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Abstract: Palygorskite is a natural fibrous clay mineral that can be used in several applications,
for which colloidal stability in aqueous suspensions is a key point to improve its performance. In this
study, methods of magnetic stirring, high-speed shearing, and ultrasonication, as well as differ-
ent chemical dispersants, combined with these methods, namely carboxymethylcellulose, alginate,
polyphosphate, and polyacrylate, were used to improve the dispersibility and the formation of
stable suspensions of palygorskite in different conditions of pH. The stability and particle size of
suspensions with a low concentration of palygorskite were evaluated by visual inspection, optical
and electron microscopy, dynamic light scattering, and zeta potential measurements. Moreover,
the palygorskite used in this work was initially characterized for its mineralogical, chemical, physical,
and morphological properties. It was found that more stable suspensions were produced with ultra-
sonication compared to the other two physical treatments, with magnetic stirring being inefficient in
all tested cases, and for higher pH values (pH of 12 and pH of 8, the natural pH of the clay) when
compared to lower pH values (pH of 3). Remarkably, combined with ultrasonication, carboxymethyl-
cellulose or in a lesser extent polyphosphate at near neutral pH allowed for the disaggregation of
crystal bundles of palygorskite into individualized crystals. These results may be helpful to optimize
the performance of palygorskite in several domains where it is applied.

Keywords: attapulgite; fibrous clay; dispersion; organic–inorganic hybrid; bionanocomposite

1. Introduction

Palygorskite is a natural clay mineral with fibrous morphology and an ideal formula
(Mg,Al,Fe)5Si8O20(OH)2(OH2)4·4H2O, whose structure is based on blocks alternating with
cavities (tunnels). The structural blocks contain two tetrahedral silica sheets, with the tetra-
hedra inverted from one sheet to the other, sandwiching a central octahedral sheet of metal
oxide-hydroxide, where the metal ions are mainly magnesium and aluminum, with iron
in a lesser extent. In the octahedral sheet, both hydroxyl ions and water molecules are
coordinated to metal centers, while the remaining water molecules occupy positions inside
the tunnels. The presence of tunnels with cross-sectional dimensions of 0.64 × 0.37 nm2 [1]
enables the retention of small organic molecules. The bonding between nonshared oxygens
from the tetrahedral silica sheets on the external surface of the particles and hydrogen
provides a high density of silanol groups on the particle surface [2].
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Several micro- and nanoscale applications for the palygorskite—namely in sorption
processes; catalytic, rheological, and environmental; in organo-mineral hybrid composites,
films, membranes, and bioplastics; for drug delivery; for tissue engineering; as a source of
supported carbonaceous materials; and as a component of sensor devices or bioreactors—
were collected by Galán (1996), Ruiz-Hitzky et al. (2013) and Wang and Wang (2016) [3–5].

The acicular individual particles of palygorskite have a propensity to aggregate in
water to form bundles and large aggregates, mainly through hydrogen bonding and van der
Waals interactions [3], which makes the preparation of stable colloidal dispersions of this
fibrous mineral difficult. In addition, fibrous minerals, because of their crystallochemical
structure, cannot be delaminated/exfoliated as plate-like minerals. The dispersion of
palygorskite thus represents an important issue to be solved before the processing of this
mineral, for which several strategies have been proposed. Wang and Wang (2016) compiled
recent progresses of methodologies used to improve dispersion of palygorskite and extend
its application [3]. The authors divided the disaggregation methods between dry and wet
methods. Dry methods include ball grinding/stone milling, extrusion, or ion-irradiation,
while wet methods (applied in a suspension of the mineral in a solvent) usually involve the
application of mechanical energy by high-speed shearing, ultrasonication or high-pressure
homogenization; wet and dry methods can be combined together. Chemical treatments may
also be applied, which involve (i) the addition of a chemical dispersant to the suspension
of the fibrous clay mineral; (ii) chemical functionalization of the palygorskite surface,
or (iii) acidification treatment to remove impurities inside the crystal bundles. Ideally, bulk
bundles and aggregates of palygorskite should be disrupted into smaller bundles or single
rods without damaging the crystal structure and length of nanorods.

