must be performed? We will
present below a systematic choice that can be done in a way to display the terms to be
subtracted by Bogoliubov’s recursion formula implying that the method complies with
Lorentz invariance, locality, and unitarity.

The main idea is to adapt identity (12) in such a way that the UV-divergent behaviour
of the amplitude as the internal momenta goes to infinity in all possible ways can be clearly
identified. For ease of the reader, we consider that qi will only denote external momenta
(pi) and k is an arbitrary internal momentum. By using the binomial formula, (p2

i − 2pi · k)j

can be expanded to yield

1
(k− pi)2 − µ2 =

2(n(k)
i −1)

∑
l=0

f (k, pi)
l + f̄ (k, pi), (19)

where we defined,

f (k, pi)
l ≡

bl/2c

∑
j=0

Θ(B)
(

l − j
j

)
(−p2

i )
j(2pi · k)l−2j

(k2 − µ2)l+1−j , f̄ (k, pi) ≡
(−1)n(k)

i (p2
i − 2pi · k)n(k)

i

(k2 − µ2)n(k)
i [(k− pi)2 − µ2]

,

Θ(x) ≡
{

0 if x ≤ 0
1 if x > 0

, B ≡ n(k)
i + j− l, bxc ≡ max{n ∈ Z|n ≤ x}.

(20)

As can be inspected, the terms f (k, pi)
l behave as k−(l+2) when k→ ∞ by construction

while the value of n(k)
i is chosen to guarantee the UV finitude of f̄ (k, pi). The above identity

is the keystone of our procedure whose application to an arbitrary Feynman amplitude is
summarized as follows:

1. Identify which propagators depend on the external momenta, then apply identity (19);
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2. Obtain the minimum value of all n(ki)
j necessary to guarantee the finitude of terms

that contain f̄ (ki , pj) as ki → ∞ in all possible ways;
3. Isolate the UV-divergent terms, allowing a classification in terms of the different ways

that the internal momenta approach infinity to be envisaged;
4. Use the rules of IREG, encoded in steps (a)–(c), in the terms identified in step 3

according to their classification;
5. Set aside the divergent terms that contain I(l)log(λ

2) and apply the procedure again on
the ones that do not.

After step 5, we will obtain two types of terms: or I(l)log(λ
2) multiplies an integral or

I(l)log(λ
2) multiplies only constants and/or polynomials in the external momenta. The first

set will amount to the terms to be removed by applying Bogoliubov’s recursion formula,
while the latter set will be the typical divergence of the graph, i.e., after subtraction of
subdivergences. As emphasized before, the procedure just envisaged will allow IREG to be
applied in a systematic way, with the byproduct of identifying the terms to be removed by
Bogoliubov’s recursion formula automatically [23].

3. Selected Examples

In this section, we present some selected examples, aiming to pedagogically illustrate
how the renormalization procedure can be implemented in IREG up to two-loop. We begin
with a scalar theory, moving to more realistic theories afterward (QED and QCD).

3.1. Scalar Theory φ3

We initiate our discussion with a very simple theory, the massless φ3 model defined in
6 dimensions. The choice of dimensions is justified to obtain a more interesting (renormaliz-
able) model, in which only graphs up to three external legs are divergent [28]. The graphs
with one external leg have only quadratic divergences which, from the point of view of
IREG, could be kept as BDIs. However, they will always cancel out in multiplicatively
renormalizable theories [29–31], and can be promptly dismissed in massless theories.
Therefore, in order to perform the renormalization of the theory up to two-loop order,
we need to consider graphs with only two or three external legs corresponding to the
renormalization of the propagator and the vertex functions, respectively.

We begin with the one-loop correction for the propagator depicted in Figure 1, whose
amplitude reads ( recall we are in six dimensions which implies

∫
k
≡
∫ d6k

(2π)6 )

Ξ(1) ≡ g2

2

∫

k

1
k2

1
(k− p)2 = lim

µ2→0

g2

2

∫

k

1
(k2 − µ2)

1
[(k− p)2 − µ2]

,
∫

k

≡
∫ d6k

(2π)6 . (21)

p p

Figure 1. Graph P(1).

Notice that, following the rules of IREG, an infrared regulator was introduced in the
denominators. The propagator which contains the external momentum can be rewritten in
terms of fl and f̄

Ξ(1)

g2 =
1
2

∫

k

1
(k2 − µ2)




2(n(k)−1)

∑
l=0

f (k, p)
l + f̄ (k, p)


, (22)
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while n(k) is chosen in order to assure the finitude of the term containing f̄ (k, p). In this
specific example, we find by power counting that n(k) > 2, adopting n(k) = 3. The divergent
terms can be promptly identified by remembering that f (k, p)

l behaves like k−(l+2)

1. Quadratic divergence

∫

k

f (k, p)
0

(k2 − µ2)
=
∫

k

1
(k2 − µ2)2 , (23)

