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A personalized and evolutionary 
algorithm for interpretable EEG 
epilepsy seizure prediction
Mauro. F. Pinto*, Adriana Leal, Fábio Lopes, António Dourado, Pedro Martins & 
César A. Teixeira

Seizure prediction may improve the quality of life of patients suffering from drug-resistant epilepsy, 
which accounts for about 30% of the total epileptic patients. The pre-ictal period determination, 
characterized by a transitional stage between normal brain activity and seizure, is a critical step. 
Past approaches failed to attain real-world applicability due to lack of generalization capacity. 
More recently, deep learning techniques may outperform traditional classifiers and handle time 
dependencies. However, despite the existing efforts for providing interpretable insights, clinicians 
may not be willing to make high-stake decisions based on them. Furthermore, a disadvantageous 
aspect of the more usual seizure prediction pipeline is its modularity and significant independence 
between stages. An alternative could be the construction of a search algorithm that, while considering 
pipeline stages’ synergy, fine-tunes the selection of a reduced set of features that are widely used in 
the literature and computationally efficient. With extracranial recordings from 19 patients suffering 
from temporal-lobe seizures, we developed a patient-specific evolutionary optimization strategy, 
aiming to generate the optimal set of features for seizure prediction with a logistic regression 
classifier, which was tested prospectively in a total of 49 seizures and 710 h of continuous recording 
and performed above chance for 32% of patients, using a surrogate predictor. These results 
demonstrate the hypothesis of pre-ictal period identification without the loss of interpretability, 
which may help understanding brain dynamics leading to seizures and improve prediction algorithms.

Epilepsy is a brain chronic disorder affecting people of all ages and conditions. With approximately 1% of the 
world population suffering from this condition, it is one of the most common neurological diseases1. Besides its 
social impact related to discrimination and stigma, it is associated with a significant economic impact regarding 
health care needs, premature death, and loss of productivity. While seizure control may be achieved with a suc-
cess rate of 70% by delivering antiepileptic drugs2,3, Drug-Resistant Epilepsy (DRE) patients require strategies, 
such as seizure prediction, to improve their lives4–6.

The main goal of seizure prediction is to anticipate a seizure by timely raising an alarm. The existence of an 
efficient seizure prediction algorithm may, in the first place, open the way to seizure-suppression medication or 
to the development of closed-loop systems that, automatically, trigger some seizure disarming procedure. In the 
second place, it may also minimize subsequent effects from it, such as anxiety and social exposition. The selection 
of adequate parameters for seizure prediction models must consider all performance indicators simultaneously, 
such as sensitivity, false prediction rate per hour (FPR/h), seizure occurrence period (SOP), and seizure predic-
tion horizon (SPH). SPH is the minimum interval, between an alarm and a seizure that renders an intervention 
possible. The time frame where the seizure is predicted to occur is named SOP7,8.

The interest in Electroencephalogram (EEG)-based seizure prediction algorithms started in the 1970s and has 
gradually increased. This signal is used to continuously monitor epileptic patients and has proved to be useful for 
pre-surgical evaluation and diagnosis of DRE patients4,9. It is possible to segment an epileptic patient’s EEG in 
four periods: pre-ictal, which precedes the seizure; ictal, corresponding to the seizure; post-ictal, which follows 
the seizure; and finally, inter-ictal, which is a seizure-free time frame that can be found in between the post-ictal 
and the pre-ictal of consecutive seizures. The most difficult period to be detected is the pre-ictal, as it is not clini-
cally annotated and a recurrent pattern was not detected so far10–12. Moreover, studies13,14 have proved that this 
period is associated with significant inter- and intra-patient heterogeneity. Besides, the presence of confounding 
factors10,15 as alterations in brain dynamics due to circadian effects, medication, stress situations, and others, can 
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induce significant changes in features distribution. There is also a high-class imbalance: the inter-ictal period is 
extremely long when compared to the pre-ictal one16.

In recent years, the European Epilepsy Database1,4 was developed in the context of the European EPILEPSIAE 
project (www.epile​psiae​.eu), where several studies17–19 reported that in realistic scenarios, seizure prediction 
above chance level was only possible for a very small number of patients (10%). Some studies17,18,20 considered 
a standard framework that consists of preprocessing, feature extraction, feature selection, classification, output 
regularization, and performance evaluation, where pre-ictal period determination and feature extraction tended 
to be the most critical decisions. Authors typically define a pre-ictal time and split the EEG into individual 
and independent windows of fixed size, labelling each as inter-ictal, pre-ictal, ictal, and post-ictal. Usually, the 
choice of a fixed pre-ictal period follows a grid search approach of different periods, e.g., 2, 20, 30, 60, or even 
240 min21,22. This pipeline has two limitations. Firstly, feature selection is commonly based on the discriminat-
ing power of each feature individually, or by using wrappers and embedded methods that address synergies but 
require a large computational power14,16. Secondly, this framework is modular and composed of independent 
stages, where feature selection is usually not based in the final seizure prediction performance but rather in 
distinguishing pre-ictal from inter-ictal independent windows of fixed size. Therefore, the interaction between 
stages is not handled. Additionally, a fixed sub-set of electrodes and features are often considered at a given time 
instant, not allowing for the evaluation of lagged values of corresponding features, i.e., not considering temporal 
dynamics. More recently, Deep Learning models, such as Recurrent Neural Networks (RNNs), Long Short Term 
Memory (LSTM) and Bi-LSTM, were introduced in seizure prediction23,24. Due to their underlying mechanisms, 
they are more suitable for time-series analysis than traditional classifiers. Despite the theoretical potential of these 
models to handle brain dynamics and the existence of notable efforts to retrieve interpretable insights (where 
the EEG signal is no exception25,26), clinicians may not be willing to make high-stake decisions based on them27. 
Low-complexity algorithms with interpretable insights (as the ones using intrinsically interpretable models), 
able to provide a deeper understanding of the ictogenesis process, should be favoured over others10,11,28, because 
they enable analysis by clinicians, and consequently improves confidence on the given performance.

