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Abstract: Facial recognition is a method of identifying or authenticating the identity of people
through their faces. Nowadays, facial recognition systems that use multispectral images achieve
better results than those that use only visible spectral band images. In this work, a novel architecture
for facial recognition that uses multiple deep convolutional neural networks and multispectral
images is proposed. A domain-specific transfer-learning methodology applied to a deep neural
network pre-trained in RGB images is shown to generalize well to the multispectral domain. We
also propose a skin detector module for forgery detection. Several experiments were planned to
assess the performance of our methods. First, we evaluate the performance of the forgery detection
module using face masks and coverings of different materials. A second study was carried out
with the objective of tuning the parameters of our domain-specific transfer-learning methodology, in
particular which layers of the pre-trained network should be retrained to obtain good adaptation to
multispectral images. A third study was conducted to evaluate the performance of support vector
machines (SVM) and k-nearest neighbor classifiers using the embeddings obtained from the trained
neural network. Finally, we compare the proposed method with other state-of-the-art approaches.
The experimental results show performance improvements in the Tufts and CASIA NIR-VIS 2.0
multispectral databases, with a rank-1 score of 99.7% and 99.8%, respectively.

Keywords: facial recognition; multispectral images; infrared; presentation attack detector

1. Introduction

Nowadays, many biometric facial recognition systems use images of the visible spec-
tral band. When compared to other types of biometric traits, such as iris, fingerprint, vein
signature and voice recognition, facial recognition presents some advantages, such as more
easily detecting a person’s characteristics, and being non-invasive [1,2].

Systems that use only the visible spectral band have multiple caveats, such as intol-
erance to occlusion, sensitivity to face pose variations, need for human cooperation, and
lack of robustness to luminosity changes. As a result, it is necessary to complement current
facial recognition systems with the use of other biometric sensors (e.g., iris or voice) or
exploit the information contained in other spectral bands to mitigate these problems [3].

A system that uses multiple spectral bands is called multispectral. Compared to facial
recognition systems that use the spectral bands of the visible spectrum, the multispectral
systems typically have a higher accuracy in facial recognition, thus allowing higher safety
levels in the access to critical facilities where the access is only permitted to authorized
people, e.g., hospitals, schools, laboratories, and military buildings [3]. By developing
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better facial recognition systems it is possible to ensure more reliable and robust access
control, thus protecting property and increasing the safety of people.

The infrared electromagnetic spectrum can be divided into four distinct spectral bands,
namely the Near Infrared (NIR), Short Wavelength Infrared (SWIR), Mid Wavelength In-
frared (MWIR) and Long Wavelength Infrared (LWIR). These spectral bands have been
applied successfully in facial recognition systems as a complement to the visible spec-
trum [1,3]. The use of infrared electromagnetic spectrum in facial recognition systems has
several advantages. Infrared is not detectable by the human eye and, at the same time, it is
not very sensitive to luminosity changes. When used in combination with infrared LED
illumination, infrared cameras can be used in video surveillance during the night to detect
people without being noticed [4,5].

As the NIR and SWIR spectral bands are close to the visible spectral band in the
electromagnetic spectrum, it is possible to take a machine learning method already trained
with images of the visible spectrum and adapt it to the NIR and SWIR bands [6]. The
MWIR and LWIR spectral bands, commonly known as “thermal”, allow the use of facial
recognition systems at night, when the luminosity is reduced or even inexistent.

Existing multispectral face datasets have numbers of samples much lower than the
datasets of face images in the visible spectrum. Thus, training neural network models
in multispectral datasets alone is limited by the low amount of available data. Instead,
we propose a transfer-learning approach to multispectral face recognition that exploits
the existence of face recognition networks pre-trained in large databases of images in the
visible spectrum. These pre-trained networks are fine-tuned in the multispectral datasets by
adapting the initial network layers that are more specific to different spectral characteristics
of the images in the visible and multispectral domains. The proposed method compares
favorably to the state-of-the-art in the typical benchmark datasets.

This work is organized as follows. In Section 2 we present the state-of-the-art on
multispectral facial recognition methods, including the most used evaluations metrics and
public multispectral databases. In Section 3 the proposed methodologies for multispectral
facial detection are described. In Section 4 we present the experimental setting and results
obtained, including their respective analysis and discussion. Finally, Section 5 concludes
the paper.

