
remote sensing

Communication

Hyperspectral Parallel Image Compression on Edge GPUs

Oscar Ferraz 1,2,* , Vitor Silva 1,2 and Gabriel Falcao 1,2

����������
�������

Citation: Ferraz, O.; Silva, V.;

Falcao, G. Hyperspectral Parallel

Image Compression on Edge GPUs.

Remote Sens. 2021, 13, 1077.

https://doi.org/10.3390/rs13061077

Academic Editor: Bormin Huang

Received: 13 February 2021

Accepted: 9 March 2021

Published: 12 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical and Computer Engineering, Instituto de Telecomunicações, University of Coimbra,
3030-290 Coimbra, Portugal; vitor@co.it.pt (V.S.); gff@co.it.pt (G.F.)

2 GPU Research Center, University of Coimbra, 3030-290 Coimbra, Portugal
* Correspondence: oscar.ferraz@co.it.pt; Tel.: +351-91-2361-602

Abstract: Edge applications evolved into a variety of scenarios that include the acquisition and
compression of immense amounts of images acquired in space remote environments such as satellites
and drones, where characteristics such as power have to be properly balanced with constrained
memory and parallel computational resources. The CCSDS-123 is a standard for lossless compression
of multispectral and hyperspectral images used in on-board satellites and military drones. This
work explores the performance and power of 3 families of low-power heterogeneous Nvidia GPU
Jetson architectures, namely the 128-core Nano, the 256-core TX2 and the 512-core Xavier AGX
by proposing a parallel solution to the CCSDS-123 compressor on embedded systems, reducing
development effort, compared to the production of dedicated circuits, while maintaining low power.
This solution parallelizes the predictor on the low-power GPU while the entropy encoders exploit the
heterogeneous multiple CPU cores and the GPU concurrently. We report more than 4.4 GSamples/s
for the predictor and up to 6.7 Gb/s for the complete system, requiring less than 11 W and providing
an efficiency of 611 Mb/s/W.

Keywords: heterogeneous CPU + GPU architectures; low-power GPU; high-throughput; hyperspec-
tral image compression; CCSDS-123

1. Introduction

Many remote sensing systems that generate multispectral and hyperspectral images
(MHIs) incorporate the need of compression algorithms such as the Consultative Committee
for Space Data Systems (CCSDS)-123 [1]. These are the cases of satellites and military
drones, which impose severe power restrictions, creating the need of low-power systems
and architectures capable of processing onboard MHI compression at acceptable cost [2].
For instance, remote sensing systems, such as unmanned aerial vehicles (UAVs), can benefit
from having the same parallel system for acquiring [3] and compressing data, particularly,
in scenarios requiring large amounts of sensing data in short periods (natural disasters,
earthquakes, subsidence, etc.) [4,5].

The CCSDS-123 MHI compression standard is composed of two main parts: a predic-
tor and an entropy encoder. The predictor uses an adaptive 3D model that calculates the
difference between observed and predicted values, outputting mapped prediction residuals
(MPRs) (δz(t)) with low entropy [1]. The predicted values are calculated by their neighbor-
ing samples and by P neighboring bands. Those MPRs can be encoded by two types of
entropy coders, producing variable length codewords: the sample-adaptive entropy coder,
encoding MPRs independently for each spectral band, and the block-adaptive entropy
encoder [1] that encodes blocks of 8, 16, 32 or 64 residuals. The latter applies four encoding
algorithms to each block and selects the method which yields a better compression ratio.

This paper efficiently exploits three low-power parallel graphics processing unit (GPU)
architectures [6–8] to accelerate the CCSDS-123 standard. Unlike previous GPU implemen-
tations [9–11], this work uses a heterogeneous (central processing unit (CPU) + GPU) system
for the encoder, capable of producing very high performance while requiring low-power.

Remote Sens. 2021, 13, 1077. https://doi.org/10.3390/rs13061077 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-5266-9740
https://orcid.org/0000-0003-2439-1184
https://orcid.org/0000-0001-9805-6747
https://doi.org/10.3390/rs13061077
https://doi.org/10.3390/rs13061077
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13061077
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13061077?type=check_update&version=1

Remote Sens. 2021, 13, 1077 2 of 13

The best performing solution presents the highest throughput performance in the litera-
ture [9–20] and the best efficiency among CPU and GPU implementations [9–11,20] and
surpasses one field-programmable gate array (FPGA) implementation [14]. The solutions
compare parallel versus serial execution times, providing distinct performances as a func-
tion of number of cores and bandwidth available. Reports show they can reach up to
6.7 Gb/s for the best case scenario, which represents an increase in performance of 150 ×
compared to the sequential single-core Nano version. In addition, the power analysis is
performed, by constantly monitoring the power required by each platform over time. Com-
pared against single-CPU devices or high-end desktop GPUs, the energy efficiency of the
proposed solutions improves significantly, reaching 611 Mb/s/W against the single-CPU
sequential versions of the algorithm.

2. Parallel 3D Predictor

Algorithms can be parallelized following a single instruction, multiple data (SIMD)
approach. However, data dependencies can increase the complexity of the implementation
and hinder the speedup potential. Following an SIMD philosophy, the proposed approach
uses a GPU architecture to parallelize the predictor, achieving sample-level parallelism.
However, four blocks (scaled predicted sample, scaled predicted error, weights vector and
inner product) present a circular data dependency as shown in Figure 1. The proposed
strategy is to isolate this dependency in one kernel (weights kernel) and process the
remaining blocks separately. The weights vector block uses previous values within the
same band to update the vector and for that reason, this block can only achieve band-level
parallelism. Since the weights vector block has a granularity constraint, the blocks in
the same kernel are executed with band-level parallelism, instead of achieving sample-
level parallelism, thus reducing throughput for this kernel. The detailed mathematical
description of the predictor was omitted from this manuscript due to dimension constraints,
but can be found in chapter 4 of [1].