To tackle the aspects of interpretability, synergy concerning features, and interaction between all pipeline 
stages, a solution may lie in the construction of a search algorithm that selects a reduced set of computationally 
efficient and widely used features. This search algorithm should select features by looking at the pipeline as a 
whole, and not as a sequence of independent stages. We propose an Evolutionary Algorithm (EA) to handle this 
problem, as these type of algorithms have become effective for several tasks such as direct search, optimization 
and machine learning problems29. They can be seen as population-based search algorithms that mimic natural 
evolution by evaluating the quality of individuals through the use of evolution operators (crossover and muta-
tion) and a fitness function. A population is a group of individuals, where each one is represented by a point in 
the search space. The fittest individuals, evaluated by their fitness function values, tend to survive and propagate 
the genetic material by reproducing or mutating29–31.

We developed a patient-specific search algorithm aiming at seizure prediction while trying to discover the 
best pre-ictal time, based on evolutionary computation, where each individual in the EA population is a set of 
five features. Simply put, the set of features (individuals) that best perform in seizure prediction using a logistic 
regression classifier (fitness function), survive and proliferate, while the remaining die and do not contribute 
to propagate their genes, similarly to natural selection. This method, besides using the predictive power of a set 
of features and their synergy, tries to provide a deeper understanding on the seizure generation processes by 
considering a sequence of instants instead of analyzing only one instant, and by giving results that can be inter-
pretable. In the end, we demonstrate the interpretability of the EA output and how to extract patient-specific 
knowledge from it.

Materials and methods
The strategy followed can be divided into data preprocessing, feature extraction, training, testing, and phenotype 
study (see Fig. 1). In short, the raw EEG is filtered and segmented into time-windows from which features are 
extracted. Then, the first 60% chronological seizures are used as input to the EA, which is executed 30 times. The 
best individual (set of features and correspondent pre-ictal time) of each execution is selected. The EA output 
features are then tested and evaluated with the last 40% chronological seizures. An SPH of 10 min was used both 
in training and testing stages. This procedure is explored for three different minimum pre-ictal periods: 40, 50, 
and 60 min. If the results for a given patient are satisfactory, a phenotype study can be made. These steps are 
described in this section and are shown for one patient, as our approach is patient-specific.

Regarding the EA output features, these will be based on a feature construction32–34 process: the application 
of a set of constructive operators to a set of existing features, which results in the construction of new ones. The 
latter are believed to be more powerful, as these higher-level generated features take into account the interactions 
in the previous feature space. In this case, the features from the feature extraction stage (first-level features) will 
be used to construct second-level ones by windowing and applying a mathematical operator, constituting the 
phenotype features. In the following, first-level features will be named as features, while the second-level ones 
will be referred to as hyper-features.

Database.  From the European Epilepsy Database also known as EPILEPSIAE database1,4, 19 DRE patients 
(11 males and 8 females, aged 40.26±13.52 years) from the Universitätsklinikum Freiburg in Germany were 
selected. The dataset comprises 120 seizures (71 for training and 49 for testing), 284 h of training data and 710 
h of testing data ( ≈ 1 month). It is important to mention that, for training seizures, we selected only the last 
recorded 4 h before each seizure. Nevertheless, our testing data is continuous, as it comprises all available inter-
ictal data without any segment removal. Our patient selection criteria were the following: (i) patients containing 
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only seizures with focus on the temporal lobe, as these are the most representative in DRE patients; (ii) patients 
having an average of 2–5 daily seizures and a minimum of 5 recorded seizures that were separated by periods 
of at least 4 h; and (iii) EEG scalp recorded specifically with a sampling frequency of 256 Hz. We selected only 
patients with temporal lobe epilepsy as it is the most common type of focal epilepsies35. All electrodes were 
placed according to the 10–20 system. The data was collected while patients were in the clinic for routine pre-
surgical monitoring. The use of this data for research proposals has been approved by the Ethical Committee of 
the three hospitals involved on the database development (Ethik-Kommission der Albert-Ludwigs-Universität, 
Freiburg; Comité consultatif sur le traitement de l’information en matière de recherche dans le domaine de 
la santé, Pitié-Salpêtrière University Hospital; and Ethics Committee of the Coimbra University Hospital). All 
methods were performed following the relevant guidelines and regulations. Informed written patient consent 
was also obtained.

Pre‑processing and feature extraction.  The data was filtered with a 50 Hz notch filter and with a 0.1–
120 Hz bandpass filter. Then, a 5-s non-overlapping window was chosen to segment the recordings. For each 
time window in each electrode, the following features were extracted in the frequency domain: relative power in 
delta (0.5–3.5 Hz), theta (4–7.5 Hz), alpha (8–12 Hz), beta (13–35 Hz), and in three gamma sub-bands (36–50 
Hz, 51–70 Hz and 71–90 Hz), average power, and mean normalized frequency. As the frequency limit of gamma 
activity is not consensual among authors, and its division into high-gamma and low-gamma is not uncommon36, 
we decided to divide it. The normalized and non-normalized (with respect to the maximum value in each win-
dow) mean amplitude, and the amplitude variance, were extracted as well.