2. State-of-the-Art

This section outlines a systematic review of articles in multispectral facial recognition
and analyses their distribution by year and field of study. The study was conducted in
June 2020 with the help of the Web of Science database. All articles published in scientific
journals with impact factors from January 2000 to June 2020 were selected (works published
in conferences were not considered) [7].

Through a specific set of search parameters, 283 articles in 132 scientific journals were
found. Narrowing down the search to articles that use at least two spectral bands (e.g.,
VIS-NIR, VIS-LWIR, VIS-NIR-LWIR, NIR-LWIR) the total number of articles was reduced
to 47. These papers were considered the most relevant to our work.

An analysis of these articles was carried out taking into consideration the multispectral
databases and evaluation metrics used. It was concluded that the most commonly used
database was the CASIA NIR-VIS 2.0 [8], used 15 times in the 47 surveyed papers [7].

The most used evaluation metric was the rank-1, i.e., the percentage of predicted
identities high highest score (rank-1) that correspond to the correct identity.

Through the systematic analysis, the most relevant papers were grouped into five
approaches: feature representation methods, coupled subspace learning, image synthesis,
fusion, and deep neural networks. The most used method, in 32% of the articles analyzed,
was deep neural networks.

The feature representation methods seek to extract the characteristics that are more
invariant to the spectral band used. Through the extraction of facial features (e.g., contours,
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corners, eyes, and mouth) it is possible to encode in an efficient way the information
contained in the image.

Methods that project the features of different spectral bands into a common subspace
are known as coupled subspace learning methods. This subspace allows the identification
of the information that is common to the different spectral bands used.

Image synthesis methods transform an image from one spectral band to another
spectral band. These methods allow synthesizing an image in the visible spectral band
using an image from another spectral band (e.g., LWIR), and then apply a facial recognition
method to the synthesized image.

The overall performance of multispectral facial recognition systems can be improved
by combining (fusing) several types of images. The most relevant image fusion methods
applied in facial recognition are feature fusion and score fusion, that can be used individu-
ally or in combination. The feature fusion method combines the features obtained from
several images into a feature vector. The score fusion method improves the overall rating
performance by combining the classifications obtained from multiple images.

Currently, the neural networks most used in facial recognition are the deep convolu-
tional neural networks (DCNNs). These networks have a higher number of layers than
the traditional neural networks. DCNNs are composed of several layers of convolution,
activation, and pooling. The repetition of these layers allows the identification of efficient
feature representations with high predictive power, denominated embeddings.

3. Materials and Methods

This section presents the proposed multispectral facial recognition system. Figure 1
shows the block diagram of the proposed methodology.
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Figure 1. Block diagram of the proposed multispectral facial recognition system.

It follows a quite classical pipeline except for two modules that yield the main contri-
bution of this work: the presentation attack detector and the deep neural network classifier.
Details of these two modules are presented later.

The proposed method begins with the acquisition of multispectral images (e.g., visible
and infrared). These images can be obtained by several mono-spectral cameras, each
acquiring an image of a particular spectral band, or by imaging equipment capable of
obtaining images at various spectral intervals. The only requirement at this stage is that
the images are obtained at the same instant of time, so that they correspond to the same
person and the same conditions of luminosity and pose.
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The next steps are to convert the images to greyscale, to detect the human faces, and
to extract the facial landmarks (e.g., eyes, nose, and mouth). The module that performs this
task is represented in the block diagram of Figure 1 as the image processing module.

The proposed facial recognition system includes a module for detecting and warning
potential presentation attacks, called the presentation attack detector module. This module
takes advantage of all available multispectral images to perform skin detection, thus
preventing the facial recognition system from possible presentation attacks.

In the next module, denoted facial processing, facial landmarks obtained in the image
processing module are used to align the face. The image is rotated so that the facial land-
marks of the eyes are horizontally aligned. Then, the image is resized to 144 × 144 pixels.
The main objective of this module is to normalize the image before introducing it to
the DCNN.

Finally, the facial recognition module receives the normalized images and performs
the identification of the person.

Facial Recognition

The facial recognition module is composed of two main components: a DCNN and a
classifier. The purpose of the DCNN is to extract embeddings representative of the person
to be identified. Then, the classifier will use these embeddings to determine the identity of
the person.