2. Linear divergence

∫

k

f (k, p)
1

(k2 − µ2)
=
∫

k

2p · k
(k2 − µ2)3 , (24)

3. Logarithmic divergence

∫

k

f (k, p)
2

(k2 − µ2)
=
∫

k

1
(k2 − µ2)3

[
(2p · k)2

(k2 − µ2)
− p2

]
= − p2

3
Ilog(µ

2). (25)

For pedagogical reasons, we showed the quadratic and linear divergences, even
though they vanish in the limit µ2 → 0. The remaining (UV finite) terms amount to

1
2

∫

k

f (k, p)
3 + f (k, p)

4 + f̄ (k, p)

(k2 − µ2)
=

1
2

∫

k

1
(k2 − µ2)4

[
−4p2(p · k) + p4 − (p2 − 2p · k)3

(k− p)2 − µ2

]

=
p2b6

6
ln
(
− p2

µ2

)
− 4p2b6

9
+ O(µ2).

(26)

After using Equation (10), the limit µ2 → 0 is well-defined, and we finally obtain

Ξ(1) = − g2 p2

6

[
Ilog(λ

2)− b6 ln
(
− p2

λ2

)
+

8b6

3

]
. (27)

Similarly, we obtain the amplitude of the one-loop correction for the vertex function
shown in Figure 2.

p1 p2

= −g3

[
Ilog(λ

2)− b6 ln(− p21
λ2 ) + 2b6 − h(p1, p2)

]

Figure 2. Graph V(1).

In the amplitude corresponding to V(1), h(p1, p2) is a function of p1 and p2 vanishing
for p2 = 0.

3.1.1. Two Loops: Self-Energy Diagrams

After setting the stage with the one-loop graphs, we move to the two-loop contribu-
tions. We recall that our main aim is to perform the renormalization of the theory, which
implies that only the divergent parts will be kept. Starting with the scalar propagator, the
diagrams needed are given in Figure 3.
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p
k1 k2 p p k2

k1

p

Figure 3. Graphs P(2)
A and P(2)

B , respectively.

The amplitude corresponding to P(2)
A is given by

Ξ(2)
A

ig4 =
1
2

∫

k1k2

∆(k1)∆(k1 − p)∆(k1 − k2)∆(k2)∆(k2 − p), where ∆(ki) ≡
1

k2
i − µ2

. (28)

As in the one-loop case, we start by rewriting the propagators that depend on the
external momenta

∫

k1k2

∆(k1)∆(k1 − k2)∆(k2)




2(n(k1)−1)

∑
l=0

f (k1, p)
l + f̄ (k1, p)






2(n(k2)−1)

∑
m=0

f (k2, p)
m + f̄ (k2, p)


. (29)

This time we have two n(ki) to be determined, which are chosen to guarantee the
finitude of terms containing f̄ (ki , p) as ki → ∞ in all possible ways. We focus first on n(k1).
The terms that contain f̄ (k1, p) can be compactly written as

∫

k1k2

∆(k1)∆(k1 − k2)∆(k2) f̄ (k1, p)∆(k2 − p). (30)

We want to assure the finitude of the above integral as k1 → ∞. Two cases must be
considered:

1. Finitude as k1 → ∞ and k2 fixed: n(k1) > 0,
2. Finitude as k1 → ∞ and k2 → ∞: n(k1) >2,

which allows us to conclude that n(k1) should be at least 3. Similarly, we obtain n(k2) = 3.
Once the values of n(ki) are known, we aim to identify the divergent terms contained

in (29) as k1 and/or k2 go to infinity. There are three possibilities. We begin analysing the
case k1 → ∞ and k2 fixed, which contain divergence terms of the type

∫

k1k2

∆(k1)∆(k2)∆(k1 − k2) f (k1, p)
l

[
4

∑
m=0

f (k2, p)
m + f̄ (k2, p)

]
. (31)

Since f (k1, p)
l goes like k−(l+2)

1 , we find by power counting that the divergent terms
are given by

AΞ
1 ≡

∫

k1k2

∆(k1)∆(k2)∆(k1 − k2) f (k1, p)
0

[
4

∑
m=0

f (k2, p)
m + f̄ (k2, p)

]

=
∫

k1k2

∆2(k1)∆(k1 − k2)∆(k2)∆(k2 − p).
(32)
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In a similar fashion, the case k2 → ∞ and k1 amounts to

AΞ
2 ≡

∫

k1k2

∆(k1)∆(k2)∆(k1 − k2) f (k2, p)
0

[
4

∑
l=0

f (k1, p)
l + f̄ (k1, p)

]

=
∫

k1k2

∆2(k2)∆(k1 − k2)∆(k1)∆(k1 − p).
(33)

Finally we consider k1 → ∞ and k2 → ∞ simultaneously. The choice of n(ki) = 3
(i = 1, 2) guarantees that the divergent terms must be of the type