Evolutionary algorithm.  We used a Genetic Algorithm (GA) as the EA, whose steps are described in 
Fig. 2. Population, which is a set of possible solutions, is initialized randomly with a fixed number of 100 indi-
viduals. Each individual has its encoding, which can be seen as the bridge between the problem context and 
the problem-solving space, where phenotypes (possible solutions) are encoded into genotypes (a chain of char-
acters coded from the individual). Then, each individual is evaluated based on the fitness function, which is a 
mathematical criterion that results in a measure related to the seizure prediction performance. Then, half of 

Figure 1.   Flowchart of the proposed work for each patient, comprising data processing, feature extraction, 
training, testing, performance evaluation and phenotype study.

Figure 2.   The proposed GA configuration.
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the individuals (parents) are selected to reproduce through binary tournament selection (parent selection). The 
evolution operators are recombination and mutation, where we used a recombination rate of 0.80 (80% of times, 
two parents produced an offspring) and a mutation rate of 1.00 (all offspring suffered a mutation). The individu-
als among parents and offspring with the best fitness evaluation are selected and comprise the next generation 
of individuals ((1+� ) replacement strategy29). Evolution occurred until one of the following criteria was met: i) 
maximum fitness was reached, ii) fitness did not increase over the last 50 generations, iii) 15000 new individual 
evaluations were performed (see Supplementary Material for more information concerning the EA configura-
tion). As a reduced computation time is desired in order to have real-life applicability, a fast convergence is 
desired. Thus, a greedy approach was used, i.e., points offering the most obvious and immediate benefits are 
chosen. Despite this strategy may not usually produce an optimal solution, it is believed that it approximates the 
global optimum one in a reasonable amount of time37.

Codification and evolution operators.  Figure 3 illustrates the rationale behind genotype, phenotype decoding 
and mutation. Concerning genotype, a population is represented by a group of individuals, where each one is 
defined by five hyper-features. Each hyper-feature is encoded with seven genes: dominant feature, band-wave 
feature, non-band wave feature, mathematical operator, electrode, window length and time instant (minutes 
before the minimum pre-ictal period) (see Fig. 3a).

Genotype-phenotype mapping (see Fig. 3b) consists in: (i) finding the feature that will be decoded to the 
phenotype for each hyper-feature by inspecting the dominant feature gene, e.g. if the dominant feature gene 
value is band-wave, then the band-wave feature is decoded; (ii) constructing each hyper-feature by windowing 
the decoded feature, from the given electrode, within the window length, and then by applying the respec-
tive mathematical operator; and (iii) placing each hyper-feature chronologically in a timeline according to its 
respective time instant and obtaining the pre-ictal period (the temporal distance between the first chronological 
hyper-feature and the seizure). The latter allows to not only analyzing a sequence of instants instead of only one 
instant but also to find the best pre-ictal time (see Supplementary Material for a genotype-phenotype decod-
ing example). Then, with the hyper-features constructed and placed chronologically, it is possible to perform 
sliding-window analysis, classification, regularization and evaluation, all these addressed in the fitness function.

In Fig. 3c, one can visualize all possible values for each gene and its neighbourhood that must be established 
to perform recombination and mutation. These neighbourhoods were designed while accounting the relationship 
between each gene value (see Supplementary Materials for more details). Mutation, interpreted as a unitary step 
that will cause a random and unbiased change29, occurs in the following form for an individual (see Fig. 3d): 
one of the hyper-features is chosen randomly, and then one gene of that hyper-feature is chosen randomly to 
mutate. The remaining hyper-features and genes continue unaltered. Recombination is a stochastic operator that 
combines genetic information from two parents (individuals) into one or more offspring29. After selecting two 
parents to reproduce, this operator performs the recombination of all paired hyper-features. Thus, hyper-feature 
pairing is the first step and then, the recombination operator works at the hyper-feature gene level. Each offspring 

Figure 3.   An illustrated scheme of genotype (a), phenotype decoding (b), gene’s neighbourhood and all 
possible values for each gene (c), and the mutation operator functioning (d).
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gene value is obtained by choosing a random one belonging to the shortest path between the correspondent 
two parent gene values (see Supplementary Material for more details concerning evolution operators, and an 
example for each).

Fitness function.  An individual fitness evaluation is made iteratively (retraining the logistic regression classi-
fier with new seizures) according to seizure prediction performance (see Fig. 4a). For each tested seizure (see 
Fig.  4b), hyper-features and labels are collected from previous seizures by performing time-moving analysis 
(1-min step). Delayed features with a lag l = 1, 2, 3 min are also extracted, which has the objective of transform-
ing static hyper-features into temporal ones since the used classifier does not handle time explicitly. Redundancy 
is handled, by removing features with an absolute correlation coefficient |ρ| > 0.95 . Then, they are standardized 
by a z-score process.

Before classifier training, classes’ weight was balanced with an inverse proportion to their frequency of occur-
rence (see Supplementary Material for mathematical formulation). We chose the logistic regression classifier, as 
it is computationally light, its decision curve takes the form of a logistic function, it is an intrinsically interpret-
able model and therefore, incorporates interpretability directly to its structure27,38,39. It models the probability 
p(x) of a sample x with n predictors belonging to a certain class as shown in Eq. (1)40, where βn is the regression 
coefficient value concerning the hyper-feature xn:

For the tested seizure, the same procedure was applied, but using z-score parameters and logistic regression from 
training seizures. Then, a regularization technique is applied as it is desired to have a predictor robust to noise: 
the Firing Power41 (see Supplementary Material for mathematical formulation). It quantifies the classifier rate 
output as pre-ictal in a past-time window with the size of the pre-ictal period. When an arbitrary threshold (the 
maximum tolerance for the prediction error) is surpassed, an alarm is triggered. The latter was set to a reason-
able limit of 0.70.