Post-Weights Kernel

Sample-parallelSample-parallel

Residuals

GPUBands used in
 prediction (P)

Pre-Weights Kernel

Weights Vector

Scaled
Predicted Error

Weights Vector

Scaled
Predicted Error

Weights Vector

Scaled
Predicted Error

Weights Vector

Scaled
Predicted Error

Weights Vector

Scaled
Predicted Error

Weights Vector

Scaled
Predicted Error

Weights Vector

Scaled
Predicted Error

Weights Vector

Scaled
Predicted Error

Weights Kernel

Band-parallel

Local Sum Scaled Predicted
Sample

LDV
LDV

Scaled Predicted
Error

LDV
LDV

Weights Vector

LDV
LDV

Inner Product

LDV
LDV

Predicted
Sample

Mapped Prediction
Residual

Local Difference
Vector

LSLSLS
LSLSLS
LSLSLS

Hyperspectral Image

x
y

z

Predicted
Residual

Figure 1. Proposed architecture for Consultative Committee for Space Data 19 Systems (CCSDS)-123
parallel 3D predictor. The switch determines the predictor’s mode of operation. In the current
position, the predictor executes intra-band prediction mode (p = 0), while, for inter-prediction
(p > 0), the two switches move to the other position, including several bands in the predictor. The
weights kernel achieves band-level parallelism while the remaining kernels execute with sample-level
parallelism.

As described in Figure 1, if the compressor executes on reduced mode, no adjacent
bands are used in prediction (p = 0) and the predictor’s diagram is simplified, ignoring the
local difference vector, scaled predicted error, weights vector and inner product blocks [1].
In turn, the constraint from the weights vector block that provokes band-level parallelism
to be eliminated and the Weights Kernel can achieve sample-level parallelism.

Remote Sens. 2021, 13, 1077 3 of 13

Since inter-band prediction does not increase significantly the compression ratio for
most images [1,21] and using a high number of bands in prediction decreases throughput
performance [10,22], the following results use p = 0. The GPU implementations described
in the paper use shared memory for faster memory access times, vectorized memory
accesses through memory transactions that exploit the memory bus width and streams
allowing to efficiently overlap kernel execution with data transfers.

3. Parallel Entropy Encoders

The CCSDS-123 contemplates two different entropy encoders that can encode the
MPRs produced by the predictor [1]. The encoding process is essentially serial, meaning
that an SIMD approach on a many-core architecture, such as in a GPU, would not benefit
parallelization since there is a high level of data dependencies. However, some paralleliza-
tion can be extracted to a certain degree. The proposed solution comprises of assigning
a determined amount of MPRs to be processed in the available CPU cores to generate
smaller compressed bitstreams. Each core outputs a variable-length bitstream, and since
direct single-bit read/write operations are not possible on GPUs and CPUs, a final step is
required for concatenating the partial bitstreams into a single one, through the use of mask
and shift operations.

3.1. Sample Adaptive Entropy Encoder

The predictor outputs MPRs for every sample, which are encoded individually by the
sample adaptive entropy encoder. The proposed solution assigns several MPRs bands to
be encoded in each available CPU core, generating multiple bitstreams as illustrated on
the left side of Figure 2. After the bitstream generation finishes in all cores, the final step
is to combine all generated bitstreams into a single one, using one of the CPU cores. For
similar CPU cores, the load is distributed equally between the available cores. For systems
with different CPU combinations, the load distribution must be manually tuned in order
to equalize execution times between cores. Further description of the sample adaptive
entropy encoder can be found in chapter 5, in particular 5.4.3.2 of [1].

CPU
Core 2 Core 1

Bitstream
Concat.

Compressed
Image

Bitstream
generation

Band 0 to
m

Band m+1
to l

Residuals

3D Predictor

Sample Adaptive Encoder

Core N

Bitstream
generation

Bitstream
generation

CPU
Core 1 Core 2

Bitstream
Concat.

Compressed
Image

Second
Extension

Block Adaptive Encoder

Zero
Block

Core N

Bitstream
generation

Bitstream
generation

Bitstream
generation

GPU

Sample
Splitting

Band l+1 to
k

Figure 2. Proposed parallel sample (left) and block (right) adaptive entropy encoders. On the left
side, a determined number of mapped prediction residual (MPR) bands is assigned to each core
producing bitstreams. The final step consists of concatenating the bitstreams into one. The right side
encodes blocks of MPRs and includes a pre-processing stage of three methods, applying each one to
every block to choose the best-compressed one. These methods run concurrently on the GPU and
CPU and result in a faster encoding process.

Remote Sens. 2021, 13, 1077 4 of 13

3.2. Block Adaptive Entropy Encoder

As presented on the right side of Figure 2, the CCSDS-123 also includes a block adap-
tive entropy encoder, which can encode blocks of 8, 16, 32 or 64 MPRs. This solution differs
from the sample adaptive entropy encoder by grouping blocks of MPRs and applying a
pre-processing stage containing three methods for compressing MPRs, resulting in a faster
encoding process by including a pre-processing stage [21]. These methods are applied to
every block of MPRs.

For each block, the best-compressed solution is chosen to be incorporated into the
bitstream. The zero block counts the number of consecutive all-zero blocks and the second
extension method encodes pairs of MPRs in the same block, thus reducing the number of
MPRs by half. These methods are mainly sequential and the proposed solution executes
each one of them on two arbitrary CPU cores. The sample splitting method selects the k
least-significant bits from the MPR and encodes them as its binary representation (k iterates
from 0 to 13). This method can be better exposed to parallelization, and thus executed in
the GPU, since there are 14 independent compression possibilities and it is the heaviest
method from empirical evidence.