∫

k1k2

∆(k1)∆(k2)∆(k1 − k2) f (k1, p)
l f (k2, p)

m . (34)

Once again, by power counting, we obtain that l and m are constrained by l + m ≤ 2.
Cases l = 0 and m = 0, 1, 2 are already contained in AΞ

1 (Equation (32)), while cases m = 0
and l = 0, 1, 2 are part of AΞ

2 (Equation (33)). Thus, we are left only with the case l = m = 1

AΞ
3 ≡

∫

k1k2

∆(k2)∆(k1 − k2)∆(k1) f (k1, p)
1 f (k2, p)

1

=
∫

k1k2

∆3(k1)∆(k1 − k2)∆3(k2)(2p · k1)(2p · k2).
(35)

In summary, the divergent terms are the following:

1. Case k1 → ∞ and k2 is fixed

AΞ
1 =

∫

k1k2

∆2(k1)∆(k1 − k2)∆(k2)∆(k2 − p), (36)

2. Case k2 → ∞ and k1 is fixed

AΞ
2 =

∫

k1k2

∆2(k2)∆(k1 − k2)∆(k1)∆(k1 − p), (37)

3. Case k1 → ∞ and k2 → ∞ simultaneously

AΞ
3 =

∫

k1k2

∆3(k1)∆(k1 − k2)∆3(k2)(2p · k1)(2p · k2). (38)

Thus, the divergent content of Ξ(2)
A amounts to AΞ

1 + AΞ
2 + AΞ

3 − AΞ
4 . The last term

corresponds to the case (l = m = 0)

AΞ
4 ≡

∫

k1k2

∆(k2)∆(k1 − k2)∆(k1) f (k1, p)
0 f (k2, p)

0 =
∫

k1k2

∆2(k2)∆(k1 − k2)∆2(k1), (39)

which must be subtracted since it was counted twice.
The above classification of the divergent terms in different cases (we consider AΞ

4
as the intersection between the k1 → ∞ and k2 fixed, k2 → ∞ and k1 fixed) is crucial to
implement IREG to multi-loop Feynman graphs in a systematic way, since it gives a natural
order in which the integrals must be performed. For instance, to evaluate AΞ

1 further,
we must perform the integral in k1 first. For terms like AΞ

3 , which are symmetric under
k1 ↔ k2, one may perform any of the integrals first. We should also emphasize that, as
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a byproduct, this classification will display the terms to be subtracted by Bogoliubov’s
recursion formula automatically as we will show.

Returning to the divergent terms we classified, one may notice that AΞ
1 and AΞ

2 have
the same structure, and the integral to be dealt with first is

∫

ki

∆2(ki)∆(ki − k j), i, j = 1, 2 and i 6= j (40)

It is the same amplitude of graph V1 (Figure 2) by identifying p1 → k j and setting
p2 = 0. Therefore, we can write

AΞ
i = ĀΞ

i + αΞ
i , i, j = 1, 2 and i 6= j

ĀΞ
i ≡

∫

kj

∆(k j)∆(k j − p)
[

Ilog(λ
2)
]
,

αΞ
i ≡ b6

∫

kj

∆(k j)∆(k j − p)

[
2− ln

(
−

k2
j − µ2

λ2

)]
.

(41)

We turn to AΞ
3 . We choose to perform the integral in k1 first (which is finite), insert the

result in the integral in k2 and use the rules of IREG to obtain

ᾱΞ
3 ≡ AΞ

3 = b6 p2

[
Ilog(λ

2)

3

]
. (42)

Similarly,

AΞ
4 =

∫

k2

∆2(k2)

[
Ilog(λ

2)− b6ln

(
−

k2
2 −µ2

λ2

)
+ 2b6

]
= 0 (43)

in the limit µ2 → 0.
We will verify that the terms ĀΞ

i (i = 1, 2) are exactly the ones which are going to be
subtracted by applying Bogoliubov’s recursion formula. We set them aside for now and
evaluate the rest (αΞ

i ). As usual, after using identity (19) in the propagator that depends on
the external momentum, we are able to identify the divergent terms. After taking the limit
µ2 → 0, the only one that survives is

ᾱΞ
i ≡

∫

kj

∆(k j) f
(kj , p)

2

[
−b6 ln

(
−

k2
j − µ2

λ2

)
+ 2b6

]
= b6 p2

[
I(2)log(λ

2)

3
− 8

9
Ilog(λ

2)

]
. (44)

Hence, the divergent content of Ξ(2)
A amounts to

Ξ(2)∞
A
ig4 ≡ 1

2
(
ᾱΞ

1 + ᾱΞ
2 + ᾱΞ

3 + ĀΞ
1 + ĀΞ

2
)
. (45)

As stated before, the two last terms are exactly the ones that are going to be subtracted
after applying Bogoliubov’s recursion formula. Explicitly, the subdivergences of this
particular graph are subtracted by the counterterms shown in Figure 4.