Prediction performance is based on four measures: seizure sensitivity Sp (the ratio of correctly predicted 
seizures), sample sensitivity Ss (ratio of samples classified as pre-ictal within all pre-ictal samples); time under 
false alarm Tf  (ratio of samples classified as pre-ictal within all inter-ictal samples); and FPR/h (number of false 
alarms divided by the total time inter-ictal period).

Accordingly, the performance for a tested seizure is given by Eq. (2), which we consider optimal if its value 
is 1. The latter corresponds to correctly predicting all samples ( Ss =1 and Tf = 0 ) and therefore, predicting the 
seizure ( Sp = 1 ) while not triggering any false alarm (FPR/h=0). By measuring these metrics simultaneously, 
performance is not only based on a seizure prediction system, but also on correctly classifying the maximum 
number of samples. Furthermore, FPR/h is multiplied by Tf  , as it is not meaningful to have the same Tf  with dif-
ferent number of alarms: it is preferred to have a shorter number of false alarms. Thus, it emphasizes the downside 
of having simultaneously a high FPR/h and a longer Tf  . Finally, the fitness function evaluation is obtained by 
averaging all tested seizure performances:

Training, testing and statistical validation.  For a patient, in a real-life context, one would choose a determined 
minimum pre-ictal period and would run one execution of the EA. The best set of features would then be used 
for predicting seizures. In an academic context, as this paper concerns an exploratory study, we executed an 
EA 30 times for each patient, for each minimum pre-ictal period. These sets of selected features were then pro-
spectively tested with the patient’s past 40% seizures (unseen data), using the same pipeline used for the fitness 
function but with one extra step: after raising an alarm, a refractory period of SOP+SPH was used. Due to the 
latter, we excluded refractory periods from the inter-ictal period in our FPR/h calculations, in order to only 
account for the period during which false alarms can be triggered, and which enables a proper comparison with 
other methods16. Performance is based on Sp , FPR/h and comparison with a surrogate predictor42. The latter 
was implemented with the objective of understanding if the proposed algorithm performed above chance level.

(1)p(x) =
1

1+ e−(β0+β1x1+β2x2...+βnxn)
.

(2)Performance = (Ss + Sp)× 0.5− FPR/h× (1+ Tf ).

Figure 4.   An illustrated scheme of the iterative retraining and testing evaluation (a) and the used prediction 
procedure for one tested seizure (b).
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The surrogate predictor makes use of Monte Carlo simulations by random shifting seizure times. A model is 
considered to perform above chance if its performance is higher than the surrogate one with statistical signifi-
cance, under the following null hypothesis that the proposed method performance is not above chance level. 
Unspecific methods, as the random predictor43, which assume that alarms are triggered randomly without using 
information from the EEG signal, are also commonly used. Nevertheless, despite a surrogate approach requires 
more computation time, it offers greater confidence in determining if a model performs above chance11 (see 
Supplementary Materials for a detailed implementation of our surrogate predictor).

Since we performed 30 executions for each minimum pre-ictal period, we did two different statistical valida-
tions: one on the overall set of executions and another on the number of executions that perform above chance. 
Concerning the first, we considered a performance to be above chance level if its average value is higher than 
the one observed for the averaged surrogate predictor, with statistical significance of α=0.01 (using a one-tailed 
t − test ). The second validation is related to the real-life context, where we would only run one execution (and 
not 30) of the EA and use it: we need to understand how likely the selected features would perform above chance 
level, and if that probability is statistically significant. Towards the latter, we calculated the number of executions 
that outperformed the surrogate predictor with statistical significance of α=0.01 and verified if this number was 
significant for the whole set of 30 executions, by comparing the obtained ratio with the one from a binomial 
distribution (this procedure was inspired by Alvarado Rojas et al.19, as they used it to check if the number of vali-
dated patients was significant for the whole group). Thus, for a significance of α=0.05, the probability to observe, 
for at least i of I (individuals) executions that outperformed the surrogate predictor, is given by:

Phenotype study.  As EAs are associated with random components (as initialization, parent selection, and evo-
lution operators), it is possible to obtain, for each execution, a different solution (set of hyper-features) with 
similar performance. Thus, the objective of performing a phenotype study is to understand the overall influence 
of each gene value. It is possible to calculate the gene value predictive power from a gene using by assigning to 
it the absolute of the correspondent logistic regression coefficient. Presence was also studied, where a binary 
value (1/0) was assigned considering the gene value presence in a hyper-feature. By computing these values 
to all hyper-features that compose an individual, one obtains the correspondent gene value predictive power 
for an individual. After this, one can compute the correspondent normalized gene value predictive power and 
normalized presence for all individuals (see Supplementary Material for more details and for mathematical 
formulation).

Results and discussion
Figure 5 presents the statistical validation on testing seizures for all patients and for all minimum pre-ictal 
periods, along with patient stratification. Thus, colour represents the ratio of executions (N executions out 
of 30) that outperformed the surrogate predictor while the diamond-shaped marker represents which sets of 
executions had an overall performance above chance level. It is possible to see that, for 40, 50, and 60 min of 
minimum pre-ictal periods, 42% (8 in 19), 37% (7 in 19), and 42% (8 in 19) of patient models performed above 
chance level, respectively. Furthermore, 32% (6 in 19) presented a performance above chance level for all three 
pre-ictal periods, and therefore, we consider this value as our number of validated patients, and 48% (9 in 19) for 
at least one pre-ictal period. Furthermore, it was possible to develop a significant number of executions that are 
significant for the whole set, for 89% (17 in 19) of patient-models for all three pre-ictal periods simultaneously, 
and for 100% (19 in 19) for at least one pre-ictal period.