After the compression methods are successfully applied to all blocks, the bitstream
generation stage chooses the pre-processed blocks from the previous stage that produce
the best compression ratio. The work performed on this stage is distributed among all
available CPU cores, building parts of the final bitstream. When the bitstream generation
finishes in all cores, the last step concatenates the generated bitstreams using one CPU core.
Further details on this encoder’s description can be found in chapter 5, more specifically in
5.4.3.3 of [1].

4. Experimental Results

The experimental results were conducted on three low-power embedded systems
with different specifications, indicated in Table 1, to assess the proposed designs.

The serial version uses a code provided by the European space agency (ESA) [23]
running on a single core of the Jetson Nano through taskset –cpu-list command. All the
speedups mentioned in this paper are calculated in relation to the single-core serial version.
The presented values denote the mean value of 20 executed runs. The code was developed
in C and CUDA, enabling the production of multithreaded processes using the library
Pthreads. Moreover, clock_getime() from the time.h C library was used to measure execution
times. The predictor runs on reduced mode and column-oriented local sums with p = 0,
Ω = 4, R = 32, vmin = vmax = −6, tinc = 211 and default weight initialization. The entropy
encoders use B = 1 and M = Nz encoding on band sequential (BSQ) order. The sample
adaptive encoder uses γ0 = 8, K = 14, γ∗ = 9 and Umax = 8, while the block adaptive uses
J = 64 and r = 1, as stated in [1,24]. The images used in the experiments have a dynamic
range (D) of 16 bits per sample and their dimension are described in Table 2. The parallel
implementation can be found in [25].

The results obtained in [20,21] were upgraded by better exploiting the kernels config-
uration on the predictor and encoders, the load balance between the Denver 2 and ARM
CPUs was improved and the sample splitting GPU was enhanced. Due to these platforms
sharing RAM between CPU and GPU.

Remote Sens. 2021, 13, 1077 5 of 13

Table 1. Summary of Nvidia’s Jetson platform specifications.

Jetson Nano 2 GB Jetson TX2 Jetson AGX Xavier

CPU ARM Cortex A57
4-core 1.5 GHz

ARM Cortex A57 4-core 2 GHz
+ Nvidia Denver 2 dual-core 2 GHz

Nvidia Carmel
8-core 2.3 GHz

Cache L1 32 KB data cache per core
48 KB I-Cache per core

32 KB data cache per core (ARM)
48 KB I-Cache per core (ARM)
64 KB data cache per core (Denver)
128 KB I-Cache per core (Denver)

64 KB data cache per core
128 KB I-cache per core

Cache L2 2 MB shared 2 MB shared (ARM)
2 MB shared (Denver) 2 MB shared per 2 cores

Cache L3 N/A N/A 4 MB shared

GPU Nvidia Maxwell GM20B
921 MHz

Nvidia Pascal GP10B
1.3 GHz

Nvidia Volta GV10B
1.4 GHz

GPU Cores 128 CUDA cores 256 CUDA cores 512 CUDA cores

GPU memory 2 GB Shared with system 8 GB shared with system 32 GB shared with system

Memory 2 GB 64-bit LPDDR4
1600 MHz

8 GB 128-bit LPDDR4
1866 MHz

32 GB 256-bit LPDDR4X
2133 MHz

Power modes 10 W/ 5 W 15 W/ 7.5 W 30 W/ 15 W/ 10 W

Compute
capability 5.3 6.2 7.2

Libraries Jetpack 4.4.1 (L4T 32.4.4)
CUDA 10.2

Jetpack 3.3 (L4T 28.2.1)
CUDA 9.0

Jetpack 4.4.1 (L4T 32.4.4)
CUDA 10.2

Table 2. Dimensions of the images used in this paper.

Image CASI t0477f06 AVIRIS Hawaii AVIRIS Yellowstone CRISM frt00010f86 CRISM frt00009326

Rows 1225 512 512 510 510
Columns 406 614 680 640 640
Bands 72 224 224 545 545
Size 68.2 MB 134 MB 148 MB 339 MB 339 MB

4.1. Predictor Performance

The parallel predictor solution loads the entire image into the GPU’s global memory.
Afterwards, the columns are stored in shared memory while GPU registers save the
remaining variables to ensure that the faster GPU memory types are used. In order to
exploit the memory bus width, vectorized accesses are employed by packing bands together
in 64, 128 and 256 bits, reducing the number of memory transactions.

The Nvidia’s occupancy calculator tool was used to maximize kernel occupancy
for the predictor, with each block executing 2 columns (1024 threads/block for AVIRIS,
1020 threads/block for CRISM, 812 threads/block for CASI).

An approach using streams was tried, which overlaps data transfers with kernel
execution. Streams are launched which execute groups of 1, 2, 3, 4, 7, 9, 14, 17, 28 or
34 bands according to the number of bands of the image. However, launching too many
streams can introduce overheads for small data transfers, reducing streaming efficacy. For
TX2 and Xavier, solutions without streaming and using pinned memory achieve better
performance relative to solution with streams. However, due to the low clock frequency
and lack of memory of Nano GPU, which has increased transfer times, streaming improves
performance. The solution uses 2 streams for the CASI image, 4 streams for the AVIRIS
images and 8 streams for the CRISM images.

Remote Sens. 2021, 13, 1077 6 of 13

The obtained speedup, shown in Figure 3 for the Nano, is around 33 times. The
speedup increases by 6 times on the TX2 compared to the parallel version of Nano. This
can be explained by the increased memory bus width, from 64 to 128 bits and increased
GPU clock frequency. The speedup is further incremented in the Xavier, which has double
the CUDA cores.