The DCNN architecture used to extract the embeddings of a facial image is shown in
Figure 2, following the work of George [9] and Pereira [10]. This architecture allows the
use of several (N) channels, allocating to each channel a spectral band, or spectral range (if
several spectral ranges are being used in the same band). Furthermore, each channel can
leverage a backbone DCNN pre-trained in a large dataset of facial images in the visible
spectrum. This allows to apply transfer learning techniques, i.e., use a small dataset of
labeled images of each channel to adapt the corresponding backbone DCNN to the spectral
characteristics of that channel.
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Figure 2. DCNN proposed architecture.

The backbone DCNN used in this work is the LightCNN [11]. This DCNN stands out
from other similar DCNNs because it employs Max-Feature Map (MFM), an extension of
the Maxout activation function, in its base architecture, as an alternative to the rectified
linear unit (ReLU) activation function. Through this activation function, LightCNN obtains
a reduced number of parameters. This network takes as input greyscale images of size
128 × 128 pixels, and outputs embeddings of 256 dimensions, representative of the identity
of the person.

Different layers in the LightCNN [11] are adapted to adjust the model to the spectral
bands of the corresponding channel. If the channel is assigned to the visible spectral band,
the DCNN is not modified, since the domain of use is identical to the domain where the
DCNN was pre-trained. For the other channels, the transfer learning methodology is
applied. Reusing the weights of a pre-trained DCNN in a face recognition database with a
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high number of facial images, is a way to prevent overfitting the training in a new domain,
given the limited number of training multispectral images in most existing datasets [10].

To fuse the classifications of all channels, a Fully Connected Layer (FCL) is added at
the end of the network. This layer is fed with the vector of dimension N × 256, resulting
from the concatenation of the individual channel embeddings. The output of the FCL is a
final 256-d embedding, that will feed the classifier block to recognize the input face.

Figure 2 shows a generic case of using the proposed network with N channels. The
layers that are adapted are colored green, while the frozen (not adapted) layers are in blue.
Channel 0 is assigned to the visible spectral band, so it is not adapted.

After obtaining the final 256-d embedding, it is necessary to classify it and obtain the
corresponding identity of the person in the image. Several classifiers were tested to find
out which is the most suitable to classify the 256-d embeddings extracted by the proposed
network. The most frequently used classifiers were tested: the SVM with linear or radial
basis function (RBF) kernel, and the kNN [12].

Figure 3 shows a summary scheme that exemplifies the facial recognition module,
from the input of multispectral images, for each channel, to the identification of the identity
of the person present in these images.
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4. Results and Discussion

This section describes the multispectral databases used and the tests carried out to
assess the performance of the proposed methods. In a first test, we present and evaluate
the presentation attack detector. Then, we study which layers of the LightCNN should be
adapted to improve the quality of the face embeddings. Then, we study which classifiers
are better to classify a person’s identity through the 256-d embeddings. Finally, the best
classifier is compared with the state-of-the-art methods in multispectral face recognition.

All the experimentations were carried out on the Ubuntu operating system, ver-
sion 18.04, with a graphical processing unit (GPU) NVIDIA® GeForce® GTX 1650 with
4GB of dedicated GDDR6 random access memory (RAM). All code was developed in the
programming language Python 3.7.

4.1. Multispectral Databases

To evaluate the proposed algorithms, three multispectral databases were used: Tufts [13],
CASIA NIR-VIS 2.0 [8] and our own AM database, a multispectral dataset acquired at the
Portuguese Military Academy (AM). Before the multispectral databases were used, a cleaning
and a pre-processing step was performed. The cleaning step aimed at excluding from the
databases the images that are unusable (e.g., corrupt or blurred). The pre-processing step
consisted in the offline execution of the image processing and facial processing blocks of
Figure 1, to precompute all steps that are common across the experiments: the face detection,
facial alignment, cropping and resizing the images to fit the DCNN input size. In some images
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the automatic facial detection was unable to locate the faces, so it was necessary to make a
manual facial detection.

From the Tufts database [13] were collected all images with VIS, NIR and LWIR
spectral bands. The cleaning step excluded 53 facial images of 4 people, resulting in a total
of 7675 facial images of 109 people.

CASIA NIR-VIS 2.0 [8] is composed of two spectral bands, VIS and NIR, with 17,489 facial
images of 715 people.