(3)Pbinom(i, I ,α) =

I
∑

j=i

(

I
j

)

αj(1− α)(I−j)

Figure 5.   The performance of all patient-models, organized by the minimum pre-ictal period. Colour 
represents the ratio of executions that outperformed the surrogate predictor, while the diamond shape 
means that a given overall set of 30 executions outperformed the surrogate predictor. On the top line, patient 
stratification is presented concerning seizure classification (*, FOA or FOIA/FBTC seizures), sleep stage at 
seizure onset (+, sleep/wake), circadian cycle at seizure onset (., day/night) and annotated activity pattern 
(x, rhythmic/non-rhythmic). On the overall column, one can see the ratio of patients whose models overall 
performance is above chance level.
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The average fitness value in training was 0.62± 0.12 and the SOP duration was 40.46± 8.85 min. In testing, 
we obtained an Sp of 0.38± 0.19 , 0.36± 0.24 , and 0.37± 0.27 , and an FPR/h of 1.03± 0.84 , 0.76± 0.39 , and 
0.58± 0.31 for the minimum pre-ictal periods of 40, 50, and 60 min, respectively.

Patient stratification was based on seizure classification (FOA or FOIA/FBTC), seizure activity (rhythmic/
non-rhythmic), sleep stages (sleep/awake), the period of the day (night/day, with 10 pm and 7 am as time 
thresholds19) at seizure onset. In these, a patient was selected if a determined stratification criterion was met both 
in training and testing seizures. Activity pattern was the only criterion that improved significantly the percentage 
of patient models performing above chance for at least one pre-ictal period: 58% (7 in 12). With the remaining 
stratification parameters, the obtained percentages were 50%, 42% and 33% for seizure classification, circadian 
cycle, and sleep stage, respectively. Concerning Sp , it is worth mentioning that we have obtained a Pearson cor-
relation coefficient of ρ = 0.39 and ρ = 0.29 between this metric and stratification criteria of seizure classification 
and activity pattern, respectively.

Table 1 presents training and testing results, as well as information concerning the considered group of 
patients: number of seizures and recording duration, seizure activity pattern, seizure classification, and day period 
(i.e. Day or Night) at seizure onset. It is worth noting that we are only presenting here one set of 30 executions 
for each patient, which corresponds to the pre-ictal period that presented the best performance. One can find the 
performance for all patient-models in Table S2 from Supplementary Material. In fact, one could have included 
the pre-ictal period in the genotype instead of searching for different minimum values, but this can be justified 
by the fact that its duration influences directly the used seizure performance metrics. By including the pre-ictal 
period in the genotype, we would take the risk of seeing pre-ictal time changes just because it would immedi-
ately increase fitness value, while not being related to brain dynamics. Furthermore, EA hyper-features are also 
capable of increasing the pre-ictal period duration through the increase of all hyper-features’ time instant, as 
explained in genotype-phenotype mapping. This operation was allowed since it depends on all hyper-features 
simultaneously. Moreover, experimenting with different and consecutive pre-ictal periods allowed us to explore 
the idea of seizure susceptibility that may be envisioned as a regression problem10. The fact that it was possible 
to build prediction models that achieved performance above chance level for all tested three pre-ictal periods, 
for 32% of patients, might suggest this.

It is worth noting the existence of a relation between the number of training seizures and fitness, with a 
Pearson correlation value of ρ = −0.49 . We assume this as natural, as it is considered a more difficult task to 
identify all pre-ictal samples without raising false alarms for a higher number of seizures. Furthermore, relations 
concerning fitness and testing Sp ( ρ = 0.19 ) and testing FPR/h ( ρ = −0.25 ) were also found. These findings 
may lead us to believe in the existence of concepts drift that can not be handled by simply using in the EA all 
available data and by retraining the used features with upcoming data. Perhaps, results would differ if a new EA 
would be executed whenever a new seizure was available, using only the last N seizures. In other words, this 
would require us to re-select our features periodically with the availability of new seizures. Despite this itera-
tive procedure would largely increase computational complexity in our study, along with the necessity of more 
testing seizures, it could be applied in real life, as our training stage is relatively fast (an EA execution that uses 
3 seizures for training and that reaches the maximum number of iterations, takes approximately 2 h 50 min to 
run on a computer with an Intel Core i7-8700 CPU 3.20GHz 3.19 GHz processor, 32Gb of RAM, on Windows 
10 Pro, with Python 3.7 on Spyder 3.3.4). In this study, we tried to take into account computational complexity, 
as real-time applicability, power-efficiency and minimal computation are important for a real-life context11. This 
is the major reason why we only used the last 4 h of data before each training seizure, as using all available one 
would enlarge significantly training duration. This is a limitation of this methodology since it is advised to use 
all inter-ictal control data, as a restriction could introduce a confounding bias16.

The performance results from the proposed approach and other studies17–19, based on patients from the EPI-
LEPSIAE database, can be compared here. Authors in those studies used lower SPH intervals. As these methods 
can be used for not only the development of closed-loop systems integrated with seizure-suppression strategies 
but also used for a patient warning-system only, we opted for a longer SPH in order to account all possibilities. 
We believe that a 10-min SPH may be a reasonable limit for a patient to minimize seizure consequences, as safely 
stop driving a car before a seizure. The results reported by Alvarado Rojas et al.19 for patients with temporal-focus 
seizures, despite outperforming the proposed methodology’s sensitivity ( Sp = 0.66 ), and presenting a lower 
FPR/h ( FPR/h = 0.33 ), obtained a percentage of patients performing above chance level of about 10% (3 out of 
34), which is lower than ours for any of the three pre-ictal periods. Direito et al.17 performed one of the largest 
studies with EPILEPSIAE concerning the number of patients: 218 with only 11% patient-models performing 
above chance, and an overall sensitivity of 0.39, which is similar to ours. Nevertheless, it is important to stress 
that these authors used the random predictor43 for statistical validation while we used a surrogate method.