7
8

7
7

.9
2

1
5

,4
1

7
.1

6

1
7

,4
1

4
.3

1

3
8

,7
2

1
.8

5

3
9

,4
7

1
.3

5

2
2

6
.3

3

4
4

5
.0

9

5
1

5
.7

5

1
1

8
2

.8
9

1
2

0
1

.1

3
7

.3
5

6
7

.8
5

7
7

.1
7

1
7

3
.9

3

1
7

1
.8

8

1
7

.8
2

2
9

.1
1

3
1

.4

4
1

.0
9

3
9

.7
9

34.81

34.64 33.77 32.73 32.86

210.93 227.23 225.65

222.63

229.64

442.06 529.53 554.53

942.46 992.08

CASI t0477f06 AVIRIS Hawaii AVIRIS Yellowstone CRISM frt00010f86 CRISM frt00009326
10

0

10
1

10
2

10
3

10
4

10
5

10
6

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

10
1

10
2

10
3

S
p

e
e

d
u

p
 (

x
)

Serial

Jetson Nano

Jetson TX2

Jetson Xavier

Speedup (Serial vs. Nano)

Speedup (Serial vs. TX2)

Speedup (Serial vs. Xavier)

Figure 3. CCSDS-123 parallel predictor implemented on the GPU for p = 0. The bars represent execution time while the
lines represent speedup relative to serial execution time running in a single-core on the Nano system (For the CRISM images,
the Nano executes half of the bands for the predictor and both encoders due to memory restrictions. The presented values
are multiplied by two to simulate the full image workload).

From the analysis of Xavier’s speedup, it can be concluded that the speedup scales it
with the size of the image if there is available memory. This effect is not observed on the
Nano since its memory is very limited. On TX2, it is possible to observe a small increase
from the CASI to the AVIRIS, however, in the CRISM images, the system uses more than
90% of available RAM which yields poor performance.

4.2. Sample Adaptive Entropy Encoder Performance

For the sample adaptive entropy encoder, the results are illustrated in Figure 4. The
proposed solution uses multiple cores to encode several MPRs bands and concatenate the
generated bitstreams in one core, as depicted in Figure 2. The general rule is to divide
the number of MPR bands equally between the available cores. Table 3 contains the used
division of bands. However, TX2 presents two different CPUs. In this case, the number of
bands assigned to each core is tuned to reduce the execution time difference between the
cores, guaranteeing a variation less than 10%.

Using all 8 Xavier cores to generate the bitstreams resulted in slower execution. Poor
results were also reported in [26]. It was found that a 4-core configuration, with one active
core per cluster, resulted in a better performance compared to the TX2.

Remote Sens. 2021, 13, 1077 7 of 13

9
.9

3

1
7
.2

7

2
3
.3

3

5
1
.5

6

4
9
.8

2

1
.7

5

3
.4

3

3
.8

6

8
.9

0

8
.8

2

1
.1

0

1
.5

2

1
.7

4

3
.9

8

3
.9

5

0
.6

8

1
.2

3

1
.4

9

3
.3

3

3
.1

2

5.68 5.04 6.05 5.79
5.65

 9.01 11.33

13.42
12.95

12.63

14.65
14.04

15.71 15.47 15.96

CASI t0477f06 AVIRIS Hawaii AVIRIS Yellowstone CRISM frt00010f86 CRISM frt00009326
10

2

10
3

10
4

10
5

10
6

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

0

2

4

6

8

10

12

14

16

18

20

S
p
e
e
d
u
p
 (

x
)

Serial

Jetson Nano (bitstream generation + concatenaction)

Jetson TX2 (bitstream generation + concatenaction)

Jetson Xavier (bitstream generation + concatenaction)

Speedup (Serial vs. Nano)

Speedup (Serial vs. TX2)

Speedup (Serial vs. Xavier)

Figure 4. CCSDS-123 parallel sample adaptive entropy encoder execution times and speedups in multiple cores CPUs. The
bars represent execution time of the worst-performing core of the bitstream generation and the bitstream concatenation time
(please see Figure 2), while the lines represent speedup relative to serial execution time running in a single-core on the Nano
system (For the CRISM images, the Nano executes half of the bands for the predictor and both encoders due to memory
restrictions. The presented values are multiplied by two to simulate the full image workload).

Table 3. Number of bands executed in each core during the bitstream generation on the parallel
sample adaptive entropy encoder. CRISM images have an odd number of bands, thus one core
executes the last band.

Image CASI
t0477f06

AVIRIS
Hawaii

AVIRIS
Yellowstone

CRISM
frt00010f86

CRISM
frt00009326

Nano 18 56 56 136 (137) 136 (137)
TX2 ARM 15 36 36 88 (89) 88 (89)
TX2 Denver 2 6 40 40 96 96
AGX Xavier 18 56 56 136 (137) 136 (137)

In this implementation, the stream concatenation stage represents less than 3% of
the total execution time and is not presented in Figure 4. The speedups for the Nano
are between 5.5 and 6 times. Optimizations on the encoder were made by fixing the
parameters and improving the bit writing functions, discarding the unnecessary variable-
length memory writes when possible. This, allied with the exploitation of cache L2 for
requesting data blocks that serve multiple cores, allows for speedups above the number of
cores. The TX2 speedups more than doubled due to the increased number of cores and clock
frequency. For the Xavier, the solution with one active core per cluster is enough to become
a better solution than the TX2 due to Xavier’s CPU architecture having an increased clock
frequency, 10-wide superscalar architecture and smaller process node design, covering the
performance increase from the 6-core solution of the TX2.

4.3. Block Adaptive Entropy Encoder Performance

The parallel block adaptive entropy encoder is hardest to analyze due to having a high
number of components with data dependencies. Figure 5 depicts the various platforms’
total execution times, while Table 4 details the measured times for each component. This
implementation contains data dependencies where the bitstream generation starts after
all blocks from the 3 methods finish and the bitstream concatenation starts after all cores

Remote Sens. 2021, 13, 1077 8 of 13

from the bitstream generation finish. The MPR blocks are equally distributed among the
available cores in the bitstream generation, however, for the TX2, the loads are balanced in
order to obtain similar execution times, with the ARM CPU executing 43.6% of all MPR
blocks and the Denver 2 CPU executing the 56.4% remaining blocks.

