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1. Introduction 

Recommender systems are automated systems that, in a personalized and meaningful way, lead users to relevant 
items for them in a wide space of options. Most of their practical applications are web-centric, namely for e-commerce 
where they engage users by presenting personalized recommendations that best suit their preferences. Nevertheless, 
recommender systems’ potential is much wider. They can be defined as “software tools and techniques providing 
suggestions for items to be of use to a user” [1]. The terms “suggestions” (or recommendations), “items” and “user” 
can be understood in a broad sense. The underlying logic behind these systems is anchored on machine learning 
algorithms that are very versatile and can be applied to many fields. Machine learning has been increasingly used in 
most diverse domains, either at public sector, such as in fiscal area [2], in education area [3], in the medical field [4] 
or, at private sector, such as in marketing [5], in media and entertainment industry [6], in events industry [7] and in 
many other areas, contributing to create new knowledge and helping organizations to define strategies that allow them 
increase their performance. 

This work explores the application of recommender systems in a specific field of medicine domain. The problem 
under analysis is related to cancer disease. Many research laboratories are testing numerous compounds on cancer cell 
lines, in order to find the most efficient drugs. Cancer biology is complex and, as being closely related with the 
physiognomy of each patient, it means that there are some drugs that are more efficient than others in each situation 
[8]. From this perspective, the problem may be solved with a recommender system supported by machine learning, in 
which the system aims, given a new cancer cell line (i.e., a new patient), to propose a ranking (i.e., a recommendation) 
of the most efficient drugs (i.e., items).  

Here, a user-based collaborative filtering approach is followed. Consequently, users ‘profiles are central to the 
proposed framework. In the specific context, cancer cell lines are profiled through their corresponding gene expression 
profile, represented by a DNA (Deoxyribonucleic Acid) microarray. As recognized by [9], there are several microarray 
systems and methods which differ in several details but produce the same result, an image of spots. On the other hand, 
images are 2-D spatial signals. Hence, we intent to assess if the prior preprocessing of DNA microarray images, using 
wavelet transforms, can improve the recommender system performance. To the best of our knowledge, this is the first 
work that attempts to do it. In practice, such preprocessing represents a shift for the data stored in the DNA microarray 
image from spatial domain (pixels intensities) to wavelet domain (frequencies). We hypothesize that the representation 
of the users’ profile in a wavelet domain uncovers distinct and discriminating features that improve the search of 
similar users (a step of vital importance in a user-based recommender system). This is due to the fact that, as stated 
by [10], wavelet transforms “allow the extraction of richer problem-specific information”. 

The paper is organized as follows: section 2 provides a brief introduction to the genomic background of the 
problem; wavelet transforms as a feature extraction technique, namely for DNA microarray images, is described in 
section 3 along with a theoretical overview of recommender systems and their application to cancer drug 
recommendation; in section 4 a wavelet-based cancer drug recommender system is proposed; experiments and results 
are described in section 5 and, finally, section 6 draws the conclusions and discusses future work. 

 
2. Genomics background 

In genomics, cell lines refer to the cells capable of renewing themselves in an artificial culture (i.e. under certain 
laboratory conditions) indefinitely, which makes them ideal for testing new drugs. In what concerns cancer, cell lines 
are extracted from biopsies (tissues removed from a living body) of patients with different types of tumors (from 
several body parts depending on the cancer location like lungs or breast). 

There are several ways to characterize cell lines, namely using: gene expression, whole-exome sequencing, copy 
number variation and DNA methylation. However, as shown by [11], gene expression provides “the best predictive 
power”. The gene expression of a cell line is a portrait of the genes’ activity contained in that cell and the most 
common way to measure it is through a DNA microarray. 

The DNA microarray slide contains up to tens of thousands of microscopic spots. Each individual spot will be used 
to measure the activity of a specific gene. This happens during the microarray scanning when the fluorescent intensity 
of all individual gene spots is stored in an image. A spot with high fluorescence intensity represents a hyperactive 
gene whereas the absence of fluorescence represents a silent one. Therefore, the DNA microarray image provides a 
“fingerprint” of the cell line.  
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Regarding cancer drugs, the efficacy of a compound is usually assessed by the corresponding IC50 (“I” for inhibition 
and “C” for concentration). The IC50 is the concentration of the compound required to inhibit the cell growth at 50% 
[12]. Hence, the lower the IC50 value is, the more efficient the compound is. 