Other studies18,20,44 using EPILEPSIAE database could be compared, but in these, several models were trained 
and tested, where the best predictor was selected based on testing performance. This selection procedure results 
in an over-estimation of the real performance, given that if a higher number of predictors are tested, the chance to 
hit seizures, only by chance, increases. This can explain the higher performance obtained. It is somehow limited 
in real-life application, as it is not possible to choose the best model based on testing values. A fair comparison 
with the present approach would correspond to select, for each patient, the set of features and corresponding 
pre-ictal period that best performed on our testing set.

Alvarado Rojas et al.19 used a threshold classifier. Concerning features, despite easy to be understood in terms 
of feature engineering, it may be somehow difficult for a physician to understand the interactions between the 
phase of low-frequency rhythms (slow waves and theta) and the amplitude of different sub-bands of gamma 
rhythms. The remaining studies17,18,20,44 were based on Support Vector Machines (SVMs) classifiers being fed 
with the same features as the ones in this work, and with additional ones which can be more difficult to explain 
to a physician, such as the autoregressive modelling predictive error, decorrelation time, Hjorth parameters, third 
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Table 1.   Patient information and results for the EA 30 executions. For each seizure, it is presented its 
EPILEPSIAE ID, the number of seizures used for training and testing and their recording duration, the 
annotated activity pattern (unclear (?), rhythmic sharp waves (s), rhythmic alpha waves (a), rhythmic delta 
waves (d), rhythmic theta waves (t), rhythmic beta waves (b), repetitive spiking (r), cessation of inter-ictal 
activity (c), amplitude depression (m)), seizure classification (unclassified (UC), Focal Onset Aware (FOA), 
Focal Onset Impaired Awareness (FOIA), Focal to Bilateral Tonic-Clonic (FBTC)), and period of the day at 
onset (day, between 7 am and 10 pm (D), and night, between 10 pm and 7 am (N)). Training and testing results 
are also presented, where the last two columns concern the two performance statistical validations (* stands for 
statistical significance).

Patient
ID

#Seizures 
(Training/
Testing)

Recording 
Duration
(hours)

Seizure 
Activity
Pattern

Seizure
Classification

Onset
Day Period

Sleep
Stage

Training Testing

SOP
(minutes) Fitness

Sensitivity
(Sp) FPR/h

Surrogate
Sensitivity

Ratio of 
Executions
Above Chance

11002 3
2

12
15.94

?, s, a
t, t

UC, FOIA, FOIA
FOIA, FOA

N, N, D
D, D

A,R,A
A, A 52.83±3.34 0.82±0.09 0.12±0.21 0.37±0.15 0.25±0.14 0.17*

16202 4
3

16
21.81

r, ?, r, r
r, ?, r

UC, FBTC, UC, 
FOIA
FOIA, FOIA, 
FOIA

N, N, N, D
N, D, D

A, A, A, A
A, A, A 31.00±2.00 0.58±0.09 0.30±0.26 0.49±0.33 0.16±0.09* 0.60*

30802 5
3

20
44.41

t, t, t, t, t
t, t, t

FOA, FOA, FOA, 
FOA, FOA
FOA, FOA, FOA

N, N, D, N, N
N, D, N

R, A, 2, A, A
R, 2, 2 50.83±2.61 0.46±0.08 0.70±0.20 0.55±0.47 0.40±0.12* 0.90*

53402 3
2

12
50.75

?, ?, ?
?, t

FOA, FOA, FOA
FOA, FOIA

D, D, N
D, D

A, A, 2
A, A 43.83±2.79 0.84±0.08 0.78±0.31 0.35±0.11 0.22±0.08* 0.93*

55202 5
3

20
43.33

t, d, t, t, t
t, r, r

FOIA, FOIA, 
FOA, UC, UC
FOA, FUC, 
FOIA

D, D, D, D, D
D, D, D

A, A, A, A, A
A, A, A 31.83±2.41 0.59±0.04 0.70±0.22 1.21±0.42 0.36±0.09* 0.90*

58602 4
3

16
15.19

r, t, t, r
r, r, t

FOIA, FOIA, 
FOIA, FOIA
FOIA, FOIA, 
FOIA

D, N, D, D
D, D, N

A, R, A, A
A, A, 2 51.67±2.69 0.48±0.11 0.16±0.17 0.25±0.27 0.12±0.11 0.33*

60002 4
2

16
46.61

d, c, t, t
d, d

FOIA, FOIA, 
FOIA, UC
FOIA, FOIA

N, N, D, N
N, N

1, A, A, R
R, 1 35.00±4.08 0.68±0.12 0.48±0.30 1.29±0.52 0.36±0.09 0.60*

64702 3
2

12
31.98

?, m, t
t, t

FOA, FBTC, 
FBTC
FBTC, FBTC

D, N, D
D, N

A, A, A
A, 2 44.17±3.67 0.71±0.14 0.05±0.15 0.73±0.39 0.18±0.05 0.10*

75202 4
3

12
31.67

t, t, t, t
t, ?, t

FOA, FOA, FOA 
UC
FOA, FOA, FOA

N, N, D, D
D, D, N

2, 2, A, A
A, A, A 31.67±2.98 0.59±0.10 0.70±0.22 0.69±0.33 0.28±0.07* 0.97*

80702 4
3

16
24.06

b, b, ?, c
m, c, c

FOIA, FOIA, 
FOIA, UC
UC, FBTC, FOIA

N, D, D, D
D, D, D

A, A, A, A
A, A, A 34.50±3.95 0.50±0.08 0.31±0.21 0.65±0.34 0.31±0.10 0.43*

85202 3
2

12
20.71

m, c, m
m, m

FOIA, FOIA, UC
UC, UC

N, D, N
D, N

2, A, A
A, A 34.67±2.87 0.71±0.04 0.47±0.18 0.36±0.34 0.16±0.08* 0.90*

94402 4
3

16
24.18

?, d, b, t
?, b, ?