The amplitudes of which are, respectively,

ig4

2

∫

k2

∆(k2)∆(k2 − p)
[
−Ilog(λ

2)
]
=

ig4

2

(
−ĀΞ

1

)
, (46)
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p
k2

p p
k1

p

= (−1)× Divergence of

Figure 4. Counterterms for P(2)
A .

ig4

2

∫

k1

∆(k1)∆(k1 − p)
[
−Ilog(λ

2)
]
=

ig4

2

(
−ĀΞ

2

)
. (47)

Notice that we are adopting a minimal subtraction scheme which, in the context of
IREG, corresponds to the subtraction of basic divergent integrals [32]. Therefore, after the
subtraction of subdivergences, we obtain

Ξ̄(2)
A

ig4 ≡
b6 p2

6

[
2I(2)log(λ

2)− 13
3

Ilog(λ
2) + finite

]
. (48)

We consider next the two-loop nested graph (P(2)
B ) with an amplitude of

Ξ(2)
B

ig4 =
1
2

∫

k1k2

∆2(k1)∆(k1 − p)∆(k2)∆(k1 − k2). (49)

Once again, identity (19) is applied in the propagators that depend on the external
momentum, allowing us to choose n(k1) = 3 to assure that terms containing f̄ (k1, p) are
finite as k1 → ∞ in all possible ways. We proceed to classify the divergent terms. It is easy
to see that the case k1 → ∞ and k2 fixed does not have any divergent term, while the case
k2 → ∞ and k1 fixed does given below

∫

k1k2

∆2(k1)∆(k1 − k2)∆(k2)

[
4

∑
l=0

f (k1, p)
l + f̄ (k1, p)

]
=
∫

k1k2

∆2(k1)∆(k1 − k2)∆(k2)∆(k1 − p). (50)

For definiteness, we denote the above integral BΞ
1 . It is the only term that we have

to deal with (the divergent terms from the case k1 → ∞ and k2 → ∞ simultaneously
are contained in the above integral). It should be noted that, although it is the original
amplitude, we have now a natural order to implement IREG. After a straightforward use
of the rules in the integral in k2, we have

BΞ
1 = B̄Ξ

1 + βΞ
1 ,

B̄Ξ
1 ≡

∫

k1

∆(k1)∆(k1 − p)
[
−

Ilog

3
(λ2)

]
,

βΞ
1 ≡

b6

3

∫

k1

∆(k1)∆(k1 − p)

[
ln

(
−

k2
1 − µ2

λ2

)
− 8

3

] (51)

By applying the procedure again in βΞ
1 , we can obtain the following divergent terms

β̄Ξ
1 ≡

b6
3

∫

k1

∆(k1)

[
2

∑
l=0

f (k2, p)
l

][
ln

(
−

k2
1 − µ2

λ2

)]
− 8

3

]
= − b6 p2

9

[
I(2)log(λ

2)− 10
3

Ilog(λ
2)

]
. (52)
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Thus, the divergent content of Ξ(2)
B is given by

Ξ(2)∞
B
ig4 ≡ 1

2

(
β̄Ξ

1 + B̄Ξ
1

)
. (53)

As before, the last term is the one to be removed by an application of Bogoliubov’s
recursion formula since the counterterm we consider in this case is shown in Figure 5.

p

k1

p
= ig4

2

∫
k1

∆(k1)∆(k1 − p)
[
1
3
Ilog(λ

2)
]

= (−1)× Divergence of
k1 k1

Figure 5. Counterterm for P(2)
B .

After removing the subdivergence, we finally obtain

Ξ̄(2)
B

ig4 ≡
b6 p2

18

[
− I(2)log(λ

2) +
10
3

Ilog(λ
2) + finite

]
. (54)

Finally, we are able to write down the divergent part of the two-point function at
two-loop order

Ξ̄(2)
div ≡

(
Ξ̄(2)

A + Ξ̄(2)
B

)
div

= ig4 p2

6

[
5b6

3
I(2)log(λ

2)− 29b6

9
Ilog(λ

2)

]
. (55)

3.1.2. Two-Loop Vertex Renormalization

We consider now the renormalization of the vertex. The Feynman diagrams to be
evaluated are depicted in Figure 6.

p1

k1

k2

p2

3×

p1

k1 k2

p2

3×

p1 k2

k1

p2

Figure 6. Graphs V(2)
A , V(2)

B and V(2)
C respectively.

The amplitude corresponding to V(2)
A is given by

Λ(2)
A
−ig5 ≡

∫

k1k2

∆(k1)∆(k2 − k1)
2

∏
i=1

∆(ki − p1)∆(ki − p2). (56)

Our first task is to obtain n(ki)
j . We apply the same procedure as before, choosing

n(k1)
1 = n(k1)

2 = n(k2)
1 = n(k2)

2 = 1 which amounts to
∫

k1k2

∆(k1)∆(k2 − k1)
[

f (k1, p1)
0 + f̄ (k1, p1)

][
f (k1, p2)
0 + f̄ (k1, p2)

]
×

[
f (k2, p1)
0 + f̄ (k2, p1)

][
f (k2, p2)
0 + f̄ (k2, p2)

]
.

