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Abstract: The problem of finding optimal production and inventory policies is crucial for companies
of the food industry, especially those processing multiple products. Since companies are required
to adopt the most efficient solutions to prosper, the operation at these optimal conditions can have
an extensive impact on profit, resource allocation and product quality. We address the problem
of finding the optimal production and inventory policy in a multiproduct bakery unit for two
contexts: (i) deterministic consumption without inventory control; and (ii) stochastic consumption
combined with delayed inventory control. A formulation is proposed for each of these two setups.
The restrictions considered in the model framework are related to workforce availability, and the
cost structure includes four components: (i) production cost; (ii) inventory cost; (iii) setup cost;
and (iv) the cost due to the degradation of perceived quality. The problem is formulated as a Mixed
Integer Linear Programming one and solved with a branch and cut algorithm-based solver. The
formulation is applied to a real bakery unit producing a mix of eight products. Distinct demand
and inventory lower levels are used for building scenarios to test both models and characterize the
economic performance of the multiproduct bakery unit.

Keywords: optimal production policy; inventory policy; multiproduct plant; food processing unit

1. Motivation

This paper addresses the problem of optimal design of the production and inven-
tory policy of multiproduct processing units commonly found in the food industry sector.
Namely, this problem finds application in small/medium size bakery units with the need
of scheduling the production of various goods considering the available resources and
guaranteing the quality is crucial. Typically, in order to assure the perceived quality level
and optimize the cost structure of the production process, the connections between the
production activity and inventory fluxes must be coordinated. Mathematical programming
methods offer a reliable framework to handle the complexity and accomplish successfully
the coordination of these production systems. Moreover, they provide a systematic frame-
work that can be used to analyze the impact of plant and contextual external variables.

The design/redesign of food production/transformation units is influenced by several
characteristics of the processes and products themselves [1]: (i) seasonality of the produc-
tion; (ii) biological variation that require flexibility; (iii) quality preservation requirements;
(iv) adequate conditions of transportation and storage; and (v) lot traceability to lower the
impact of potential safety issues. The food network integrating production, storage and
distribution/commercialization differs from that of other products, to the extent that the
food quality is altered along the period between processing and consuming time. Effective
quality, perceived quality (that results from sensorial customer experience in consuming
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the product) and safety are critical factors in food distribution/commercialization and the
interdependence between them is critical [2].

The application of mathematical programming approaches in the context of designing
food networks is scarce. Wouda et al. [3] proposed a model to optimize the production,
transportation and units location for Nutricia Dairy & Drinks Group. Ekşioğlu and Jin [4]
address the problem of finding the optimal food distribution network accounting for pro-
duction, setup, inventory and transportation costs, and van der Vorst et al. [1] integrate in
an optimal design problem the logistics, sustainability metrics and quality analysis proce-
dures. The optimal design of networks integrating production and distribution features,
as well as quality degradation and temperature control, is discussed by Rong et al. [5].
Ahumada and Villalobos [6] addressed the problem of planning the production and tac-
tical distribution decisions of fresh goods, and Amorim and Almada-Lobo [7] studied
the lot-sizing and scheduling problem of food products where the perishability plays an
important role in terms of operational decisions. Etemadnia et al. [8] analyzed the supply
chain problem when bimodal transportation alternatives are considered. Most of these
works focus on operational and tactical decisions given the characteristics of the goods.
Another line of work in the literature exploits the inventory control and specifically the
strategic decision of product release and storage, which are factors that play an important
role regarding the product quality preservation [9]. Yan et al. [10] proposed an inventory
model for controlling production and distribution decisions when processing a deterio-
rating good. A vast majority of studies reported in the literature consider the problem of
distribution/production network design and production planning/scheduling. Only a few
of these studies are related with perishable goods, which are seen as challenging problems
in terms of model representation [11]. This complexity increases when uncertainty is
incorporated in the model.