FOA, UC, FOIA, 
UC
FOA, UC, FOA

D, D, D, N
D, N, D

A, A, A, 2
A, 2, A 36.17±2.11 0.63±0.06 0.38±0.24 1.05±0.58 0.31±0.13 0.53*

95202 4
3

16
77.46

b, b, b, m
b, b, t

FBTC, FOIA, 
FOIA, FOIA
UC, FOIA, UC

N, D, N, D
N, N, N

2, 2, 2, 2
2, 2, 2 35.33±3.14 0.52±0.12 0.14±0.17 0.66±0.34 0.23±0.09 0.27*

96002 4
3

16
76.34

t, t, t, d
a, t, a

FOIA, FOIA, 
FOIA, FOIA
UC, FOIA, FOIA

D, D, D, N
N, D, N

A, A, A, A
A, A, A 30.50±1.98 0.52±0.12 0.23±0.20 0.77±0.53 0.24±0.10 0.43*

98202 4
3

16
47.47

t, a, t, t
t, t, t

FOIA, FOIA, 
FOIA, FBTC
FOIA, FOIA, UC

N, D, D, D
N, D, D

A, A, A, A
A, A, A 42.00±2.77 0.54±0.16 0.31±0.32 1.66±1.23 0.35±0.18 0.33*

101702 3
2

12
24.12

t, t, t
r, r

FOIA, FOIA, 
FOIA
FOIA, FOIA

D, D, D
D, D

A, A, A
2, A 33.00±2.77 0.55±0.08 0.23±0.28 0.44±0.28 0.17±0.10 0.43*

109502 3
2

12
45.99

t, t, t,
t, t

FOIA, FOIA, 
FOIA
UC, UC

D, D, N
D, D

A, A, 1
A, A 54.17±3.44 0.77±0.16 0.83±0.24 1.35±1.35 0.58±0.12* 0.67*

110602 3
2

12
26.2

t, t, t
t, t

FOIA, FOIA, 
FOIA
FOIA, FOA

D, D, D
N, D

A, A, A
A, A 52.50±3.59 0.79±0.08 0.50±0.26 0.33±0.24 0.21±0.11* 0.80*

114902 4
3

16
41.35

s, b, s, t
r, a, t

FOA, FOIA, 
FOIA, FBTC
UC, FOIA, FOIA

D, D, D, N
D, D, D

A, A, A, 2
A, A, A 33.67±3.14 0.44±0.07 0.31±0.19 0.25±0.08 0.11±0.04* 0.80*
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and fourth-order statistics and energy wavelet coefficients. Additionally, their number of features per model 10 
features in average20. Based on the above, we believe our methodology, despite not being fully explainable to 
a physician, it is more intuitive than the remaining. Concerning classifiers, a threshold classifier is clearly the 
most simple and intuitive, which was the reason behind the usage of a logistic regression: its binary decision also 
concerns a threshold. Furthermore and as mentioned, it was also inspired by the concept of being more appropri-
ate to consider the seizure prediction as a regression problem10, despite its final transformation into a classifier.

These findings lead us to believe that it may be possible to build more interpretable models that perform 
above chance level for a higher ratio of patients ( ≈ 32%) when comparing with other more complex methods. 
However, our methodology is clearly outperformed in terms of FPR/h and sensitivity, which addresses its inca-
pacity to handle the remaining cases and enhances the demand for increasing the model complexity. Additionally, 
we would like to highlight the existing limitations on these comparisons: the mentioned studies (except for44) 
presented a higher number of patients and seizures, as well as larger inter-ictal periods when comparing to our 
study. As we had a small number of testing seizures for each patient, our results also present significantly large 
standard deviations, which must be considered. This was also the reason why we implemented the surrogate 
predictor, as it is more flexible16,42 than the random predictor, it allows for adaptation to the used data and may 
provide a more solid validation. Moreover, as we are working with data that we have available for unlimited 
testing, the sliding-step size, number of used features, and number of lag features were reasonably chosen based 
on computation time, without any tuning concerning testing results. Despite our results may be low in terms of 
sensitivity and FPR/h, we are avoiding a publication bias by excessively testing our data, as this may constitute 
a severe problem in this type of data11.

Concerning a real-life context, the development of a closed-loop system that disarms seizures by elec-
trical stimulation, which requires iEEG data, seems to be the most viable option, concerning recent 
developments10,11,16,45. Nevertheless, scalp EEG has also some advantages over the iEEG, as it is non-invasive 
and it would allow for a wider use: it contains fewer risks for the patient and a simple warning system could 
be cheaper. Another reason that led us to choose the scalp EEG was our objective of providing more knowl-
edge concerning the ictogenesis process along with the network theory, as it proposes that even focal seizures 
may arise from abnormal activity resulting from a large-scale functional network that spans across lobes and 
hemispheres11,16. Furthermore, our idea of iteratively re-selecting our features by running our EA periodically 
would also consider the existing dynamics of the epileptic network, which is not static and would provide a 
greater insight11.