(57)
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The divergent terms come only from the case k2 → ∞ and k1 fixed, yielding

AΛ
1 ≡

∫

k1k2

∆(k1)∆(k2 − k1) f (k2, p1)
0 f (k2, p2)

0

[
f (k1, p1)
0 + f̄ (k1, p1)

][
f (k1, p2)
0 + f̄ (k1, p2)

]

=
∫

k1k2

∆(k1)∆(k2 − k1)∆2(k2)∆(k1 − p1)∆(k1 − p2)

= ĀΛ
1 + αΛ

1 ,

ĀΛ
1 ≡

∫

k1

∆(k1)∆(k1 − p1)∆(k1 − p2)
[

Ilog(λ
2)
]
,

αΛ
1 ≡ b6

∫

k1

∆(k1)∆(k1 − p1)∆(k1 − p2)

[
2− ln

(
−

k2
1 − µ2

λ2

)]
.

(58)

By applying the procedure in αΛ
1 , we obtain the divergent term below

ᾱΛ
1 ≡ b6

∫

k1

∆(k1) f (k1, p1)
0 f (k1, p2)

0

[
2− ln

(
−

k2
1 − µ2

λ2

)]

= 2b6 Ilog(λ
2)− b6 I(2)log(λ

2).

(59)

Hence, the divergent content of Λ(2)
A is given by

Λ(2)
A

∣∣∣
div
≡ −ig5

[
ᾱΛ

1 + ĀΛ
1

]
(60)

where the last term is removed by adding the counterterm shown in Figure 7.

p1

k1

p2

= −ig5
∫
k1

∆(k1)∆(k1−p1)∆(k1−p2)
[
−Ilog(λ

2)
]

= (−1)× Divergence of

p1−k1

k2

p2−k1

Figure 7. Counterterm for V(2)
A .

Therefore, after the subtraction of the subdivergence, we have

Λ̄(2)
A
−ig5 ≡ b6

[
−I(2)log(λ

2) + 2Ilog(λ
2) + finite

]
. (61)

We move to graph V(2)
B , with an amplitude of

Λ(2)
B
−ig5 ≡

1
2

∫

k1k2

∆2(k1)∆(k1 − p1)∆(k1 − p2)∆(k2)∆(k2 − k1). (62)
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After choosing n(k1)
1 = n(k1)

2 = 1, we notice that the divergent terms are all contained
in the case k2 → ∞ and k1 fixed, yielding

BΛ
1 ≡

∫

k1k2

∆2(k1)∆(k2)∆(k2 − k1)
[

f (k1, p1)
0 + f̄ (k1, p1)

][
f (k1, p2)
0 + f̄ (k1, p2)

]

=
∫

k1k2

∆2(k1)∆(k2)∆(k2 − k1)∆(k1 − p1)∆(k1 − p2)

= B̄Λ
1 + βΛ

1 ,

B̄Λ
1 ≡

∫

k1

∆(k1)∆(k1 − p1)∆(k1 − p2)

[
−

Ilog

3
(λ2)

]
,

βΛ
1 ≡

∫

k1

∆(k1)∆(k1 − p1)∆(k1 − p2)

[
b6

3
ln

(
−

k2
1 − µ2

λ2

)
− 8b6

9

]
.

(63)

Repeating the procedure in βΛ
1 yields

β̄Λ
1 ≡

∫

k1

∆(k1)
2

∏
i=1

f (k1, pi)
0

[
b6

3
ln

(
−

k2
1 − µ2

λ2

)
− 8b6

9

]
=

b6

3

[
I(2)log(λ

2) +−8
3

Ilog(λ
2)

]
(64)

Thus, the divergent content of Λ(2)
B is given by

Λ(2)
B

∣∣∣
div
≡ −ig5

2
(β̄Λ

1 + B̄Λ
1 ). (65)

The last term is going to be removed after applying Bogoliubov’s recursion formula
since the counterterm for this graph is given in Figure 8.

= −ig5

2

∫
k1

∆(k1)∆(k1−p1)∆(k1−p2)
[
1
3
Ilog(λ

2)
]

= (−1)× Divergence of

p1

k1

p2

k1 k1

Figure 8. Counterterm for V(2)
B .