5
0
7
0
.0

9 8
1
5
5
.1

5

1
2
,7

6
1
.5

2
7
,2

5
5
.6

4

2
5
,1

0
4
.7

6

5
3
6
.7

1

9
6
4
.9

3

1
2
0
5
.7

2

2
6
4
9
.2

5

2
7
2
3
.4

8

2
5
0
.4

8

3
9
4
.3

9

4
5
3
.9

3

9
7
9
.4

9
6
4
.8

1
7
7

2
0
3
.9

6

2
2
1
.8

2

3
8
3
.7

7

3
9
5
.6

1

 9.45 8.45 10.58 10.29 9.22

20.24

20.68

28.11

27.83
26.02

28.64

39.98

57.53

71.02
63.46

CASI t0477f06 AVIRIS Hawaii AVIRIS Yellowstone CRISM frt00010f86 CRISM frt00009326
10

1

10
2

10
3

10
4

10
5

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

0

10

20

30

40

50

60

70

80

S
p
e
e
d
u
p
 (

x
)

Serial

Jetson Nano

Jetson TX2

Jetson Xavier

Speedup (Serial vs. Nano)

Speedup (Serial vs. TX2)

Speedup (Serial vs. Xavier)

Figure 5. Parallel block adaptive entropy encoder speedups and total execution times. The bars represent the total execution
time of the longest of the 3 methods, the worst-performing core of the bitstream generation and the bitstream concatenation
time (see Figure 2). The lines represent speedup relative to serial execution time running in a single-core on the Nano
platform (For the CRISM images, the Nano executes half of the bands for the predictor and both encoders due to memory
restrictions. The presented values are multiplied by two to simulate the full image workload).

From inspection of Table 4, it is observed that the methods execution take approxi-
mately 45% of the total execution time, while the bitstream generation takes about 50% and
the bitstream concatenation takes 5% on the Nano and TX2. For Xavier, CPU characteris-
tics change values to between 45% and 55% for the methods, 35% and 45% to bitstream
generation and 10% for the bitstream concatenation. It is observed from Table 4 that from
the 3 methods, Sample Splitting is longest to execute, however, on the TX2 and Xavier and
for the CRISM images, this method is faster than the Second extension, suggesting that the
GPU Sample Splitting scales well for large images in GPUs with enough resources, since the
potential for parallelization is higher on GPUs than in CPUs.

On the Xavier platform, a speedup of 71 times was obtained for the larger images.
This suggests that the speedup scales for larger images and architectures with more CPU
cores and powerful GPUs. The increase in speedup is not so evident for the remaining
platforms due to the CRISM image occupying most of the available memory.

Table 4. Detailed execution times for the parallel block adaptive entropy encoder in milliseconds.

Method Platform

Image

CASI
t0477f06

AVIRIS
Hawaii

AVIRIS
Yellowstone

CRISM
frt00010f86

CRISM
frt00009326

Sample
Splitting (GPU)

Nano 236.19 403.55 518.39 1205.27 1268.1
TX2 136.16 182.71 193.24 332.96 334.13

Xavier 98.34 111.71 118.24 167.27 167.51

Second
Extension (CPU)

Nano 105.11 208.10 236.06 520.56 514.09
TX2 57.20 135.03 159.37 403.29 412.58

Xavier 37.81 69.41 83.20 173.10 174.68

Remote Sens. 2021, 13, 1077 9 of 13

Table 4. Cont.

Method Platform

Image

CASI
t0477f06

AVIRIS
Hawaii

AVIRIS
Yellowstone

CRISM
frt00010f86

CRISM
frt00009326

Zero
Block (CPU)

Nano 12.68 25.11 28.26 62.67 62.27
TX2 5.07 10.78 11.68 25.74 25.77

Xavier 3.81 7.33 8.50 19.22 19.88

Bitstream
generation (CPU)

Nano 271.27 513.64 608.09 1326.71 1336.85
TX2 ARM 99.11 194.23 229.12 489.20 490.14

TX2 Denver 96.85 193.19 227.37 513.95 495.30
Xavier 63.38 75.87 80.27 163.64 177.87

Bitstream
Concatenation (CPU)

Nano 29.25 47.75 79.24 117.27 118.53
TX2 15.21 17.46 31.58 62.16 56.92

Xavier 15.29 16.38 23.31 47.03 43.06

4.4. Power Analysis

The TX2 and Xavier come with power monitors, enabling power measurement across
the whole system. The manufacturer recommends measuring power every second since
higher measurement frequencies will consume CPU resources and biasing the measured
result. Since some execution times are below one second, multiple runs were executed
to pick power measurements while the predictor/encoder were executing. However, the
Nano does not have power monitors and instead, an external power meter was used.

Table 5 presents the tested images’ performance using the parallel predictor and
the parallel block adaptive entropy encoder. The sample adaptive entropy encoder is
not presented in this table due to space restrictions of the manuscript. These tests were
executed in Max-N power mode, producing the best performance possible, while Table 6
presents results for the lowest power modes, 5 W for Nano, 7.5 for TX2 and 10 W for Xavier.

Although drawing more power, the Xavier achieved the best efficiency of
611.11 Mb/s/W and crossing the barrier of 6.7 Gb/s, through better implementation
and semiconductor technology, such as the adoption of small process node designs (12 nm).
From the best of our knowledge, the work proposed in this paper surpasses the literature
in terms of energy-efficiency and throughput compared to CPUs and GPUs.

Table 5. Overall performance for the tested images using the parallel predictor and block adaptive entropy encoder in the
maximum power modes.