Among the studies addressing the optimal production/inventory/replenishment,
Ali et al. [12] propose a logistic approach to handle the problem of inventory management
of perishable goods where the basic aim is to determine an optimal replenishment schedule
considering product deterioration and shortage. In the same line of research Coelho and
Laporte [13] address the joint replenishment and delivery of perishable products, and pro-
pose a general Mixed Integer Linear Programming (MILP) model which is solved with a
branch-and-cut algorithm. Hu et al. [14] formulate and analyze a model on a producer’s dy-
namic inventory and markdown decisions for perishable goods. They consider a dynamic
stochastic setting, where every scheduling period consists of two phases: (i) clearance; and
(ii) regular-sales. The formulation of models for inventory level dependent demand rate
was considered by Duan et al. [15], whom have established the necessary and sufficient
conditions for the existence and uniqueness of the optimal solution. Shin et al. [16] have
devised a dynamic inventory model which accounts for the uncertainty of supply and
demand. The setup considers a two-phased inventory model for a food industry where the
inventory is perishable, but can be renewed by additional processing. The design of supply
chain networks for perishable goods under uncertainty was also addressed by Nguyen and
Chen [17], Yavari and Geraeli [18], Chen et al. [19], among others. The problem of order siz-
ing, crucial in inventory management, was addressed by Seubert et al. [20], among others.
The authors use an Artificial Neural Network (ANN) to forecast the order size considering
several input factors and use a bakery chain for demonstration. The problem of designing
the optimal policies for production, inventory and replenishment of perishable goods was
recently reviewed for example by Bakker et al. [21] and Janssen et al. [22].

Perceived quality is based on the perceptions of the product with respect to its quality
attributes [23]. Typically, the consumer combines the sensorial experience of a product
on the quality attributes with the weights associated to each attribute to form a quality
judgment about the product [24]. Very often, the perceived quality degradation due
to various factors such as products aging and conservation period have at least equal
importance as the effective quality loss, commonly monitored by quantitative indicators.
Both quality perspectives are interrelated but the former may affect the company image.
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Consequently, food production companies are paying increasing attention to perceived
quality degradation as it is seen as a potential commercial loss [25].

Bakery units of small and medium size operate in multiproduct mode combined
with fast distribution networks in order to preserve the perceived quality of the goods.
Very often they face complex tactical decisions regarding the production sequencing (and
scheduling) and inventory control in environments characterized by: (i) limited workforce
availability; (ii) storage policies commonly requiring the preservation of products in freez-
ing chambers at −15 °C; (iii) perceived quality degradation in result of the preservation;
and (iv) stochastic daily consumption which has direct impact on inventory level. Further,
the bakery products fall into the perishable goods class, which are complex to model [11].
Very few published works report the design of optimal production and inventory poli-
cies for industrial food units with these characteristics. Studies addressing this kind of
processing facilities appear to be lacking, and our paper intends to fill this void.

This paper contains four elements of novelty in regard to the optimal design prob-
lem formulation of the production and inventory policies of perishable goods. Firstly,
the problem formulation relies on Resource Task Network (RTN) framework where a given
time horizon of interest is discretized into slots and the events occur at their bounds. The
inventory level is fixed (bounded from above) or operated in a reactive mode when the
demand is stochastic. Moreover, the perceived quality loss due to product degradation in
the freezing chamber is explicitly considered in cost model. Secondly, it takes into account
the demand uncertainty. The demand is modeled with industrial data using an uniform
probability distribution function (pdf) to construct stochastic demand scenarios over the
time horizon. Thirdly, the proposed optimization formulation is demonstrated with a real
problem that refers to a multiproduct Portuguese bakery production unit. Finally, this
work contributes to devising guidelines for the specification of tactical production policies
that may apply to other industrial multiproduct food units with similar characteristics.