After removing the subdivergence, we obtain

Λ̄(2)
B
−ig5 ≡

b6

6
I(2)log(λ

2)− 4b6

9
Ilog(λ

2) + finite. (66)

Finally, we evaluate graph V(2)
C . Denoting its amplitude as Λ(2)

C we have

Λ(2)
C
−ig5 ≡

1
2

∫

k1k2

∆(k1)∆(k2)∆(k1 − p1)∆(k2 − p2)∆(k1 + k2 − p1)∆(k1 + k2 − p2). (67)
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As usual, we choose n(k1)
1 = n(k2)

2 = n(k1+k2)
1 = n(k1+k2)

2 = 1 to find that the only
divergent term comes from the case k1 → ∞ and k2 → ∞, simultaneously yielding

CΛ
1 ≡

∫

k1k2

f (k1, p1)
0 f (k2, p2)

0 f (k1+k2, p1)
0 f (k1+k2, p2)

0

=
∫

k1k2

∆2(k1)∆2(k2)∆2(k1 + k2).
(68)

After performing the integral over k2, the rules of IREG can be applied to yield

Λ̄(2)
C ≡ Λ(2)

C = −ig5b6

[
Ilog(λ

2) + finite
]
. (69)

Grouping all the results, we obtain that the divergent part of the three-point function
at two-loop order is given by

Λ̄(2)
div ≡ (Λ̄(2)

A + Λ̄(2)
B + Λ̄(2)

C )div = ig5
[

5b6

2
I(2)log(λ

2)− 17b6

3
Ilog(λ

2)

]
. (70)

3.1.3. Two-Loop Renormalization Group Functions

In summary, we can obtain the one- and two-loop counterterms to the propagator and
vertex function in a minimal subtraction scheme as

Ξct = −i
g2

6
Ilog(λ

2)− g4

6

[
5b6

3
I(2)log(λ

2)− 29b6

9
Ilog(λ

2)

]
; (71)

Λct = −ig2 Ilog(λ
2)− g4

[
5b6

2
I(2)log(λ

2)− 17b6

3
Ilog(λ

2)

]
. (72)

Given the counterterms, it is an easy task to obtain the renormalization group functions.
For completeness, we present the usual definitions

φo ≡ Z
1
2
φ φ, go ≡ Zgg, Ξct ≡ Zφ − 1, Λct ≡ ZgZ

3
2
φ − 1,

γ ≡ λ
∂ ln Zφ

∂λ
, β ≡ −gλ

∂ ln Zg

∂λ
, (73)

where λ plays the role of the renormalization group scale in the context of IREG. We
finally obtain

γ =
g2

6(4π)3 +
13g4

216(4π)6 + O(g6), (74)

β = − 3g3

4(4π)3 −
125g5

144(4π)6 + O(g6). (75)

This result agrees with the one in the literature [33]. A treatment for massive theories
can be performed in a similar fashion; for further details, we refer the reader to [23].
Before moving to gauge theories, we emphasize that the algorithm applied in this section
can be generalized to arbitrary loop order. We provide in [23] examples at 4- and n-loop
order in the context of the φ3 model.

3.2. Gauge Theories

In this section, we will apply our procedure to massless gauge theories up to two-loop
order. Since the complexity and number of diagrams is far greater than the example we
provided for the φ3 model, we will not present all the details. Our main aim is to discuss
the importance of defining a normal form (as stated in Section 2) and collect known results.
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We will also only be interested in the UV behavior, meaning that all results consider only
off-shell external momenta, avoiding the appearance of IR divergences.

We begin with QED at 1-loop level. The divergent diagrams represent the radiative
correction to the photon and electron propagators, as well as the vertex diagram. In the
context of IREG, they have been computed in [34,35]. We will comment on the photon and
electron propagator in more detail, since they illustrate some interesting features, while for
the vertex, we will just quote the result.

Starting with the photon propagator in the massless limit, after a standard application
of Feynman rules, we obtain the amplitude

iΠµν(p) = (−)(−ie)2
∫

k
Tr

{
γµ

i
(/k)

γν
i

(/k − /p)

}
. (76)

In the context of IREG, our first step is to perform Dirac algebra in order to obtain a
normal form compatible with gauge symmetry [3,24]. For pedagogical purposes, we will
skip this step and discuss the consequences. Removing the Dirac trace outside the integral,
the amplitude can be written as

iΠµν(p) = (−e2)Tr

{
γµγαγνγβ(Iαβ − Iα pβ)

}
where Iα1 ··· αn =

∫

k

kα1 · · · kαn

k2(k− p)2 . (77)

It is an easy task to apply the IREG rules to these integrals to obtain

i
Πµν

(−e2)
=

4
3

[
Ilog(λ

2)− b ln

(
− p2

λ2

)
+

5
3

b

]
(gµν p2 − pµ pν) +

2b
3

gµν (78)

As can be clearly seen, the result is NOT gauge invariant. The offending term comes
from dismissing the first step on defining a normal form. Actually, by performing the trace
before applying the regularization rules, one would obtain a term such as