Platform
Image

CASI
t0477f06

AVIRIS
Hawaii

AVIRIS
Yellowstone

CRISM
frt00010f86

CRISM
frt00009326

Power (W)
Nano 5.74 5.70 5.73 5.71 5.72
TX2 6.28 6.28 6.28 6.28 6.28

Xavier 10.98 10.88 10.89 10.96 10.98

Time (ms)
Nano 763.04 1410.02 1721.47 3832.14 3924.58
TX2 287.83 462.24 531.1 1153.33 1136.66

Xavier 194.82 233.07 253.22 424.86 435.40

Throughput
(Gb/s)

Nano 0.75 0.80 0.72 0.74 0.73
TX2 1.99 2.44 2.35 2.47 2.50

Xavier 2.94 4.83 4.93 6.70 6.54

Efficiency
(Mb/s/W)

Nano 130.90 140.18 126.48 129.99 126.82
TX2 317.17 388.38 374.36 393.22 398.98

Xavier 267.91 444.19 452.68 611.11 595.50

Remote Sens. 2021, 13, 1077 10 of 13

Table 6. Overall performance for the tested images using the parallel predictor and block adaptive entropy encoder in low
power modes.

Platform
Image

CASI
t0477f06

AVIRIS
Hawaii

AVIRIS
Yellowstone

CRISM
frt00010f86

CRISM
frt00009326

Power (W)
Nano 4.28 4.28 4.28 4.28 4.28
TX2 4.50 4.50 4.50 4.50 4.50

Xavier 3.39 3.42 3.41 3.37 3.37

Time (s)
Nano 1.49 2.78 3.41 7.43 7.49
TX2 0.56 0.99 1.16 2.49 2.44

Xavier 0.67 0.88 0.98 1.95 1.94

Throughput
(Mb/s)

Nano 384.28 405.22 365.78 383.16 380.16
TX2 1021.88 1136.12 1073.09 1142.94 1165.60

Xavier 859.69 1282.60 1274.73 1463.15 1467.10

Efficiency
(Mb/s/W)

Nano 89.71 94.67 85.42 89.51 88.81
TX2 227.08 252.47 238.46 253.99 259.02

Xavier 253.34 375.52 373.45 433.81 435.02

Ultra-Low-Power Modes

For low power modes, throughput performance and efficiency decreased due to
the lowered power budget and reduced number of available CPU cores, from 4 to 2 in
the Nano, 6 to 4 in the TX2 and 8 to 2 cores on the Xavier. Low power modes did not
show any significant advantage due the decreased number of the available CPU cores.
Throughput performance decreased approximately 2 times for Nano and TX2, while power
decreased 1.35 times, as shown in Figure 6. Xavier’s throughput performance decreased
4.5 while power decreased 3.2 times. To conclude, low power modes can have benefits in
power-restrained systems but do not increase efficiency, with overall efficiency decreasing
1.5 times across all platforms.

Figure 6. Throughput performance for maximum power and low power modes across all platforms. The left axis represents
throughput (bars) and the right one represents the average power (continuous and dashed lines) for the maximum and low
power modes.

Remote Sens. 2021, 13, 1077 11 of 13

5. Related Work

The surveyed literature presents implementations of parallel CCSDS-123 algorithms
on FPGAs, GPUs and CPU [10–19]. Table 7 presents a summary of the best performing
solutions. In [13,14], the authors proposed designs on space-grade FPGAs (Virtex 5QV)
tolerant against space radiation, providing flexible and high-performance solutions on low-
power platforms. By identifying the parameters that affect performance, the authors in [14]
propose a low complexity architecture with little hardware occupancy, executing segmented
parts of the MHI. This work is also used in [19], proposing a parallel design using a dynamic
and partial reconfiguration scheme to deploy multiple accelerators running HyLoC [14],
encoding different segments of the image. However, the older memory-constrained FPGAs
cannot execute the algorithm efficiently due to the lack of resources [13]. In [18], the
authors proposed an FPGA with segment-level parallelism on the X, Y and Z axis in order
to improve robustness against data corruption, achieving place and route results.

Table 7. Surveyed CCSDS-123 parallel implementations on field-programmable gate arrays (FPGAs),
GPUs and CPUs. * Higher is better.

Platform Language D
(bit)

Throughput *
(Mb/s)

Power
(W)

Efficiency *
(Mb/s/W)

V-5 SX50T [12] VHDL 13 520 0.7 742.9
V-7 XC7VX690T [13] VHDL 16 3510.4 5.3 662.3
V-4 XC2VFX60 [13] VHDL 16 1856 1 1953.7
V-5QV FX130T [14] VHDL 16 180.8 2.4 769.4

V-4 LX160 [14] VHDL 16 179.2 1.5 120.3
Zynq-7035 (per core) [15] VHDL 16 2496 0.4 5672.7

V-5 XQR5VFX130 [16] VHDL 16 1812.8 – –
Zynq-7035 [17] VHDL 16 2417.6 – –

Xilinx ZC706 (xc7z045-2) [18] HLS 16 4481.3 2 5.3 3 840.8
Zynq-7000 (xc7z100-2ffg900) [19] VHDL 16 1072.6 2.6 3 409.2

2x GTX 560M [11] CUDA 12 4279.6 <150.0 1 28.5
GTX 750ti [10] CUDA 12 4818 <60.0 1 80.3
Jetson TX1 [9] CUDA 12 1394 <10.0 1 139.4

i7-2760QM [11] OpenMP 12 1534.7 <45.0 1 34.1
Jetson TX2 [20] CUDA 16 1118.8 4.7 245.6

This work (serial) C 16 43.1 5.2 8.3
This work (Nano) CUDA 16 799.06 5.7 140.18
This work (TX2) CUDA 16 2504.01 6.3 399.0

This work (Xavier) CUDA 16 6699.1 11.0 611.1
1 This denotes the TDP given by the manufacturer. 2 FPGA-in-the-loop results. 3 Total On-Chip power from
Vivado Power Estimator.