The paper is organized as follows. Section 2 introduces the notation used to formulate
the design problems as well as the models for both process operation setups. Section 3
presents the data set characterizing the demand and cost structure. Section 4 applies the
formulations to find the optimal production and inventory policies. Several demand and
minimum inventory level scenarios are simulated to gain a wider basis of knowledge sub-
sequently used to improve the process operation specifications. Finally, Section 5 provides
a summary of the results obtained with the proposed optimization model formulation and
solving approach.

2. Optimization Model

This section first introduces the nomenclature used in the formulation of the mathe-
matical models. Then, in Section 2.1 the model for determining the optimal production and
inventory policy of multiproduct bakery units subject to deterministic demand, workforce
limitations and minimum inventory level restrictions is presented. In Section 2.2 the model
is extended to include stochastic consumption scenarios combined with delayed inventory
control. Finally, the numerical approach used for solving the proposed model is reviewed.

Bold face lowercase letters represent vectors, capital letters matrices and blackboard
bold capital letters discrete domains. Finite sets containing ι elements are compactly
represented by JιK ≡ {1, · · · , ι}. N is used to identify the set of positive integer numbers
and N0 the set of non-negative integer numbers. The cardinality of a set is represented by
card(•) and the operation z ≡ y (mod x) is used to represent the reminder of the division
y/x, y, x, z ∈ N0. In Nomenclature, we list the indices, sets, parameters and variables
used in the formulation of the optimization problems.

The production cost includes both the required raw materials and workforce costs,
i.e., cp,i = ce,i + cm,i. The setup cost refers to the cost of order assignment and production
startup. The inventory cost is estimated from the power required by the freezing chamber
taking into account the shelf space available and the average area occupied by products.
Finally, the perceived quality degradation is estimated using guidelines approved in the
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company. Specifically, if a product unit is stored in the freezing chamber for a period
of more than λ d, the perceived quality degradation is such that the product cannot be
commercialized, and its commercial value is lost. To determine the quality degradation
cost on a daily basis we consider that the perceived quality behavior along the time is
represented by a zero–order kinetic model as in Remmington [26]. Consequently, the degra-
dation rate is constant on the time interval [0, λ]. Moreover, the perceived quality value is
maximum immediately after the production, and is equal to the product selling price. That
is, cq,i = pi/λ, ∀i ∈ I. Further, we specify the availability of workforce such that at = 1 for
t ∈ Ta and 0 for t ∈ T \Ta.

2.1. Optimization Model for Deterministic Consumption without Inventory Control

Here, we present the optimization model used for finding the optimal production
policy when the product consumption is equal to the average demand, and there is no
active control of the inventory level. The problem aims at determining: (i) the optimal
production policy; and (ii) the optimal inventory policy that minimizes the overall cost
for a pre-specified time horizon. The model formulation includes the specification of the
following plant and contextual external variables: (i) the set of products to process; (ii) the
production, setup, inventory and perceived quality degradation costs; (iii) the average
daily consumption; (iv) the workforce availability; and (v) the batch time production of
each product.

The planning production problem is modeled using a discrete-time representation [27].
Our formulation applies the fundamentals of the RTN representation, an unified framework
for the description of a variety of process scheduling problems [28]. The time horizon, H, is
discretized into tmax time slots (see Figure 1) of equal duration ∆t bounded by time events
t ∈ T. This set of time slots defines the time intervals where production activities may
occur. Herein, the time slots correspond to days and the tasks correspond to production of
a given product of the mix. The tasks can only be initiated and finished if the resources
needed are available. The resources correspond to workforce and the freezing chamber.
The tth time slot starts at the event point t− 1 and ends at the event point t (Figure 1). The
absolute time instants delimiting the tasks execution are specified by τ = τ0 + t ∆t, t ∈ T.
Because the production process is cyclic, the solution that is prescribed at the event point
tmax is equal to that of event point 0.

H = tmax ∆t0 HTime horizon
H

slot 1

0

slot 2

1 2

slot tmax − 1

tmax − 2 tmax − 1

slot tmax

tmax
Time slots

0 1 2 tmax − 2 tmax − 1 tmax
Event points

∆t

Discretized domain

Continuous domain

Figure 1. Time discretization scheme.