∫

k

k2

k2(k− p)2 =
∫

k

1
(k− p)2 = lim

µ2→0

∫

k

1
(k− p)2 − µ2 = lim

µ2→0
Iquad(µ

2) = 0 (79)

while by performing the traces afterwards, one obtains

gαβ
∫

k

kαkβ

k2(k− p)2 = gαβ

{(
pα pβ

3
−

gαβ p2

12

)[
Ilog(λ

2)− b ln
(
− p2

λ2

)
+

13b
6

]
−

gαβbp2

24

}

= − bp2

6

(80)

where we have already discarded Iquad(µ
2). Notice that the difference in both results has

its origin in the fact that symmetric integration is not allowed in divergent integrals [3]
in dimension-specific methods such as IREG. More importantly, the difference among
Equations (79) and (80) is exactly the offending term in Equation (78), since the Dirac trace
will contribute with a global factor of (−4).

Therefore, after the correct application of the rules of Section 2, one obtains

iΠµν = −4e2

3

[
Ilog(λ

2)− b ln

(
− p2

λ2

)
+

5
3

b

]
(gµν p2 − pµ pν) (81)

which is transverse as expected.
We move to the electron self-energy whose amplitude (in Feynman gauge) is given by

iΣ(p) = (−ie)2
∫

k

{
i

k2 γν
i

(/p − /k)
γν

}
. (82)
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The application of IREG to it is straightforward, remembering that one must first
perform the Dirac algebra

iΣ(p) = −2e2

{ ∫

k

/p − /k
k2(k− p)2

}
. (83)

The interesting point to be noted here will be the difference in the finite part in contrast
to the dimensional regularization result. The reason boils down to the difference in the
definition of the Dirac algebra in the different methods. For instance, in IREG,

γβ
/pγβ = −2/p, (84)

while in DReg,
γβ

/pγβ = (2− d)γµ = −2(1− ε)/p. (85)

In the context of DReg, the evanescent part [36,37] will hit poles in ε, generating more
finite terms in contrast to the result in IREG. Nevertheless, our result is identical to the
one of Dimensional Reduction after reducing the ε-scalar coupling to the standard gauge
coupling [36]. Thus, we obtain

iΣ(p) = (e)2
/p

{
Ilog(λ

2)− b ln

(
− p2

λ2

)
+ 2b

}
. (86)

Finally, the vertex function can be evaluated in a similar manner, we just quote its
divergent part

iΛµ = e3γµ Ilog(λ
2). (87)

3.2.1. One-Loop renormalization for QED and QCD

Proceeding to the renormalization program, the definitions in QED are

ψ0 =
√

Z2ψ, A0
µ =

√
Z3 Aµ, e0 = Zee. (88)

With this, it is straightforward to obtain the renormalization functions

Λct = Z1 − 1, Σct = Z2 − 1, Πct = Z3 − 1, Z1 = Z2, Z3 = 1 +
4
3

ie2 Ilog(λ
2) (89)

and check that the Ward identities are satisfied.
For QCD, the analysis is analogous. The usual definitions are

Aa
0µ = Z1/2

3 Aa
µ, ca

0 = Z̃1/2
3 ca, ψ0 = Z1/2

2 ψ, g0 = Zgg,

Z1 ≡ ZgZ1/2
3 , Z4 ≡ Z2

gZ2
3 , Z̃1 ≡ ZgZ̃3Z1/2

3 , Z1F ≡ ZgZ2Z1/2
3 .

(90)

Given the large number of diagrams, we will just present the renormalization functions
at 1-loop order, and refer the reader to [29]

Z3 = 1− ig2

[
5
3

C2(G)− 4
3

n f C(r)

]
Ilog(λ

2), Z2 = 1 + ig2C2(r)Ilog(λ
2),

Z̃3 = 1− ig2

2
C2(G)Ilog(λ

2), Z1F = 1 + ig2(C2(G)− C2(r))Ilog(λ
2),

Z̃1 = 1 +
ig2

2
C2(G)Ilog(λ

2), Z1 = 1 + ig2

(
− 2

3
C2(G) +

4
3

C(r)n f

)
Ilog(λ

2),

Z4 = 1 + ig2

(
1
3

C2(G) +
4
3

C(r)n f

)
Ilog(λ

2).

(91)
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Once again, the Slavnov–Taylor identities can be easily checked

Z1

Z3
=

Z̃1

Z̃3
=

Z1F
Z2

=
Z4

Z1
= 1 + ig2C2(G)Ilog(λ

2) (92)

3.2.2. Two-Loop β Functions for QED and QCD

In the context of this review, we will focus on the calculation of the two-loop coefficient
of the β-function gauge coupling both in QED and QCD. Since these coefficients are
universal if a renormalization substraction scheme independent of the mass is chosen
(which is the case of IREG), we must recover the well-known results [38,39]. Given this
objective, we will restrict ourselves to two-point functions only, which amounts to the
following topologies depicted in Figure 9.

Figure 9. Two-loop topologies for two-point functions.