Further improvements were introduced by Orlandić et al. by proposing an FPGA
design using several parallel pipelines with optimized data routing between them for
sharing intermediate variables [15]. Santos et al. provided two intellectual property
(IP) cores for the CCSDS-121 and CCSDS-123, allowing those to be integrated into the
onboard satellite’s embedded system [16]. The research group further improved the
implementation [17] by including several features: the use of external memory with
burst transfers to store intermediate values, excluding optional features from design to
improve throughput, adding an optional unit-delay predictor and using a custom weight
initialization.

On GPUs, by analyzing all parameters, Davidson et al. [10] showed that prediction
mode, prediction neighborhood (column-oriented or neighbor-oriented) and the number of
bands used in prediction (P) had the most impact on the algorithm’s compression ability.

The authors in [11] proposed two implementations using CUDA and OpenMP pro-
gramming languages to explore spectral and spatial parallelism of the CCSDS-123, obtain-
ing superior performance for the version using CUDA. The paper details how data reuse
and the high-speed GPU memory can be manipulated to exploit parallel architectures.

Remote Sens. 2021, 13, 1077 12 of 13

Moreover, in [9], the authors used a low-power Nvidia Jetson TX1 embedded system to test
GPU architecture’s resilience against space radiation. The highest energy-efficiency previ-
ously found in the literature amongst GPUs and CPUs reports 245.6 Mb/s/W requiring
4.7 W [20].

6. Conclusions

The use of heterogeneous parallel solutions on low-power embedded systems can
significantly increase the performance of single-threaded applications. The proposed
parallel CCSDS-123 standard achieved a throughput performance over 6.7 Gb/s and
decreased execution time by 150 times compared to the Nano’s serial version. To date, and
to the best of our knowledge, the achieved results surpass the previous reports found in
the literature for CPUs and GPUs. Compared to FPGAs, if power constraints are relaxed,
GPUs are more competitive due to having higher flexibility and lower development effort.

The proposed system can be employed in remote sensing systems to reduce image
compression latency, bandwidth and transmission time and provide flexibility to process
different tasks, such as multi-temporal synthetic-aperture radar (SAR) satellite imaging [3].
High-throughput systems can have a meaningful impact on natural disaster scenarios
where remote sensing data are required in short periods [5].

Author Contributions: All authors participated in the conceptualization and methodology towards
the development of this research work. O.F. was responsible for developing and validating all
software. V.S. and G.F. contributed to the formal analysis of the problem and supervised the investi-
gation performed by O.F. O.F. also wrote the original draft, revised and edited by V.S. and G.F. Both
supervisors were responsible for acquiring funding that conducted to the presented research work.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Instituto de Telecomunicações and Fundação para a Ciência e
a Tecnologia under grants UIDB/50008/2020, 2020.07124.BD and PTDC/EEI-HAC/30485/2017.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available code can be found here: https://github.com/
oscarferraz/CCSDS-123 (accessed on 13 February 2021).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Consultative Committee for Space Data Systems. CCSDS 123.0-B-2 Low-Complexity Lossless and Near-Lossless Multispectral &

Hyperspectral Image Compression. 2019. Available online: https://public.ccsds.org/Pubs/123x0b1ec1s.pdf (accessed on 11
March 2021).

2. Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.J. Hyperspectral imaging: A review on UAV-based sensors,
data processing and applications for agriculture and forestry. Remote Sens. 2017, 9, 1110. [CrossRef]

3. Yu, Y.; Balz, T.; Luo, H.; Liao, M.; Zhang, L. GPU accelerated interferometric SAR processing for Sentinel-1 TOPS data. Comput.
Geosci. 2019, 129, 12–25. [CrossRef]

4. Erdelj, M.; Natalizio, E. UAV-assisted disaster management: Applications and open issues. In Proceedings of the 2016 International
Conference on Computing, Networking and Communications (ICNC), Kauai, HI, USA, 15–18 February 2016; pp. 1–5.

5. Ciampoli, L.B.; Gagliardi, V.; Clementini, C.; Latini, D.; Del Frate, F.; Benedetto, A. Transport infrastructure monitoring by InSAR
and GPR data fusion. Surv. Geophys. 2019, 1–24.

6. Sheshadri, S.H.; Franklin, D. Introducing the Ultimate Starter AI Computer, the NVIDIA Jetson Nano 2GB Developer Kit.
Available online: https://developer.nvidia.com/blog/ultimate-starter-ai-computer-jetson-nano-2gb-developer-kit/ (accessed
on 11 March 2021).

7. Franklin, D. NVIDIA Developer Blog: NVIDIA Jetson TX2 Delivers Twice the Intelligence to the Edge. Available online:
https://devblogs.nvidia.com/jetson-tx2-delivers-twice-intelligence-edge/ (accessed on 11 March 2021).

8. Franklin, D. NVIDIA Jetson AGX Xavier Delivers 32 TeraOps for New Era of AI in Robotics. Available online: https://developer.
nvidia.com/blog/nvidia-jetson-agx-xavier-32-teraops-ai-robotics/ (accessed on 11 March 2021).

https://github.com/oscarferraz/CCSDS-123
https://github.com/oscarferraz/CCSDS-123
https://public.ccsds.org/Pubs/123x0b1ec1s.pdf
http://doi.org/10.3390/rs9111110
http://dx.doi.org/10.1016/j.cageo.2019.04.010
https://developer.nvidia.com/blog/ultimate-starter-ai-computer-jetson-nano-2gb-developer-kit/
https://devblogs.nvidia.com/jetson-tx2-delivers-twice-intelligence-edge/
https://developer.nvidia.com/blog/nvidia-jetson-agx-xavier-32-teraops-ai-robotics/
https://developer.nvidia.com/blog/nvidia-jetson-agx-xavier-32-teraops-ai-robotics/

Remote Sens. 2021, 13, 1077 13 of 13

9. Davidson, R.L.; Bridges, C.P. Error Resilient GPU Accelerated Image Processing for Space Applications. IEEE Trans. Parallel
Distrib. Syst. 2018, 29, 1990–2003. [CrossRef]

10. Davidson, R.L.; Bridges, C.P. GPU accelerated multispectral EO imagery optimised CCSDS-123 lossless compression imple-
mentation. In Proceedings of the 2017 IEEE Conference on Aerospace (AeroConf), Big Sky, MT, USA, 4–11 March 2017; pp.
1–12.