 
3. Image processing and wavelet transforms 

In the process of microarray scanning, an image of the genes ‘activity induced from the fluorescence dye is captured 
by the scanner. However, “due to the weak fluorescence response, complex biochemical reaction, imperfections in 
glass slide and photoelectric sensor conversion distortion, etc., the signal of fluorescence probe is inevitably degraded, 
which leads to serious noise interference in the microarray image” [13]. 

Wavelet transform is a signal processing technique (also applied to images since they are 2-D spatial signals) that, 
simultaneously, allows to filter noise and extract more informative features that allow better discriminability of the 
original signal. The purpose of the wavelet transform is to “transform the signal under investigation into another 
representation which presents the signal information in a more useful form” [14]. A wavelet is a little wavelike 
function. During the wavelet transform, a convolution of the signal with a wavelet function happens. This convolution 
is computed at various locations of the signal (wavelet translations) and for various scales (wavelet dilations).  The 
signal regions where the wavelet overlaps the signal result in large transform values (called wavelet coefficients).  

Therefore, several clear structures relating to a specific scale in the wave are detected by shifting the wavelet along 
the signal [14]. For this reason, wavelet transform has been called a ‘mathematical microscope’. 

There are several types of wavelets, such as those from Haar, Daubechies, coiflet, and symlet, and it is important 
to choose the one that best suits our signal and the scope of the analysis. Wavelet transforms come in two distributions: 
continuous and discrete. The major difference relies in the way how they discretize the scale parameter. The 
continuous wavelet transform uses exponential scales with a base smaller than 2 (e.g. 2^1/5) while the discrete wavelet 
transform uses exponential scales with the base equal to 2 (i.e., the scales are powers of 2). Hence, continue wavelet 
transform discretizes scale more finely than the discrete wavelet transform. 

However, for image processing, the discrete wavelet transform is the type of distribution usually used, allowing a 
sparse representation of the signal. Here, coefficients whose value is close to zero may be ignored, remaining only 
those that have captured important features. The wavelet transform can also comprise several levels of decomposition. 
In the first level, the signal is decomposed in low and high frequencies regions. The convolution of the wavelet with 
the low frequency regions result in the so-called approximation coefficients. On the other hand, the convolution of the 
wavelet with the high frequency regions result in the so-called detail coefficients. In the next level, the approximation 
coefficients (of the previous level) are again divided into low and high frequency regions. This goes on until it is 
reached the level of detail that it is needed or until there is no more low and high frequency regions. 

The wavelet packet transform is similar to the discrete wavelet transform, however, at each decomposition level, it 
decomposes not only the approximation coefficients but also the detail coefficients, yielding a higher frequency 
resolution even in higher frequencies. 

In what concerns machine learning classification tasks using images as inputs, the use of wavelets as a 
preprocessing technique is already in use. For example, in 2010, [15] used the Haar wavelet to extract features of 
ultrasound liver images for a support vector machine classifier. More recently, [16], working in a classification task 
using deep neural networks, concluded that the wavelet transform of X-Ray scan improves considerably the 
performance of the classification network. 

We can also find research regarding the application of wavelet transforms to DNA microarray images. For instance, 
[17] proposed a gene selection method using the discrete wavelet transform on microarray data for cancer 
classification. Also for a cancer classification task, [18] studied the impact of eighteen different wavelet features 
extracted from such data. 
 

4. Personalized recommender systems of cancer drugs 

This work combines the techniques of image processing for feature enhancement and recommender systems for 
a personalized ranking of cancer drugs. 