The reason of this restriction is as follows: in the context of QED, the knowledge of
the photon self-energy is enough to determine the gauge coupling β-function. In QCD, if
one applies the background field method [40], this statement is also true since Zg = Z−1/2

A .
Notice that tadpoles diagrams were already removed, since they will amount to scaleless
quadratic divergences (encoded as I(l)quad(µ

2)), which vanish in massless theories. Given
the general topologies shown in Figure 9, we need to to fill them with the particle content
of the theory under study. For instance, in QED, since four-point interactions do not occur,
one can realize only topologies T2 and T3. This task was automatically performed by [41].
After building the amplitudes in all theories, we designed in-house routines to perform
Dirac and Lorentz algebra in 4-dimensions in the amplitude as a whole, making use of
FormCalc [42].

This is crucial to implement a normal form that respects gauge invariance at two-
loop level, as we briefly discuss. In order to illustrate this point, consider the diagram of
Figure 10 , whose amplitude (in the Feynman gauge) is schematically given by

A ∝
∫

k
Πµναβ(k, p)

∫

l

F αβ(q, k, p)
q2(q− k)2 , (93)

where we denote q as the internal momentum of the sub diagram (gluon loop), k is the
internal momentum of the complete diagram, and p is the external momentum. As we
presented in Section 2, one must first perform Dirac algebra, Lorentz contractions, etc.,
before applying the rules of IREG. Therefore, if F αβ contains a term such as qαqβ while
Πµναβ(k, p) has a term such as gαβkµkν, one will obtain

B ∝
∫

k

kµkν

k4(k− p)2

∫

q

q2

q2(q− k)2 =
∫

k

kµkν

k4(k− p)2

∫

q

1
(q− k)2 = 0 (94)
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Figure 10. Two-loop diagram which contains a gluon loop as sub-diagram.

Notice the similarity between the equation above and Equation (79). On the other
hand, if one opts to perform the contraction with gαβ afterwards (see Equation (80)),

gαβ

[∫

q

qαqβ

q2(q− k)2

]
= − bk2

6
, (95)

a non-null result to B will be obtained. As in the 1-loop case of QED, the second choice
will result in the breaking of gauge invariance.

We proceed to a collection of results found in [24] in which we computed the two-loop
correction to ZA, the renormalization function of the external gauge boson (the photon for
QED, the background gluon field for QCD). Defining

ZA = 1 +
g2

(4π)2 Z(1)
A +

g4

(4π)4 Z(2)
A , (96)

one obtains for QED

Z(1)
A = − 4

3b
Ilog(λ

2), Z(2)
A = −4

b
Ilog(λ

2), (97)

(98)

and for QCD

Z(1)
A =

(
11
b
− 2

3b
n f

)
Ilog(λ

2), (99)

Z(2)
A =

54
b2

[
I2
log(λ

2)− 2bI(2)log(λ
2)
]
+

(
210

b
− 38

3b
n f

)
Ilog(λ

2). (100)

We have written the result for the SU(3) group, while keeping the number of fermions
as a free parameter n f . As standard, by defining the β-function by

β = −g
[

β0

( g
4π

)2
+ β1

( g
4π

)4
]

; (101)

one obtains
β0 = −1

2
λ

∂

∂λ
Z(1)

A , β1 = −1
2

λ
∂

∂λ
Z(2)

A . (102)

Finally, using the results shown in Equations (97)–(100), we obtain the well-known
one- and two-loop contributions for the gauge β coupling in QED and QCD [38,39]

QED : β0 = −4
3

; β1 = −4; (103)

QCD : β0 = 11− 2
3

n f ; β1 = 102− 38
3

n f . (104)

Notice that the renormalization group β function has been obtained in a gauge-
invariant fashion without explicitly evaluating the UV divergencies. This is in contrast
with other schemes that operate in the physical dimension such as differential renormal-
ization [1] in which divergent expressions are replaced by finite. Moreover, in IREG, the
basic divergent objects depend explicitly on a renormalization scale λ whereas the back-
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bones of ultraviolet divergencies in dimensional methods are terms proportional to 1/εn,
n = 1, 2, . . ., as ε→ 0.

4. Concluding Remarks

The purpose of this review was to present in a pedagogical way how the IREG
method is implemented to comply with the powerful framework of BPHZ, which is based
on the fundamental principles of quantum field theory, unitarity, causality and locality.
An algorithm has been shown that delivers the integrals involved in multi-loop amplitudes
being decomposed in structures that are identified as the counterterms and divergencies
of the order according to the BPHZ scheme. Various examples, ranging from the cubic
scalar theory in six space time dimensions, to QED and QCD in the background field
method have been worked out, highlighting the procedure. A further benefit of the method
is that it automatically delivers all the necessary ingredients to obtain renormalization
group functions, of which we have presented the beta functions to two-loop order of the
above-mentioned theories, with known universal coefficients.
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