Our AM database is composed of three spectral bands, VIS, SWIR and LWIR. This
database was built to evaluate our presentation attack detector module. During the con-
struction of this database several masks of different sizes and materials were used to
simulate different presentation attacks. Figure 4 represents some of the images included in
this multispectral database, made at the Portuguese Military Academy.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 16 
 

 

from the databases the images that are unusable (e.g., corrupt or blurred). The pre-pro-

cessing step consisted in the offline execution of the image processing and facial pro-

cessing blocks of Figure 1, to precompute all steps that are common across the experi-

ments: the face detection, facial alignment, cropping and resizing the images to fit the 

DCNN input size. In some images the automatic facial detection was unable to locate the 

faces, so it was necessary to make a manual facial detection.  

From the Tufts database [13] were collected all images with VIS, NIR and LWIR spec-

tral bands. The cleaning step excluded 53 facial images of 4 people, resulting in a total of 

7675 facial images of 109 people. 

CASIA NIR-VIS 2.0 [8] is composed of two spectral bands, VIS and NIR, with 17,489 

facial images of 715 people. 

Our AM database is composed of three spectral bands, VIS, SWIR and LWIR. This 

database was built to evaluate our presentation attack detector module. During the con-

struction of this database several masks of different sizes and materials were used to sim-

ulate different presentation attacks. Figure 4 represents some of the images included in 

this multispectral database, made at the Portuguese Military Academy. 

 

Figure 4. Example of images from our AM multispectral database. 

4.2. Presentation Attack Detector 

The tests performed on this module aim to study the advantages of using multispec-

tral images in presentation attack detection. 

A skin detector was developed to support the attack presentation detection module. 

It takes advantage of all available spectral bands to perform the skin detection. It receives 

the facial landmarks extracted in the image processing module (see Figure 1). If the num-

ber of facial landmarks in the skin region is less than 75% of the total, then a presentation 

attack is detected. To illustrate the advantages of the proposed multispectral skin detec-

tion, a comparison was made with a similar approach applied using visible spectrum im-

ages in the YCbCr and the HSV color spaces. 

4.2.1. Skin Detector 

Figure 4. Example of images from our AM multispectral database.

4.2. Presentation Attack Detector

The tests performed on this module aim to study the advantages of using multispectral
images in presentation attack detection.

A skin detector was developed to support the attack presentation detection module. It
takes advantage of all available spectral bands to perform the skin detection. It receives the
facial landmarks extracted in the image processing module (see Figure 1). If the number of
facial landmarks in the skin region is less than 75% of the total, then a presentation attack
is detected. To illustrate the advantages of the proposed multispectral skin detection, a
comparison was made with a similar approach applied using visible spectrum images in
the YCbCr and the HSV color spaces.

4.2.1. Skin Detector

The skin detector performs a pixel-level detection. In the first step, the normalized
difference between all facial channels is computed, d[ga, gb]:

d[ga, gb] =

(
ga − gb
ga + gb

)
(1)
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where g corresponds to the pixel intensity value for channels a and b, with 1 ≤ a ≤ b ≤ n,
where n corresponds to the number of channels available in the presentation attack detector
module. The normalized differences are in the range −1 ≤ d[ga, gb] ≤ + 1. The skin
detector uses the normalized difference values to classify the pixels as “skin” or “not
skin”. The range of values chosen to classify pixels as “skin” or “not skin” was defined
empirically for images in the VIS, SWIR and LWIR spectral bands: (76, 51, 65) < (d[g1, g2],
d[g1, g3], d[g2, g3]) < (131, 140, 127). A binary map is produced to represent the skin pixels,
where “1” equals “skin”, and “0” equals “not skin”. This binary map is used to support
the computation of the number of facial landmarks that are considered “skin” for the
presentation attack detector.

In Figure 5 we show an example of the skin detector output. The image on the left
corresponds to the original image. The image on the right corresponds to the binary
map after applying the proposed skin detector; the black region corresponds to what was
classified as “not skin”.
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To validate our proposal, we applied a similar approach to images of the visible
spectrum in the YCbCr and HSV color spaces, using skin color thresholds reported in the
literature (see Figure 6).
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A first analysis of Figures 5 and 6 shows that the multispectral skin detector can
make a better skin detection, when compared to YCbCr and HSV skin detectors. The
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multispectral detector was the only one that could distinguish the real skin from the fake
mask skin.