Various examples of the aforementioned treatments can be specified. For instance, ul-
trasound was proposed as an effective treatment to disperse palygorskite in water, with the
apparent viscosity rising from ca. 20 to 54 mPa·s [6]. Ultrasonic cavitation causes intense
collisions within the palygorskite aggregates promoting its disaggregation. However,
under very extreme conditions of ultrasonication, the crystalline structure of palygorskite
is disturbed, and palygorskite particles reaggregate [7]. High-speed homogenization was
studied by Viseras et al. (1999). According to the authors, stable palygorskite dispersions
are difficult to produce by this method, and for a rotor speed of 8000 rpm (10 min), low to
medium viscosity gels were obtained [8]. On the other hand, high-pressure homogeniza-
tion appears to be an efficient approach to disaggregate crystal bundles of palygorskite,
as widely reported by Wang and coworkers [3]. The authors found that the bundles
could be disaggregated after homogenization at 30 MPa without significant changes of
the structure and aspect ratio of the crystals. Too high pressure (90 MPa) afforded a
perfect dispersion of the fibers, but it had a negative impact on their length, as shorter
fibers appeared [9]. Dispersion of the fibrous clay using this method was used to produce
nanocomposites [10].

The addition of chemical dispersants, by changing the charge and surface chemistry
of the individual particles (rods) of fibrous minerals, presents itself as an efficient approach
to improve and stabilize the dispersions of this type of clay, without damaging the crystal
structure. Chemicals such as sodium hexametaphosphate and phosphorus related com-
pounds were used for this purpose [3]. Cetyltrimethylammonium bromide was used to
render the palygorskite surface more hydrophobic and enhance dispersibility and compati-
bility with polymeric matrices [11]. In another study, several quaternary ammonium salts
with different lipophilicity were used to coat the palygorskite surface and improve compat-
ibility with an oil-based drilling fluid. A better lipophilicity of the surfactant led to better
dispersibility of palygorskite in the oil [12]. The chemical surface functionalization with
organosilanes (e.g., 3-glycidoxypropyltrimethoxysilane, 3-aminopropyltriethoxysilane,
3-mercaptopropyltrimethoxysilane, alkyl silanes) was also used to better disperse paly-
gorskite and enhance compatibility with several polymeric matrices [13–15].

An efficient disaggregation is crucial for expanding the use of fibrous-like clays,
e.g., in composite formulations with cellulose nanofibrils, where the matrix and filler
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must be homogeneously mixed [16], and in significantly enhancing the performance
of the resulting composites [17]. In the present work, two bio-based polyelectrolytes,
i.e., sodium carboxymethylcellulose (CMC) and sodium alginate, sodium polyphosphate,
and a hydrophobically modified poly(sodium acrylate) (HM-PAA), were evaluated in
terms of their efficiency as dispersing agents for palygorskite in water. CMC and alginate
were chosen considering their natural and biodegradable origin and their wide availability.
Sodium polyphosphate, as mentioned, is commonly used to disperse clay particles in
water, and the HM-PAA is an example of a water-soluble synthetic polymer. Additionally,
three distinct mechanical mixing systems (magnetic stirring, ultrasonication, and high-
speed shearing), and three different pH values were evaluated. With respect to the chemical
dispersants here addressed, it was reported the preparation of composites of palygorskite
with modified CMC (vinyl grafted) that have superabsorbent properties [18] and with
alginate to produce films [19] or foams for the removal of heavy metals [20]. However,
a comprehensive study of the effects of the addition of biopolymers/synthetic polymers on
the colloidal stability of palygorskite suspensions has not been yet provided.