The global scope of recommender systems comprises the identification of the need and preferences of users, 
filtering the huge collection of data accordingly and displaying the best fitted option by using some well-defined 



490	 Liliana Brandão  et al. / Procedia Computer Science 181 (2021) 487–4944 Liliana Brandão et al. / Procedia Computer Science 00 (2019) 000–000 

mechanism [1]. Thus, they allow information filtering (in opposition to information retrieval like the one performed 
by search engines), providing personalized information that is relevant to the user. Recommender systems can have 
different levels of personalization: from universal (non-personalized recommender systems) to tailor-made 
(personalized recommender systems). Personalized recommender systems (like the one we propose) make use of the 
user’s specific data to produce recommendations, i.e., one-to-one recommendations.  

A possible approach to the recommendation problem is, given a set of unknown items to the user, predict the 
ratings each item will have and then present the N most (predicted) rated items as recommendations for that user. This 
is the “prediction version” of the problem [19]. However, it is not mandatory to predict ratings in order to make 
recommendations. One can simply recommend the top-N most likely relevant items to the user. This is the “ranking 
version” of the problem and “in many cases it is easier and more natural to design methods for solving the ranking 
version of the problem directly” [19]. In fact, this is the version commonly adopted in real world problems and the 
one that it is followed here. In what concerns recommender systems techniques, they comprise several options, 
namely: content-based filtering, collaborative filtering (user or item-based), model-based methods (or matrix 
factorization methods), deep learning approaches and hybrid approaches. 

For the purpose of this work, we choose a user-based collaborative filtering approach. The assumption on which 
it is based is that similar users (or, in our case, similar cancer cell lines) share similar behaviours (i.e., similar drug’ 
responses). Therefore, the items (or drugs) that were relevant to existing users will most likely be relevant to a new 
user similar to them. 

Finally, in order to evaluate the recommender system’s performance, we use top-N hit-rate and average reciprocal 
hit-rate. Top-N hit-rate is the fraction of relevant items that are in the top-N recommendation list from all relevant 
items (the recommended items that are actually relevant items are called hits). As stated by [19], “the disadvantage of 
the hit-rate is that it gives equal importance to a hit, irrespective of its position in the recommended list”. Average 
reciprocal hit-rate is like top-N hit-rate, but, contrarily to it, it takes into account for where in the top-N 
recommendation list the hits appear. Its scope is to reward recommended items that match top relevant items.  

Most of the research on cancer drug recommender systems has focused on the “prediction version” of the problem, 
i.e., predicting the exact sensitivity values for the potential drugs. To achieve this goal, a common technique applied 
is matrix factorization. Matrix factorization solves the recommendation problem by finding latent features that 
determine the relationship between users and items. For example, [20] use it to project both drugs and cell lines into 
a latent space (named as “pharmacogenomic space“) such that “the dot product between a cell line vector and a drug 
vector provides the cell line specific drug response”. However, a few researchers have also focused on the “ranking 
version” of the problem. That is the case of [12] whose framework gains “are maximized when the most effective k 
drugs are the top k recommended drugs”, even though, without any drug response being predicted. 
  

5. Proposed framework  

The framework proposed here has two main stages: user similarity measurement and cancer drug 
recommendation. Given a new cancer line (profiled by a DNA microarray image representing its gene expression 
profile), firstly, a search for the top-N most similar users is conducted and, secondly, using the retrieved information, 
a personalized cancer drug recommendation is presented, ranking the top-N most effective drugs for the new user. 

 
 
  
 
 
 
 
 
 
 
 
 

Figure 1. Experiment 1: Experiment without wavelet transforms. 
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5.1. Stage 1 – Users similarity measurement 

The goal of this stage is to find the top-N most similar cancer cell lines regarding the new cancer cell line. This 
will be done under two experiments: without and with wavelet transforms. Figure 1 presents the framework used at 
experiment 1, which is done without wavelet transforms. Figure 2 presents the framework at experiment 2, made 
with wavelet transforms. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Experiment 2: Experiment with wavelet transforms. 