4.2.2. Attack Detector

At this stage, the facial landmarks extracted from the image processing module are
used together with the skin binary map to detect the presence of a presentation attack. For
this detection, the percentage of facial landmarks that are considered “skin” is computed. If
the percentage of facial landmarks is less than 75%, then our multispectral facial recognition
system is facing a presentation attack. We applied this rule to the AM database images,
using the multispectral, YCbCr and HSV skin detectors. With only the visible spectral bands
a presentation attack detection rate (i.e., correct decision on a presentation attack) of 13%
was achieved, given that the used classifiers were not able to make a correct discrimination
of the human skin from the mask.

When the multispectral presentation attack detector that uses VIS, SWIR and LWIR
spectral bands was applied, better results were achieved: the presentation attack detection
rate was 83%. The multispectral skin detector can make a correct discrimination of the
mask, as shown in Figure 5.

4.3. Facial Recognition

The facial recognition module starts from the results of the pre-processing step: a
normalized face image, cropped and scaled to the dimension of the DCNN. This image is
processed by the DCNN to extract its 256-d embedding vector. Then, the embedding vector
can be used with a classifier to obtain the identity of the person present in the images.

Several tests were carried out to find out which layers of the DCNN should be fine-
tuned with domain specific data and which type and hyperparameters of the classifiers
provide the best performance.

The images of each database (Tufts and CASIA NIR-VIS 2.0) were divided into three
sets: training, validation, and testing. The percentage of images for the training set was
64%, for the validation set 16%, and finally 20% for the test set. Was performed a stratified
division in the database so that each person has an equitable number of facial images in
each set.

4.3.1. Training Procedure

Data augmentation was used to obtain a more generalized model. In the training set
horizontal random mirroring and random cropping augmentations were used to resize the
image to a resolution of 128 × 128 pixels (to allow random cropping data augmentation
the training images were resized to 144 × 144 in the facial processing module, instead of
128 × 128). For the validation set, a crop of 128 × 128 in the center was performed to meet
the LightCNN [11] input size.

The Cross Entropy loss (CE) was used for the DCNN training. As the DCNN was
implemented in Pytorch, the Cross Entropy loss function combines SoftMax logarithmic
(LogSoftMax) and negative log likelihood (NLLLoss) in a single loss function.

The batch size was selected so that the number of images per batch was as large as
possible to fit in the graphic processing unit (GPU) memory during the training phase.
However, it was necessary to ensure that the number chosen for the batch of images was
an exponent of 2 (note that, this limitation is due to the alignment of the virtual processors
in the physical processors of the GPU), as suggested by Mishkin [14] and Goodfellow [15].

Table 1 summarizes the used parameters, for each multispectral database, for training
the DCNNs of the proposed architecture.
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Table 1. Parameters used in the training procedure for each multispectral database.

Parameters
Database

Tufts CASIA NIR-VIS 2.0

Batch size 16 32
Optimization algorithm Adam Adam

Learning rate 0.001 0.001
Epoch number 10 50

4.3.2. Adapted Layers

Several tests were performed to estimate which layers are suitable to adapt in the
LightCNN architecture [11]. In all experiments, the weights were initialized from the original
LightCNN model (the model used is available, for Pytorch, in the following Github reposi-
tory: https://github.com/AlfredXiangWu/LightCNN (accessed on 30 June 2021)) [11]. The
nomenclature of the network layers follows the original LightCNN paper [11]. LightCNN has
29 layers. Among all layers, 9 sets of layers stand out: the first convolutional layer together
with the first MFM, denominated Conv1, 4 sets denominated of Group, which constitute the
layers between the pooling layers, and the remaining 4 layers denominated Block, consisting
of a block of convolutional layers at the beginning of each Group. The notations used in the
combination of the adapted layers are the following:

• FCL (This layer is not part of the original LightCNN and was added in our architecture
to fuse the outputs of the DCNNs of the multiple channels, so that the output of the
architecture results in a 256-d embedding, see Figure 2): Only final connected layer
is adapted;

• Conv1-FCL ({1–1} + FCL): The first convolutional layer is adapted in conjunction with
MFM and FCL;

• Conv1-Block1- FCL ({1–2} + FCL): Block of residual neural networks is adapted to-
gether with the previous layers;

• Conv1-Block1-Group1- FCL ({1–3} + FCL): Adapts Group-1 together with the previ-
ous layers;

• Conv1-N- FCL ({1-N} + FCL): Adapts layers 1 to N together with the FCL;
• All Layers: All layers of LightCNN and FCL are adapted.