We consider that the raw material availability is unlimited and the capacity of the
freezing chamber is large enough so that it can be also considered unlimited. The resource
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workforce is necessary to carry out the production task, thus releasing product at the end
of the operation. Then the released product either enters the distribution circuit or is stored
in the freezing chamber. Later, when necessary to cover the demand, the product stored is
used to feed the distribution circuit. The workforce resource availability is conditional (see
Figure 2).

TASK
(Batch processing)

Raw
material

Product
release

RESOURCES
(Man-power)

Distribution

RESOURCES
(frezing chamber)releaseallocate

∞ capacity

Figure 2. Resource-Task Network representation.

In this section we consider that the consumption is deterministic and is equal to the
average daily demand. That is, for this setup it follows that ut,i = Dref

i , ∀i ∈ I, ∀t ∈ T.
Further, the cost due to product deterioration on shelf is imputed to the perceived quality
degradation. Herein, we consider a First In, First Out (FIFO) policy to manage the inventory
in the freezing chamber which is in line with policies prescribed for food processing
units [29]. Specifically, the product that is stored earlier is the first to enter the distribution
in order to preserve the perceived quality and to reduce the amount of product with high
storage time.

The model is formulated as a Mixed Integer Linear Program (MILP) where the objec-
tive is to minimize the sum of all costs subject to several constraints:

C = min
P,R,Y

∑
i

∑
t

Pt,i cp,i + yt,i co,i + Rt,i (cs,i + cq,i) (1a)

s.t. Pt,i + Rt−1,i = Rt,i + Dref
i , t ∈ T \ {1}, i ∈ I (1b)

P1,i + Rcard(T),i = R1,i + Dref
i , i ∈ I (1c)

Pt,i ≤ B yt,i, t ∈ T, i ∈ I (1d)

yt,i ≤ b at, t ∈ T, i ∈ I (1e)

∑
i

yt,i θi ≤ S, t ∈ T (1f)

Rt,i ≥ γ Dref
i , t ∈ T, i ∈ I (1g)

Equation (1a) is the objective function and combines the production, setup, inventory
and perceived quality degradation costs. Equation (1b) is the balance holding for all time
events but the first, while Equation (1c) is specifically for first event as it involves a circular
operation on T. Equation (1d) assigns batches to product release and Equation (1e) is to
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constrain batches realization to workforce availability. Equation (1f) constrains the number
of batches produced per day to shift duration, and Equation (1g) imposes the minimum
inventory level as a fraction γ ∈]0, 1] of the average daily demand.

2.2. Optimization Model for Stochastic Consumption and Inventory Control

Here, the optimization model in Section 2.1 is extended to deal with scenarios where
the daily consumption is not equal to the average daily demand, and the inventory level is
controlled to respond to product market oscillations. When the consumption is smaller
than the production, the remaining amount of product is stored in the freezing chamber,
increasing the inventory level. On the other hand, when the daily consumption is higher,
the amount of product in deficit is compensated by product in stock which availability
is assured by (positive) minimum inventory level. Afterwards, the inventory state is
monitored and the amount of product to process in the next time slot ∆t is determined using
the average daily demand (i.e., information from customers) and workforce availability
(information from production department). Figure 3 shows the flows of material and
information involved in this scenario. To safely accommodate the stochastic oscillations
of the demand the producer needs to implement an inventory monitoring procedure and
a decision support system to prescribe the order size on a daily basis. Naturally, this
conceptualization is more realistic than the assumption of a deterministic demand where
a minimum inventory level should be guaranteed to avoid stock ruptures. However, its
implementation might require an operating procedure and slightly increases the complexity
of the process.

Production
line Costumers

Stock
Order size
calculation

Deterministic
customer

information

Workforce
availability
information

Pt,i ut,i

Pt,i − ut,i

Rt,i
Dref

i

at, S

t← t+ 1,
Order Pt,i

Figure 3. Inventory control scheme.