11. Hopson, B.; Benkrid, K.; Keymeulen, D.; Aranki, N. Real-time CCSDS lossless adaptive hyperspectral image compression on
parallel GPGPU & multicore processor systems. In Proceedings of the 2012 NASA/ESA Conference on Adaptive Hardware and
Systems, Erlangen, Germany, 25–28 June 2012; pp. 107–114.

12. Keymeulen, D.; Aranki, N.; Bakhshi, A.; Luong, H.; Sarture, C.; Dolman, D. Airborne demonstration of FPGA implementation of
Fast Lossless hyperspectral data compression system. In Proceedings of the 2014 NASA/ESA Conference on Adaptive Hardware
and Systems, Leicester, UK, 14–18 July 2014; pp. 278–284.

13. Báscones, D.; González, C.; Mozos, D. Parallel Implementation of the CCSDS 1.2.3 Standard for Hyperspectral Lossless Compres-
sion. J. Remote Sens. 2017, 7, 973. [CrossRef]

14. Santos, L.; Berrojo, L.; Moreno, J.; López, J.F.; Sarmiento, R. Multispectral and Hyperspectral Lossless Compressor for Space
Applications (HyLoC): A Low-Complexity FPGA Implementation of the CCSDS 123 Standard. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 2016, 9, 757–770. [CrossRef]

15. Orlandić, M.; Fjeldtvedt, J.; Johansen, T.A. A parallel FPGA implementation of the CCSDS-123 compression algorithm. Remote
Sens. 2019, 11, 673. [CrossRef]

16. Santos, L.; Gómez, A.; Sarmiento, R. Implementation of CCSDS Standards for Lossless Multispectral and Hyperspectral Satellite
Image Compression. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 1120–1138. [CrossRef]

17. Barrios, Y.; Sánchez, A.J.; Santos, L.; Sarmiento, R. SHyLoC 2.0: A Versatile Hardware Solution for On-Board Data and
Hyperspectral Image Compression on Future Space Missions. IEEE Access 2020, 8, 54269–54287. [CrossRef]

18. Tsigkanos, A.; Kranitis, N.; Theodoropoulos, D.; Paschalis, A. High-Performance COTS FPGA SoC for Parallel Hyperspectral
Image Compression with CCSDS-123.0-B-1. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2020, 28, 2397–2409. [CrossRef]

19. Rodríguez, A.; Santos, L.; Sarmiento, R.; De La Torre, E. Scalable Hardware-Based On-Board Processing for Run-Time Adaptive
Lossless Hyperspectral Compression. IEEE Access 2019, 7, 10644–10652. [CrossRef]

20. Ferraz, O.; Falcao, G.; Silva, V. Gbit/s Throughput Under 6.3-W Lossless Hyperspectral Image Compression on Parallel Embedded
Devices. IEEE Embed. Syst. Lett. 2021, 13, 13–16. [CrossRef]

21. Ferraz, O.; Silva, V.; Falcao, G. 1.5 GBIT/S 4.9 W Hyperspectral Image Encoders on a Low-Power Parallel Heterogeneous
Processing Platform. In Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 1693–1697.

22. Ferraz, O.A. Combining Low-Power with Parallel Processing for Multispectral and Hyperspectral Image Compression. Master’s
Thesis, Universidade de Coimbra, Coimbra, Portugal, 2019.

23. ESA. European Space Agency Public License—v2.0. Available online: https://amstel.estec.esa.int/tecedm/misc/ESA_OSS_
license.html (accessed on 11 March 2021).

24. Blanes, I.; Kiely, A.; Hernández-Cabronero, M.; Serra-Sagristà, J. Performance impact of parameter tuning on the CCSDS-123.0-B-2
low-complexity lossless and near-lossless multispectral and hyperspectral image compression standard. Remote Sens. 2019, 11,
1390.

25. Ferraz, O. CCSDS. Available online: https://github.com/oscarferraz/CCSDS-123 (accessed on 11 March 2021).
26. Ullah, S.; Kim, D. Benchmarking Jetson Platform for 3D Point-Cloud and Hyper-Spectral Image Classification. In Proceedings

of the 2020 IEEE International Conference on Big Data and Smart Computing (BigComp), Busan, Korea, 19–22 February 2020;
pp. 477–482.

http://dx.doi.org/10.1109/TPDS.2018.2812853
http://dx.doi.org/10.3390/rs9100973
http://dx.doi.org/10.1109/JSTARS.2015.2497163
http://dx.doi.org/10.3390/rs11060673
http://dx.doi.org/10.1109/TAES.2019.2929971
http://dx.doi.org/10.1109/ACCESS.2020.2980767
http://dx.doi.org/10.1109/TVLSI.2020.3020164
http://dx.doi.org/10.1109/ACCESS.2019.2892308
http://dx.doi.org/10.1109/LES.2020.2991958
https://amstel.estec.esa.int/tecedm/misc/ESA_OSS_license.html
https://amstel.estec.esa.int/tecedm/misc/ESA_OSS_license.html
https://github.com/oscarferraz/CCSDS-123

	Introduction
	Parallel 3D Predictor
	Parallel Entropy Encoders
	Sample Adaptive Entropy Encoder
	Block Adaptive Entropy Encoder

	Experimental Results
	Predictor Performance
	Sample Adaptive Entropy Encoder Performance
	Block Adaptive Entropy Encoder Performance
	Power Analysis

	Related Work
	Conclusions
	References