The number of epochs used during training was 10 and 50 for the Tufts [13] and
CASIA NIR-VIS 2.0 [8] databases, respectively. After the training, the 256-d embeddings
were extracted from each image of the multispectral databases. To evaluate each model an
SVM-Linear classifier was used to classify the 256-d embeddings.

For both databases, the best results were achieved when the initial layers ({1–3} + FCL)
were adapted. As more layers were adapted, the performance started to deteriorate. The
obtained results in this setting were rank-1 metrics of 99.7% and 99.8% for the Tufts [13]
and CASIA NIR-VIS 2.0 [8] multispectral databases, respectively.

4.3.3. Hyperparameter Analysis

With the best model obtained in the previous section, the 256-d embeddings of all faces
were extracted. To classify these embeddings, we trained and evaluated the performance
of SVM classifiers (with a linear and RBF kernel) and kNN classifiers.

To choose the hyperparameters of each classifier, stratified cross-validation (SCV) was
used, to deal with the unbalance of the database by forcing the number of images per
person to be identical, as described by Forman [16] and Tsamardinos [17]. For the SCV
the training and validation sets were unified in a single set from which multiple training
and validation partitions were generated. During the training phase of the classifier after
the best hyperparameters were determined, only the original training set was used (i.e.,
without the original validation set).

https://github.com/AlfredXiangWu/LightCNN
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In SCV the number of images per person is limited by the person who has the smallest
number of images. This number is 5 for the Tufts database [13] and 4 for the CASIA
NIR-VIS 2.0 database [8].

The hyperparameter tuned for the SVM-Linear classifier was the regularization parame-
ter (C) that indicates the degree of importance given to incorrect classifications. The range of
values studied for this hyperparameter was 10−10 ≤ C ≤ 10+5, in a base-10 logarithmic scale.

For the SVM-RBF classifier the following hyperparameters were tuned: the smoothing
parameter (C) and the kernel coefficient (Υ). The kernel coefficient hyperparameter aims at
defining how neighbor data points influence each other according to their proximity. The
range of values studied for the C hyperparameter was 10−4 ≤ C ≤ 10+7, and for Υ was
10−10 ≤ Υ ≤ 10+2, both in a base-10 logarithmic scale.

Finally, for the kNN classifier, the hyperparameter to be tuned was the number of close
neighbors (k). This hyperparameter influences the number neighbors that are considered
to classify a point. The range of values analyzed for the k hyperparameter was 1 ≤ k ≤ 25.

From the results of this analysis, shown in Tables 2 and 3, it can be observed that SVM
classifiers, regardless of the kernel used, obtain a higher rank-1 score, namely of 99.89%
and 99.86% for Tufts [13] and CASIA NIR-VIS 2.0 [8] databases, respectively. These tables
also show that the best value for the number of neighbors for the kNN hyperparameter is
1, independently of the multispectral database used.

Table 2. Optimal values for each hyperparameter and their mean rank-1 and standard deviation using the Tufts database.

Classifier
Regularization

Parameter
(C)

Kernel Coefficient
(Υ)

Number of
Neighbors (k)

Rank-1
(Mean Value)

Rank-1
(Standard
Deviation)

({1–3} + FCL) +
SVM-Linear 10−2 - - 99.89% 0.09%

({1–3} + FCL) +
SVM-RBF 10+1 10−4 - 99.89% 0.09%

({1–3} + FCL) +
kNN - - 1 99.54% 0.35%

Table 3. Optimal values for each hyperparameter and its mean rank-1 and standard deviation using the CASIA NIR-VIS 2.0 database.

Classifier
Regularization

Parameter
(C)

Kernel Coefficient
(Υ)

Number of
Neighbors (k)

Rank-1
(Mean Value)

Rank-1
(Standard
Deviation)

({1–3} + FCL) +
SVM-Linear 10−3 - - 99.86% 0.06%

({1–3} + FCL) +
SVM-RBF 10+1 10−5 - 99.86% 0.06%

({1–3} + FCL) +
kNN - - 1 99.63% 0.25%

4.3.4. Comparison with State-of-the-Art Methods

To evaluate the generalization ability of the trained networks and classifiers, it is
necessary to evaluate their performance in the test sets of each multispectral database. We
report the results using the cumulative correspondence characteristic curve (CMC). This
curve traces the identification rate on the ordinate axis and the rank-N on the abscissa axis.