2. Materials and Methods
2.1. Clay and Chemical Dispersants

A natural palygorskite sample taken from a deposit located in the department of
M’bour, in the region of Thiès (Senegal), south to Dakar, supplied by Tolsa, SA (Madrid,
Spain), was used in the present study. The raw material was submitted to preprocessing by
micronization in a roller mill to a final particle size >95% smaller than 45 µm, determined
by wet sieving, following the method described in API Spec 13A.

The following dispersing agents were used. (i) As bio-based polyelectrolytes, sodium
carboxymethylcellulose (CMC) and sodium alginate, both purchased from Sigma-Aldrich
(Merck), Algés, Portugal, were included. According to the supplier, the CMC has a
molecular weight of 250 kDa and a degree of substitution of 0.7, and the sodium alginate
was obtained from brown algae (Bioreagent, catalogue number 71238). No information
was provided for the molecular weight of alginate sample, for which we estimated a
value of ca. 280 kDa by rheometry measurements. (ii) As synthetic polyelectrolytes,
sodium polyphosphate (Emplura grade, catalogue number 106529) purchased from Sigma-
Aldrich (Merck) and hydrophobically modified poly(sodium acrylate) (HM-PAA) were
used. The polyacrylate with the commercial name Acusol 820, acquired from Rohm and
Haas, Philadelphia, PA, USA is a 30% emulsion based on 40% methacrylic acid, 50% ethyl
acrylate, and 10% stearyl oxypoly ethyl methacrylate.

All chemicals were used as received without any further purification.

2.2. Characterization of the Palygorskite

The sample used in this study was initially characterized for its mineralogical, chemi-
cal and physical properties. This characterization comprised the use of X-ray diffraction
(XRD), wavelength dispersive X-ray fluorescence (WDXRF) spectrometry, thermal analysis
by simultaneous thermogravimetry and differential scanning calorimetry, and Fourier
transform infrared–attenuated total reflection (FTIR-ATR) spectroscopy. Additionally,
the morphology of the particles was also evaluated by field emission scanning electron mi-
croscopy (FE-SEM). The protocols used for the characterization of the palygorskite sample
are the same as those described in detail previously for the characterization of sepiolite
samples [21].

2.3. Preparation of the Palygorskite Suspensions with Different Mechanical Dispersers and
Chemical Dispersants

First, aqueous suspensions of 1.0 wt % of palygorskite were prepared at room tem-
perature by adding the desired amount of clay powder into distilled water and stirring
at 200 rpm using a magnetic stirrer. After this, the chemical dispersant was added at a
concentration of 0.1 wt.%, under constant mixing. For comparison, experiments were
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also performed without the addition of chemical dispersant. Then, the suspensions were
submitted to different mixing systems, namely, a magnetic stirrer at 300 rpm for 20 min,
a high-shear disperser (Dispermat CV3-PLUS-E, VMA-Getzman GmbH, Reichshof, Ger-
many) at 5000 rpm for 15 min, or an ultrasound probe (Vibra-cell VC 505, Sonics, Newtown,
CT, USA) working at 60% amplitude and 1 s pulse, for 10 min. For some of the experiments,
the pH of the suspension was adjusted to either 3 (using HCl 1 M) or to 12 (using NaOH
1 M); the other experiments were performed without any pH adjustment (pH of original
clay is ca. 8). Then, the suspensions were left to stabilize for particle size determination,
zeta potential measurements, and microscopic analysis. The suspension stability was
evaluated for a period of 20 days.