In practice the consumption is updated everyday. For simulation purposes the daily
consumption is disaggregated into two components,

ut,i = Dref
i + z1−α,t σi (2)

where Dref
i is deterministic and the second term in Equation (2) is stochastic. Here, z1−α,t

is the inverse of the standard normal distribution computed for a specific confidence
level α which, in turn, follows an uniform distribution in the interval [0.25, 0.75], i.e.,
α ∼ U [0.25, 0.75]. The rationale behind the stochastic component is that the consumption
is uniformly distributed within the inter-quartile interval of the average daily demand.
More stringent scenarios are not considered here as they may emulate specific (outlier)
production occurrences. Practically, in our study the values of α are generated using an
uniform random generator for the complete set of instances T. Next, the values of z1−α,t
and ut,i are computed. The inventory control policy uses a prediction horizon of ∆t to
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adapt the production. That is, the consumption at time t has an impact on the inventory
level, and this information is used to decide on the production level at time instant t + 1
(see Figure 3).

The model including inventory control is adapted from Equation (1) and accounts for
the delayed feedback effect of consumption uncertainty, i.e.,

C = min
P,R,Y

∑
i

∑
t

Pt,i cp,i + yt,i co,i + Rt,i (cs,i + cq,i) (3a)

s.t. Pt,i + Rt−δ,i = Rt,i + ut,i, t ∈ T \ JδK, i ∈ I (3b)

Pt,i + Rt+card(T)−δ,i = Rt,i + ut,i, t ∈ JδK, i ∈ I (3c)

Equations (1d)–(1g), (3d)

where Equations (3b) and (3c) are mass balances and ut,i is given by Equation (2). Model
Equation (3) generalizes the scheme to setups where the inventory information is integrated
in decision making process when the delays are larger than 1, i.e., δ ≥ 1.

To determine the optimal operation policy for both setups, the MILP problems
Equations (1) and (3) were coded in GAMS programming language environment [30]. The
branch and cut algorithm-based solver CPLEX was used to solve the optimization problems.
The CPLEX algorithm solves a series of Linear Programming (LP) subproblems [31,32] by
employing the dual simplex method. The solver absolute and relative tolerances were set
equal to 1× 10−8 and 1× 10−7, respectively. All the computations reported in Section 4
were performed in an Intel Core i7 machine running a 64 bits Windows 10 operating system
with a 2.80 GHz processor.

3. Data

In this section we list the data required by the model Equation (1). The data was
gathered from a Portuguese bakery unit of middle size and refer to 8 non-seasonal sweet
baked food products. The bakery production process involves three main stages: (i) mixing
the ingredients after convenient mise en place; (ii) baking (when necessary); and (iii) final
assemblage which might require glazing, coating and decorating some elements. When the
quality level of the products is considered below the standard during the production process
they are immediately declassified and treated as internal non-conformities. Consequently,
they are not expedited to clients or even enter the inventory. Thus, the faulty production
is considered marginal in this study and practically neglected in the model. The quality
loss accounted for in the cost model is due to the (excessive) time the products are in the
freezing chamber before consumption.

All the cost components, workforce availability, selling price and other operation
parameters were determined from data on the antecedent bakery operation. The average
daily demand was determined from data gathered during 3 months. For discrimination,
the products are assigned to letters (A to H). The complete data set is given in Table 1. The
row for σ contains the standard deviation of the average daily demand.

Table 1. Data for the bakery unit optimization model (A, B, ..., H are products).