Using the values in rank-1 and the values obtained for different classifications (e.g.,
CMC curve) it is possible to conclude on the best classifier for each multispectral database.

Results Using the Tufts Database

After evaluating the test set, from the Tufts database, with the classifiers (i) SVM-
Linear, (ii) SVM-RBF and (iii) kNN, the following values were obtained in rank-1: (i) 99.7%,
(ii) 99.2% and (iii) 99.2%.
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Figure 7 shows the CMC curve, for the three classifiers, for the first 10 classifications
(e.g., rank-10) for the Tufts database [13].

Sensors 2021, 21, x FOR PEER REVIEW 11 of 16 
 

 

Classifier 

Regularization Pa-

rameter 

(C) 

Kernel Coefficient 

(Υ) 

Number of Neigh-

bors (k) 

Rank-1 

(Mean Value) 

Rank-1 

(Standard Devia-

tion) 

({1–3} + FCL) + 

SVM-Linear 
10−3 - - 99.86% 0.06% 

({1–3} + FCL) + 

SVM-RBF 
10+1 10−5 - 99.86% 0.06% 

({1–3} + FCL) + 

kNN 
- - 1 99.63% 0.25% 

4.3.4. Comparison with State-of-the-Art Methods 

To evaluate the generalization ability of the trained networks and classifiers, it is nec-

essary to evaluate their performance in the test sets of each multispectral database. We 

report the results using the cumulative correspondence characteristic curve (CMC). This 

curve traces the identification rate on the ordinate axis and the rank-N on the abscissa 

axis. 

Using the values in rank-1 and the values obtained for different classifications (e.g., 

CMC curve) it is possible to conclude on the best classifier for each multispectral database. 

a) Results Using the Tufts Database 

After evaluating the test set, from the Tufts database, with the classifiers (i) SVM-

Linear, (ii) SVM-RBF and (iii) kNN, the following values were obtained in rank-1: 

(i) 99.7%, (ii) 99.2% and (iii) 99.2%.  

Figure 7 shows the CMC curve, for the three classifiers, for the first 10 classifications 

(e.g., rank-10) for the Tufts database [13]. 

 

Figure 7. CMC curve for the SVM-Linear, SVM-RBF and kNN classifiers, for the Tufts multispectral 

database test set. 

Performing a comparative analysis between the three classifiers through the rank-1 

values, the SVM-Linear classifier is the one that obtains the best results, with a rank-1 

score of 99.7%. Respectively, the SVM-RBF and kNN classifiers scored 99.2% for the same 

set of images. 

Figure 7. CMC curve for the SVM-Linear, SVM-RBF and kNN classifiers, for the Tufts multispectral
database test set.

Performing a comparative analysis between the three classifiers through the rank-1
values, the SVM-Linear classifier is the one that obtains the best results, with a rank-1 score
of 99.7%. Respectively, the SVM-RBF and kNN classifiers scored 99.2% for the same set
of images.

Figure 7 also shows that for rank-2 and regardless of the kernel used in the SVM
classifier, an identification rate of 100% is achieved, i.e., all the facial images in the test set
were correctly identified. Instead, the kNN classifier only achieves an identification rate of
100% in rank-102.

Based on the previous results, we consider the SVM-Linear classifier as the most suited
to these databases. Thus, our proposed methodology for multispectral facial recognition is
composed of the pre-trained LightCNN as base DCNN, fine-tuning the layers ({1–3} + FCL),
to produce a set of 256-d embeddings classified by the SVM-Linear classifier.

Table 4 compares the results of the proposed methodology with other methodologies
described in the literature. In bold the method that produced the best score in rank-1
is highlighted.

Table 4. Results produced through the proposed methodology when compared with the state-of-the-
art for the tufts database.

Method Rank-1 Year of Publication

TR-GAN [18] 88.7% 2019
Circular HOG [19] 94.5% 2020

Proposed methodology 99.7% 2020

Table 4 shows that the proposed methodology produces much better results compared
to the other methodologies. It should be noted that the Tufts multispectral database used for
DCNN training was cleaned by us. Other authors do not specify whether, or not, they have
cleaned the database. We note that some of the images on this database were excluded due
to very bad quality. Note that 53 facial images were excluded from the Tufts multispectral
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database. However, 27 of these facial images were excluded because two persons did not
have images in all spectral bands, namely VIS, NIR and LWIR. However, even if all the
26 excluded images were wrongly classified by our method, a rank-1 score of 95.9% would
be obtained, which is still higher than the state-of-the-art for this database.