2.4. Characterization of the Palygorskite Suspensions

Zeta potential measurements of the palygorskite suspension at different pH values
were carried out by electrophoretic light scattering in a Zetasizer Nano ZS ZN 3500 equip-
ment from Malvern (Malvern Instruments, Malvern, UK). An aqueous suspension of the
mineral sample (0.5%, w/v) was first stirred in a high-speed mechanical stirrer (Dispermat
CV3-Plus-E) at 3000 rpm for 15 min. The stirring was stopped and the zeta potential of
this suspension with a pH of ca. 7.5 was measured. Then, the suspension was placed
again under mechanical stirring for 8 min, after which the pH was adjusted either to
lower values by the addition of HCl (acidic series) or to higher values by the addition of
NaOH (alkaline series), and the zeta potential was immediately measured. This procedure
(i.e., mechanical stirring before pH adjustment) was repeated between measurements.
Measurements were done by taking the average of six repetitions. It is worth noting that
palygorskite suspension in water, without any added dispersants, is not stable. However,
high-speed mechanical stirring retards the settling of the palygorskite particles and enables
the measurement of their zeta potential. Different series of measurements were performed
in order to check the reproducibility of the results.

For the characterization of mineral suspensions, after the treatments referred to in
Section 2.3, the palygorskite suspensions at 1 wt % were diluted to 0.1 wt % using MilliQ
water and transferred to the measurement cell before the measurements.

To evaluate the size of the palygorskite particles in suspension, dynamic light scatter-
ing measurements were performed in the Malvern Zetasizer Nano ZS ZN 3500 equipment
(Malvern Instruments, Malvern, UK), with a 532 nm laser, using a backscatter angle of de-
tection of 173◦, at 25 ◦C. Stable palygorskite suspensions with the concentration of 0.1 wt %
were gently transferred to a glass cuvette and checked for the presence of bubbles. The par-
ticle size was determined from the intensity-weighted distribution (Di50) and based on
six repetitions. Data treatment to extract the size distribution and the polydispersity index
(PDI) was based on the non-negative least-squares (NNLS) algorithm and was obtained
through the Zetasizer Nano Software v7.12.

An Olympus BH-2 KPA microscope (Olympus Optical Co., Ltd., Tokyo, Japan)
equipped with a high-resolution CCD Olympus ColorView III color camera was used
to evaluate the homogeneity state of the suspensions. Samples were kept between cover
slips, illuminated with linearly polarized light and analyzed through a cross polarizer.
Microscopic images were captured and analyzed using the analySIS software v5.0 (Soft
Imaging System GmbH, Münster, Germany).

The dispersion state of the suspensions, and the morphology and size of the paly-
gorskite particles, after dispersion in aqueous media (as described in Section 2.3), were eval-
uated also by high resolution transmission electron microscopy (HR-TEM) in a JEOL
JEM-2100 instrument (Tokyo, Japan) with a LaB6 filament using an accelerating voltage of
200 kV. A small amount of suspension (10 µL) of each sample was deposited on carbon-
coated copper grids for HR-TEM analysis.
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2.5. Rheology of Aqueous Solutions of the Chemical Dispersants

Mechanical rheometry was used to assess the viscosity of aqueous solutions of the
dispersants. The rheological measurements were performed on a controlled stress rheome-
ter (Haake, Model RS1, Karlsruhe, Germany) coupled with cone-plate geometry (C60/1),
at a constant temperature of 20 ◦C. The temperature was controlled using a recirculation
bath (Haake Phoenix II, Karlsruhe, Germany). Flow curves of solutions of the different
dispersants, at two different concentrations, were obtained in a controlled stress mode
with shear stresses ranging between 0.05 and 100.0 Pa, depending on the viscosity of
the solutions.

3. Results
3.1. Characterization of the Palygorskite

The mineralogical composition of the studied palygorskite sample showed the pres-
ence of palygorskite as the main clay mineral and a wide range of contaminants, such as
quartz, opal-CT (hydrated cristobalite and/or tridymite), calcite, dolomite, and sepiolite.
A residual apatite-rich phase (hydroxylapatite-fluorapatite) was also discriminated. In the
~15.0–15.3 Å region, a not well-resolved maximum possibly related with the presence of
vestigial Mg,Ca-smectite occurred (Figure 1).
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Figure 1. XRD of the palygorskite with identification of the mineral phases.