Products

A B C D E F G H

cm (e/unit) 0.2625 0.3184 0.0958 0.1729 0.1601 0.1229 0.551 0.551
ce (e/unit) 0.0179 0.0309 0.0061 0.0802 0.1507 0.0310 0.0025 0.0441
cb (e/batch) 1.0714 0.6786 1.4286 0.7857 0.7900 1.4286 2.7857 2.78
cs (e/unit.d) 0.000162 0.000162 0.000162 0.000162 0.000162 0.000162 0.000162 0.000162
p (e/unit) 0.37 0.55 0.37 0.46 0.46 0.46 0.37 0.41
Dref (units/d) 144 13 55 4 8 7 41 5
σ (units/d) 57 3 35 2 2 2 14 1
θ (h) 4.0 3.0 3.0 3.5 3.5 2.5 2.5 2.5

We set H = 28 d (4 weeks) as it seems to be a time horizon large enough to capture
cyclic behaviors. Further, ∆t = 1 d, τ0 is 0 d and corresponds to Sunday. The workforce
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availability is allocated to instances t corresponding to working days counted cyclically
from Monday. The allocation of workforce using the discretized representation of Figure 1
allows setting Ta ≡ {t : t ∈ T, t (mod 7) ∈ J5K}, and assigning at, t ∈ T. B is set to
400 units, corresponding to the maximum number of items produced per batch. On the
other hand, the maximum number of batches of a single product processed in a day, b, is
set to 8, and is only constrained by workforce availability. The shift, S, is set by the bakery
with a duration of 7.5 h. The minimum inventory level is 10% of the average daily demand
for all products, i.e., γ = 0.10. The perceived quality is zero after a period of storage of
λ = 14 d in the freezing chamber. Consequently, the remaining commercial value of the
product is null for λ > 14 d.

4. Results

This section presents the optimal production and inventory policies obtained with
models Equations (1) and (3). First, we address the setup where the consumption is
deterministic and equal to average daily demand (see the sixth row of Table 1) and use
model Equation (1) for three scenarios of consumption. Next, the model Equation (3) is
adopted for a setup where the consumption is stochastic and a delayed inventory control
policy is implemented.

To analyze the first setup we consider three consumption scenarios: (i) consumption
equal to average daily demand (sixth row of Table 1), designated by SCD; (ii) consumption
equal to the 25% quartile of the average daily demand, SCD− ; and (iii) consumption equal
to the 75% quartile, SCD+ . Additionally, a fourth scenario is simulated, SCI+ , where the
reference conditions of SCD are imposed while the minimum inventory level is increased
to 15%. The reference scenario SCD is first analyzed in deep as it reveals features that can
be well advantageous to implement in the bakery production line. This reference scenario
will be used for comparison against the other three scenarios.

Figure 4 shows the production and inventory profiles over the time horizon that were
obtained for the production scenario of reference, SCD. Two distinct plots are presented
side by side because products A, C and G have higher daily production rates (and inventory
levels). One observes that the profiles for products with higher production rates follow a
weekly cyclic policy, well captured by the simulation of a 4 weeks-based horizon. Contrarily,
the other products do not follow a weekly cyclic pattern and its schedule should be planned
in a larger time horizon as is a 4 week period.

The production of A, which has the larger demand, is prescribed to occur two days
of the week to reduce the inventory and perceived quality degradation cost, while for
the other products the schedule is adapted to human resources availability. Practically,
the optimal policy prescribes producing a single batch per week of products with smaller
demand and two batches per week of products with intermediate demand. The production
of all products except A is higher at the end of week (Thursday and Friday) so that the
inventory allows satisfying the demand during the weekend when the production is can-
celed due to the workforce availability restrictions and the perceived quality degradation
cost is minimized.

Figure 5 presents the assignment of batches to week days. The products with higher
demand are processed with intervals of two or threes days given the constraints on work-
force and shift duration and the others only once per week. The maximum number of
products processed per day is 3 and a single batch of each one is enough to satisfy the
demand and keep the perceived quality cost at minimum. As example of efficiency of the
numerical strategy used, the MILP problem solved for this scenario involves 673 constraints,
701 variables and the solution convergence takes 10.66 s of CPU.