5.2. Stage 2 – Cancer drug recommendation 

After finding the most similar users, their drugs’ responses are retrieved. Next, the recommendation candidates 
(i.e., the retrieved drugs) are scored. The score corresponds to the drug’s rating (measured by its IC50) weighted by 
the similarity score between the retrieved cell line and the new cell line. If one drug appears more than once, its 
scores are added in order to strengthen that fact. The scores are sorted in ascending order. The top-N drugs are then 
presented as the most likely effective ones for the new cell line (see Figure 3). 
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Figure 3. Cancer drug recommendation pipeline. 

6. Experiments and results 

Experiments are performed on the benchmark dataset called Genomics of Drug Sensitivity in Cancer 1 (release 
8.2). The aim is to assess if the use of wavelet transforms on the DNA microarray images contributes positively, or 
not, to the recommender system’s performance. Therefore, the focus lies, not in achieving state-of-the-art results in 
terms of evaluation metrics (i.e., hit-rate and average reciprocal hit-rate), but on judging the impact of using wavelet 
transformed DNA microarray images (versus original images) on the proposed framework. To that aim, two 
experiments are conducted: one using the original DNA microarray images and another one using wavelet transforms 
to preprocess the images before feeding them to the recommender system. 

To measure the similarity between images (i.e., original and wavelet transformed images), Structural Similarity 
Index [21] is used. 

 
6.1. Dataset 

The Genomics of Drug Sensitivity in Cancer (GDSC) database (www.cancerrxgene.org) is one of the largest 
public resource for information on drug sensitivity in cancer cells. It provides, freely available and without 
restriction, two datasets - GDSC1 and GDSC2 – which are periodically updated. 

The current release 8.2 of the GDSC1 (the one that we will use on the experiments) contains the drug sensitivity 
data for more than 310 000 IC50, describing the response to more than 300 anticancer drugs across 987 cancer cell 
lines.  

Prior to the experiments, several tasks of preprocessing, regarding the drug sensitivity data, are conducted. First, 
the IC50 concerning cancer cell lines, whose gene expression profiles are not available, are removed. Consequently, 
only the IC50 values of 927 cancer cell lines are kept. Next, to normalize the IC50 values into a [0, 1] interval, we 
follow the method in [22]. Therefore, the closer an IC50 value is to zero, the more sensitive the cancer cell line is to 
the drug whereas the closer the IC50 value is to 1, the more resistant the cancer cell line is. The final drug-response 
matrix (927 cancer cell lines x 345 drugs) has 13.3% of missing IC50 values which are set equal to 0.5 (the neutral 
point in the chosen scale, i.e., the previous interval [0 1]). 

For evaluation purposes, the DNA microarray images belonging to the selected 927 cancer cell lines are divided 
into 4 folders (mutually exclusive but of different sizes): one folder with 852 cancer cell lines and three folders with 
25 cancer cell lines each. The three folders of minor size, representing sets of new users in the context of the proposed 
framework, are evaluated, one at a time. The resulting folder values, for hit-rate and average reciprocal hit-rate, are 
then averaged and taken as the final result. 

 
6.2. Technological infrastructure 

This study uses an environment provided by Google called Colaboratory [23], or just Colab for short. Colab 
platform requires no setup to use and runs entirely in the cloud, allowing the implementation of machine learning 
models. This infrastructure allows to write and execute Python code in a browser with zero configuration required 
and to freely access GPUs (Graphics Processing Unit) and TPUs (Tensor Processing Unit), accelerating the 
performance of linear algebra computation, which is used heavily in machine learning applications. 
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6.3. First experiment and its results 

Overall, in this experiment, the similarity between images is analysed in a spatial domain (the original domain of 
the image). In practical terms, this means that the similarity between the new cancer cell line (whose drugs’ response 
are considered to be unknown) and the cancer cell lines of the database (whose drugs’ response are known) is measured 
by applying the Structural Similarity Index (SSIM) between the original DNA microarray image of the new cancer 
cell line and the DNA microarray images of the cell lines in the database. Afterwards, the drugs’ response of the most 
similar cancer cell line of the database are retrieved. The retrieved IC50 values are then weighted by the corresponding 
SSIM and sorted in ascending order (i.e., from the most to the least effective drug).  