The chemical composition of the studied material is presented in Table 1. The high
content of silicon, magnesium, aluminum, and iron evidenced the nature of this sample,
which is related to the presence of clay minerals, namely palygorskite (main clay mineral)
and sepiolite [Si12O30Mg8(OH)4(OH2)4·8H2O] as vestigial clay mineral. The silicon con-
tent also comes from quartz (SiO2) and opal-CT (SiO2·nH2O). The calcium can be mostly
attributed to calcite (CaCO3) and, with the additional presence of magnesium, to dolomite
[CaMg(CO3)2]. A relevant amount of phosphorous (~2 wt %), possibly associated to hy-
droxylapatite [Ca5(PO4)3(OH)] and/or fluorapatite [Ca5(PO4)3F], was quantified. The high
content of iron (~4 wt %) is common in other palygorskites, as identified by Middea et al.
(2013) [22].
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Table 1. WDXRF data (in wt %) of the palygorkite.

SiO2 53.0
MgO 8.9
Al2O3 7.0
CaO 4.7

Fe2O3 4.3
Na2O 0.14
K2O 0.30
MnO 0.02
TiO2 0.34
P2O5 1.8
SO3 0.04

F 0.47
Cl 0.04
Cr 0.06
V 0.03

LOI a 18.8
a LOI: loss on ignition at 1000 ◦C.

Figure S1 presents the thermogravimetric (TG) curve and corresponding derivative
(dTG) of the palygorskite. The first and major endothermic weight loss (~8.0%), detected
up to approximately 100 ◦C, is mainly due to the release of hygroscopic and a portion of
zeolitic water from palygoskite (main clay mineral). A second endothermic weight loss
(~2.6%), observed from ca. 100 to 225 ◦C, is attributed to the release of the remaining
zeolitic water. The dehydration of the coordinated water occurs in a third stage (~3.7%),
extending up to about 500 ◦C. A final endothermic weight loss step, from ca. 500 to
1000 ◦C (~4.7%), is related to the dehydroxylation of the hydroxyl groups [23–25] and to
the decarbonation of calcite [26] and dolomite [27]. The sepiolite (residual clay mineral) has
a thermal behaviour similar to that of palygorskite, as stated by Frost and Ding (2003) [23].
The total thermogravimetric weight loss (~19.0%) is in agreement with the loss on ignition
value (18.8%) obtained by WDXRF (Table 1).

The palygorskite was additionally characterized by FTIR-ATR spectroscopy (Figure S2).
The band at 3612 cm−1 is associated to the OH stretching in the Al2–OH, Mg2–OH, and
Al–Fe–OH modes, whereas the band at 3544 cm−1 is related to the OH stretching in the
Al-Mg–OH and Mg–Fe–OH modes [28]. A diffuse region between 3500 and 3000 cm−1 may
include bands attributed to adsorbed, zeolitic, and coordinated water. Two close bands
related to OH bending, observed at 1658 and 1647 cm−1, come from zeolitic and adsorbed
water, respectively [29]. A weak and broad band centered at 1432 cm−1 is most probably
associated with the ν3 (asymmetric stretching) vibration mode of the C–O bonds in carbon-
ate groups, which confirms the presence of calcite/dolomite as contaminants identified by
XRD. According to Frost et al. (2001) [30], the bands at 1193, 1086, and 1012 cm−1 can be
attributed to the Si–O stretching modes, whereas the bands at 974 and 911 cm−1 represent
the contribution of Mg–OH or Al–OH deformations.

The SEM microphotograph (Figure 2) clearly shows the general fibrous morphology
of the studied sample, composed of bundles and individual long rods with a thin diameter.
It could also be observed that there are some rhombohedral/prismatic shapes associated
with the contaminants present in the sample, such as calcite.