Now, we consider the other three scenarios, with higher and lower daily bakery
product consumption, respectively SCD+ and SCD− , and with minimum inventory level,
SCI+ . As for the new values of consumption, these are estimated from Dref

i , ∀i ∈ I, and the
respective standard deviation, σi (see Table 1). For the scenario SCD− , the lower bound
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consumption is specified such that ut,i = Dref
i − z1−α σi, ∀i ∈ I, and z1−α = 0.6745. For the

scenario SCD+ , the upper bound consumption is set such that ut,i = Dref
i + z1−α σi, ∀i ∈ I.

Table 2 shows the optimal overall cost for a 28 d production horizon of each production
scenario. It is noteworthy to mention: (i) the decrease of the overall cost when the demand
is reduced, as expected; and (ii) a slight cost increase (about 0.4%) when the minimum
inventory level is increased by 5% with respect to the average daily demand. Table 3 shows
the relative importance of the cost components in the overall cost structure. The production
costs including raw materials and labor dominate, whereas the setup cost represents about
2% of the total cost, and the perceived quality degradation cost represents almost 12%.
The inventory cost is practically negligible because (i) the mean time of the products in the
freezing chamber is relatively small; (ii) given its storage capacity, the cost of operating the
freezing chamber per unit of product is quite low.
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Figure 4. Optimal profiles for production and inventory levels with a deterministic consumption and without inventory
control: (a) Production of A, C, G; (b) Production of B, D, E, F, H; (c) Inventory of A, C, G; (d) Inventory of B, D, E, F, H.
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Figure 5. Assignment of batches to week days for deterministic (and stochastic) consumption without
inventory control.

Table 2. Overall optimal cost for 28 d production horizon.

Scenario Conditions Cost (e )

SCD Average daily demand (Di = Dref
i , ∀i ∈ I); γ = 0.1 2.673× 103

SCD+ 75% quartile (Di = Dref
i + 0.6745 σi, ∀i ∈ I); γ = 0.1 3.439× 103

SCD− 25% quartile (Di = Dref
i − 0.6745 σi, ∀i ∈ I); γ = 0.1 2.043× 103

SCI+ Average daily demand (Di = Dref
i , ∀i ∈ I); γ = 0.15 2.684× 103

Table 3. Importance of cost components relative to overall optimal cost for 28 d production horizon
(deterministic consumption combined with absence of inventory control).

Scenario
Cost Component (%)

Production Setup Inventory Quality Total

SCD 84.59 2.39 0.07 12.94 100
SCD+ 83.63 1.79 0.08 14.45 100
SCD− 84.11 3.16 0.07 12.66 100
SCI+ 84.26 2.37 0.07 13.29 100

Finally, we test model Equation (3) for a scenario with stochastic consumption and
delayed inventory control. The daily consumption is generated using the approach de-
scribed in Section 2.2. The profiles of production and inventory levels are equal to those of
presented in Figure 6. In result of the consumption uncertainty, the plots show that there
is not an obvious operation cycle. However, the main features of the production policy
are similar to those found for the deterministic consumption case. Finally, we note that
the corresponding batch assignment sequence obtained for the stochastic consumption
scenario is equal to the one prescribed for the deterministic consumption; see Figure 5.

Table 4 presents the results obtained for different minimum inventory levels and
two values of control delay, δ = 1 and δ = 2. Recall that γ is set to 0.10 in the scenario
SCD, whereas in SCI+ it is γ = 0.15. The optimal overall costs obtained for the stochastic
consumption scenario are slightly higher than those for the deterministic demand scenario
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(compare the first line of Tables 3 and 4), but the observed trends are similar. Specifically,
the cost structure is similar, and the production cost over the time horizon denotes a slight
increase (about 0.4%) when the minimum inventory is changed from 10% to 15% of the
average daily demand. A minimum inventory level of 10% is sufficient to accommodate
the consumption variability when the control delay is of 1 d. In the case of higher control
delays as when δ = 2 (see the last two rows of Table 4) the inventory profile becomes
smoother. That is, this production scenario is less susceptible to excessive and reactive
production decisions. Consequently, the quality degradation cost slightly decreases.
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Figure 6. Optimal profiles for production and inventory levels for stochastic consumption with delayed inventory control:
(a) Production of A, C, G; (b) Production of B, D, E, F, H; (c) Inventory of A, C, G; (d) Inventory of B, D, E, F, H.