The top-20 drugs of the previous ranking are taken as part of the top-20 recommendation list for the new cancer 
cell line. The final top-20 hit-rate is 11.31 and the average reciprocal top-20 hit-rate is 2.39. Equally remarkable is the 
execution time of the experiment, approximately 30 hours. These results are set as a baseline for the next experiment. 

 
6.4. Second experiment and its results 

Overall, in this experiment, the similarity between images is analyzed in a frequency domain, i.e., between 
wavelet transformed images. 

For most applications, the chosen wavelet type is Haar or Daubechies. Daubechies, although conceptually and 
computationally more complex than Haar, can pick up details that are missed by Haar. Thus, we choose a Daubechies 
approach to perform the wavelet transform and assess the hypothesis of an improvement in the recommender system 
performance through the use of transformed DNA microarray images. 

Also, when computing wavelet decomposition, it is possible to use different resolutions (decomposition levels) 
to convolve the wavelet with the image. Classification using Daubechies 7 with four or five levels of decomposition 
reported good performance [18]. Therefore, we initially decide to carry out a 4-level decomposition. However, the 
results suggest that the wavelet transformed image at level 4 is too much compressed resulting in a loss of 
information. Hence, we proceed instead with a 2-level decomposition. 

Although approximation coefficients characterize the major trends contained in the gene expression profiles (i.e., 
the essential information of the microarray data), we only use the detail coefficients because, as observed by [15], 
“they have better discriminating capacities and make the classification of two classes of subtle differences possible”. 
In the same line of thought, [24] state that “the purpose of detail coefficients is to detect localized features in one of 
the gene expression profile”. 

At the 2nd level of decomposition, and considering only the detail coefficients, three output images are obtained: 
one in horizontal, other in vertical and another in diagonal directions of the image. These images are then combined, 
forming a unique 3-detail channels image (similar to a 3-color channels image, using for example, the RGB - Red-
Green-Blue color model, but, instead of color channels, the image has the detail channels Horizontal-Vertical-
Diagonal). The resulting image is the one used to assess the similarity. This method allows us to preserve spatial 
patterns (since the coefficients ‘positions are kept in the image). The final top-20 hit-rate is 12.21 and the average 
reciprocal top-20 hit-rate is 2.53. The experiment takes, approximately, 1,5 hours to execute. 

 
7. Conclusions and future work 

Recommender systems, comprising the identification of the need and preferences of users, filtering the huge 
collection of data accordingly and displaying the best fitted options, are becoming more embracing. This study 
discusses and presents a framework used to implement a recommender system that proposes a personalized ranking 
of cancer drugs, combining the techniques of image processing for feature enhancement. The proposed framework 
has a first main stage that consists of measuring the user similarity, and a second main stage, consisting of the cancer 
drug recommendation. Then, two experiments are conducted. One using the original DNA microarray images and the 
another using wavelet transforms to pre-process the images before feeding them to the recommender system. 

The conducted experiments confirm the initial hypothesis that wavelet transformed DNA microarray images 
enhance the recommender system performance by improving the search of cancer cell lines with similar profile to the 
one of the new cancer cell line. In fact, regarding the baseline experiment (that uses the original DNA microarray 
images), experiment 2 (which uses the corresponding wavelet transformed images) has a top-20 hit-rate and an average 
reciprocal top-20 hit-rate, 4.5% and 3.89% respectively, higher. Moreover, experiment 2 takes only 5 percent of the 
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execution time of experiment 1. So, also from a computational point of view, experiment 2 is more efficient and more 
suitable for a real-world application.  

Therefore, we can conclude that properly chosen wavelet transformed DNA microarray images, not only uncover 
richer information for the users’ similarity search (with positive impact, as seen previously, in the recommendation 
task), but also efficiently compress the DNA microarray images, optimizing computational resources.     

Since only 2nd  level detail wavelet coefficients were used on this study, future research could investigate the 
effect of other variants of wavelet transformed DNA microarray images (e.g. simultaneous use of detail and 
approximation coefficients), with the scope of increasing even further the already existing gap between the evaluation 
metrics of the two experiments.  
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