It should be noted that, as the Tufts database was made available to the public only in
2020, the number of researchers using this database is still small.

Results Using the CASIA NIR-VIS 2.0 Database

After processing the CASIA NIR-VIS 2.0 database test set with the classifiers (i) SVM-
Linear, (ii) SVM-RBF and (iii) kNN, the following values were obtained in rank-1: (i) 99.8%,
(ii) 99.8% and (iii) 99.7%.

Figure 8 shows the CMC curve for the three classifiers in the first 10 classifications.
Both SVM classifiers, regardless of the kernel used, obtain a score of 99.8%. In comparison,
the kNN classifier achieves a rank-1 score of 99.7%.
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test set.

Figure 8 shows that after rank-8 the SVM-Linear classifier achieves a higher identifica-
tion rate than the SVM-RBF. SVM-Linear and SVM-RBF classifiers get an identification rate
of 100% for rank-10 and rank-12, respectively.

Table 4 shows the results obtained using the proposed methodology and using other
methodologies described in the literature. The method that obtained the best score in
rank-1 is highlighted in bold. Note that the table is listed by year of publication and not by
the rank-1 values.

The proposed methodology uses the LightCNN as base DCNN, adapting the layers
({1–3} + FCL), to produce a set of 256-d embeddings, which are later classified by the
SVM-Linear classifier.

From the results shown in Table 5 the proposed methodology obtains superior results
in rank-1 when compared to the other methods described in the state-of-the-art.
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Table 5. Results obtained through the proposed methodology when compared with the state-of-the-
art for the CASIA NIR-VIS 2.0 database.

Method Rank-1 Year of Publication

CDFL [20] 71.5% 2015
MCA [21] 69.1% 2016

MTC-ELM [22] 89.1% 2017
CEFDA [23] 85.6% 2017
Oh et al. [24] 97.5% 2017

LightCNN [11] 96.7% 2018
MDNDC [4] 98.9% 2019

Peng et al. [25] 96.7% 2019
DSU [10] 96.3% 2019

WCNN [26] 98.7% 2019
DDFLJM [27] 98.8% 2019

Peng et al. [28] 98.7% 2019
CFC [29] 98.6% 2019

CycleGAN [30] 99.4% 2020
Proposed methodology 99.8% 2020

The most recent work that uses the CASIA NIR-VIS 2.0 database is Bae et al. [28]
that obtained a rank-1 score of 99.4%, lower than the result obtained by our proposed
methodology (99.8%).

After a detailed analysis of Table 5, it is possible to see that LightCNN [11] base
methodology obtained a rank-1 score of 96.7%. Through the proposed methodology, it was
possible to improve the rank-1 score by 3.1%.

5. Conclusions

In this work, a multispectral facial recognition system was proposed. This system
takes advantage of multispectral images to obtain better facial recognition results. The
system is composed of four modules: image processing, presentation attack detector, facial
processing, and facial recognition.

The main contribution of the paper is a facial recognition architecture based on fine-
tuning, with domain specific data, the initial layers of DCNNs pre-trained in large face
datasets of images in the visible spectrum. These DCNNs extract feature embeddings for
each channel of the multispectral image. A final fully connected layer fuses the information
of the several channels in a 256-dimensional embedding, that is then classified by a linear
SVM. Instead of traditional transfer learning methods, that fine tune the last layers of
the networks to match the required task, we fine tune the initial layers to match the
characteristics of the input spectral bands.

Extensive studies in the multispectral databases demonstrated the superiority of the
proposed methodology. The obtained results show better rank-1 scores than the state-of-
the-art methods in the multispectral databases Tufts and CASIA NIR-VIS 2.0, respectively,
99.7% and 99.8%. Previous works present best scores in rank-1 for these databases of 94.5%
and 99.4%, respectively.

Additionally, we explored the characteristics of multiple infrared spectral channels
to develop a presentation attack detector. Our module uses a skin detector empirically
tuned in multispectral images to create a binary map. With this map, a comparison is made
with the facial landmarks to obtain the percentage of facial landmarks that are skin. Skin
detectors based on YCbCr and HSV color spaces are used to compare with our multispectral
skin detector. The multispectral presentation attack detector achieves better results (83%)
than those that use only visible images (13%).
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