Table 4. Importance of cost components relative to overall optimal cost for 28 d production horizon
(stochastic consumption and delayed inventory control).

Scenario Delay (δ)
Cost Component (%)

Cost (e)
Production Setup Inventory Quality

SCD 1 84.27 2.42 0.07 13.24 2.693× 103

SCI+ 1 83.94 2.41 0.08 13.57 2.704× 103

SCD 2 84.59 2.43 0.07 12.91 2.682× 103

SCI+ 2 84.25 2.42 0.07 13.25 2.693× 103
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5. Conclusions

We consider the problem of determining the optimal production and inventory policy
of multiproduct food processing units. Two setups are considered (i) deterministic demand
and without inventory control; and (ii) stochastic daily consumption combined with
delayed inventory control. The proposed model formulations include (i) the workforce
limitations; and (ii) a cost structure with four terms: production cost, setup cost, storage
cost and perceived quality degradation cost. The last term is used to characterize the
sensorial loss of product quality when consumed and is commonly associated to long
periods of preservation in freezing chambers.

The model optimization formulations are tested with real data from a bakery unit
processing 8 sweet baked food products. The numerical solutions for a time horizon of
four weeks reveal that (i) the cost structure is dominated by production cost (weights
more than 80% of the overall cost), and the inventory cost of storing product in the
freezing chamber is negligible; (ii) the optimal batch sequence requires producing the
most consumed pastries three times per week, and the less consumed ones once per week;
(iii) the optimal sequence for the deterministic demand setup shows a cyclic profile that
can be used for constructing an operation procedure, and subsequently implemented
on site on a per week basis; and (iv) the results obtained for the stochastic consumption
with delayed inventory control are similar to those found for the deterministic demand
scenario. The main difference is that in the stochastic consumption scenario it is not
possible to operate based in weekly campaigns. Contrarily, it requires reactive decisions
on a daily basis and an effective inventory monitoring. To summarize, the deterministic
demand scenario might be unrealistic but simplifies the work organization, while the
stochastic demand combined with delayed inventory control is more realistic but difficult
to standardize as a procedure.
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Nomenclature

Indices
t time instant
i product
Sets
T ≡ {t : t ∈ JtmaxK} set of discrete time instants
Ta ∈ T set of discrete time instants where workforce is available
I ≡ {i : i ∈ JimaxK} set of products
Parameters
imax number of products
tmax number of discrete time instants in H
∆t discretization interval (d)
δ number of discrete time instants of the inventory control delay
τt = τ0 + t ∆t absolute time instant (d)
H time horizon (d)
ce,i energy cost (e/unit)
cm,i raw material cost (e/unit)
cp,i production cost (e/unit)
co,i batch setup cost (e/batch)
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cs,i inventory cost (e/unit.d)
cq,i perceived quality degradation cost (e/unit.d)
Dref

i average daily demand for reference scenario (units)
σi standard deviation of daily demand (units)
ut,i daily consumption (units)
θi batch cycle time (h)
pi price (e/unit)
B maximum size of the batch (units)
b maximum number of batches produced per shift (units)
S shift duration (h)
γ fraction of average daily demand required as minimum inventory
at ∈ {0, 1} availability of workforce
λ period of time after which the perceived quality is null (d)
α confidence level
z1−α inverse of the standard normal distribution for confidence level α
Integer variables
Pt,i ∈ N0 units produced (units)
Rt,i ∈ N0 units in inventory (units)
yt,i ∈ N0 number of batches (units)
P matrix storing Pt,i
R matrix storing Rt,i
Y matrix storing yt,i
Continuous variables
C overall production cost (e)
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