One of the major reasons to propose this method is the possibility to develop auditable predictors and 
to extract patient-specific clinical knowledge. Thus, patient 53402 (for a 40-min minimum pre-ictal period) 
was selected as an example, since the testing results were considered satisfactory ( Sp = 0.78± 0.31 and FPR/
h=0.35± 0.11 , and outperformed the surrogate predictor). Figure 6 presents the phenotype study for the pres-
ence ( Presence(genevalue ) and predictive power ( Pp(genevalue ) of all genes (electrode, window length and time 
instant genes) from the correspondent obtained hyper-features. Regarding electrodes and their correspondent 
lobe and hemisphere (spatial study), there are interesting findings related to patient comfort and signal acquisi-
tion factors. For instance, it is possible, for this patient, to choose a setting of electrodes that are placed in only 
three different lobes. In fact, 53% of cases account for electrode placement in three different lobes, which was 
the most frequent scenario. This can be medically important to understand brain phenomena and to overcome 
real-life obstacles concerning EEG acquisition and patient comfort.

Looking at the results from the time-related genes (window length and time instant), it is possible to under-
stand the demand for (i) the investigation of simultaneous temporal scales (different window lengths) and (ii) the 
search for a sequence of events. When considering all the 30 executions, not in just a single one a set of hyper-
features used the same window length or used only one single instant. It is possible to see the presence of at least 
two different time windows and two different time instants for all executions. The most frequent case was the 
simultaneous presence of two different instants (47% of times). This demonstrates that the EA tends to choose 
a sequence of two instants. Thus, it searches for a seizure-related pattern instead of searching for a particular 
feature in a determined instant. Concerning window lengths, at least three different values were present in, at 
least, 80% of times, where the 1-min window was always present, followed by the 5-min one (90% of times). It 
is also important to mention that the temporal lobe electrodes were not more chosen than others. Nevertheless, 
we believe it would be likely that, for a lower SPH, we would have found a significantly higher predictive power 
in the temporal lobe electrodes, as we would be closer to seizure onset.

Concerning features and mathematical operators, theta band relative power (97% of cases), mean normalized 
frequency (67% of cases) and medium temporal intensity (60%), and average power (53% of cases) were the most 
extracted features. For each set of hyper-features, the minimal number of different features was three, where four 
was the most frequent scenario (60% of times). In all cases, the set of hyper-features presented features from both 
groups: non-band waves and band-waves (see Supplementary Material for a figure concerning the phenotype 
study of the decoded features and mathematical operators).

From the 30 sets of hyper-features, one was selected to demonstrate its interpretability. Thus, the chosen one 
is represented in Fig. 7 and has a SOP period of 45 min (pre-ictal period of 55 min). Its training performance 
was Sp=1.00 and FPR/h=0.00 for training and Sp=1.00 and FPR/h=0.16 for testing seizures. As it is possible to 
see, two different feature instants (sequence instants) with four different window lengths are present, as well as 
a change on the selected electrodes over time, which supports the network theory. This is a model that can be 
more easily explained to a physician, as the extracted features are relatively simple and in a reduced number, and 
the used classifier is a logistic regression, instead of a black-box model.

In short, this method offers the possibility of extracting medical knowledge from a different perspective due 
to the phenotype study. Additionally, it is also possible to find a set of different solutions to find which ones need 
to be always present and others that have interaction, i.e., which features always appear in the presence of others 
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(association learning). The use of a reduced set of electrodes may provide more comfort to the patient while 
its acquisition may be more simple. In the case of genes with a significant predictive power when compared to 
others, it may indicate the existence of key properties for the EEG seizure prediction context.

Conclusion
This work can be considered as a proof-of-concept study of using EA for seizure prediction. Performance above 
chance level was achieved for a significant number of patients ( ≈ 32% ) while maintaining interpretability, by 
accounting synergy between features and all pipeline stages. Despite only 32% patient models have performed 
above chance level in all three pre-ictal periods, it was possible to develop for 89% of patients a number of execu-
tions that were statistically significant for all tested pre-ictal periods, which gives us hope in this methodology. 
Even though the training stage of this methodology may be computationally expensive and therefore, only the 
last recorded 4 h before each seizure were used, its real-time application is light and simple: light pre-processing 
and feature extraction processes, followed by the application of a logistic regression. Nevertheless, our method-
ology in terms of FPR/h and sensitivity is considerably outperformed by other methodologies using data from 
the same database, which may indicate the need for higher complexity models.

Despite the obtained percentage of patients performing, an FPR/H<0.15 was not obtained7. Moreover, since 
we used data from surgical monitoring, this study can only be envisioned as a hypothesis. Towards a clinical 
validation, additional studies must be performed with long-term recordings from patients in their daily life, as 
the study carried out by Cook et al.45. It is also important to mention that we did not test this framework in other 
types of epilepsies, which concerns future work. We plan on testing the robustness of this approach in patients 
with other types of epilepsy including both focal onset (e.g., frontal lobe epilepsy) and generalized onset. We 
believe these results can be improved and that this methodology, combined with other developed approaches, 
confounding variables and other biosignals10–12,16,41, can help the design of novel prediction algorithms aiming 
at clinical acceptance.

Figure 6.   Phenotype temporal and spatial study for patient 53402. The presence and predictive power of 
temporal (window length and time instant) and spatial (electrode, lobe, and hemisphere) gene values are 
presented in blue and orange, respectively. The simultaneous presence of different gene values is presented in 
green.
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