Zeta potential results for 0.5% (w/v) aqueous suspensions of clay are shown in Figure 3.
At pH 7.5 (initial pH), the zeta potential of the clay suspension was around −17 mV.
Typically, zeta potential tended to increase (in absolute value) with the increase of pH.
In fact, increasing the pH until 12 increased the zeta potential to −42 mV. However,
this variation was not straightforward, and from pH 7.5 to 9.5, zeta potential roughly
exhibited a plateau. From the initial pH down to lower pH values, the zeta potential
decreased slowly and approximately in a linear manner; at pH 3.5, it was −9 mV, and at
pH 1.5 it was −2 mV. The isoelectric point could not be detected within the studied pH
range. Although palygorskites from different origins may show different “purity” and
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surface properties, the present results compare well with other data on palygorskites. Zeta
potential values in water in the −15 to −25 mV range have been reported [22,31–34], being
the present value within this range. The absence of detected isoelectric point was also
observed for other palygorskite samples [22,35].

Figure 2. FE-SEM microphotograph of the palygorskite (×20,000).

Figure 3. Zeta potential as a function of pH for the palygorskite (different series of measurements
were performed, each one shown by a different color).

3.2. Characterization of the Palygorskite Suspensions

Figure 4 shows the macroscopic aspect and the corresponding optical microscopy
images of suspensions of palygorskite prepared using different dispersing equipment,
in the presence of sodium polyphosphate and without addition of chemical dispersant,
at natural pH (ca. 8), for 20 days after sample preparation.
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Macroscopically, it was clearly observed that there was an improvement in the sus-
pension stability with the use of a dispersing equipment of higher power, as is the case
of the ultrasonicator. The effect of the addition of a dispersing agent, polyphosphate,
only resulted in a significant improvement of the macroscopic dispersion stability when the
high-speed disperser was used. Additionally, a small decrease of the size of the particles
was observed by optical microscopy when the high-speed disperser was used, in compari-
son to the magnetic stirrer. Using ultrasonication, and in agreement with the macroscopic
colloidal stability of the obtained suspensions, the dispersed particles visualized by optical
microscopy are apparently smaller than the nonstabilized particles obtained using the
high-speed homogenization (Figure 4).

In Table 2, the results obtained for the particle size of the prepared suspensions
are summarized. Here, 18 out of 45 preparations generated stable and homogeneous
suspensions for 20 days or more after their preparation. Typically, most of the stable
suspensions were obtained using ultrasonication, whereas no stable suspensions were
obtained using the magnetic stirrer for the sample preparation. With high-speed shearing,
a few homogeneous suspensions (i.e., six) could also be obtained. The ultrasonicator was
the only method that could provide a high number of stable suspensions (twelve) for
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different pH values, which indicates its high efficiency for dispersing fibrous clay minerals,
as already outlined previously [36]. Regarding pH influence, an increase in the suspension
pH led to an increment in the number of stable suspensions, i.e., from 4 suspensions out
of the 15 investigated at pH 3, to 8 suspensions out of the 15 investigated at pH 12. It is
therefore possible to infer that the dispersions of palygorskite in water present two main
tendencies, i.e., the disaggregation and dispersion stability increase (1) as the power of
the dispersion equipment is increased, and (2) as the pH is increased. These trends can
be rationalized in the following way: (1) The increase in the power of the dispersing
equipment results in higher disaggregation of the micro- and nanoparticles, leading to
particles of a smaller size and also the formation of more stable suspensions. (2) The rise
of the pH causes an increase in the negative surface charge of the clay particles (Table 3),
derived from the ionization of hydroxyl groups or breakage of M–O–M bonds (M = Si, Mg,
or Al), which are favoured for highly alkaline pH [3]. An increase in the absolute charge
value, obtained by pH increment, will be favourable to enhance disaggregation and avoid
reaggregation of the particles in suspension, which can result in an enhanced stability of
the suspensions. It was also observed that for high pH (pH 12), using ultrasonication in all
cases or even high-speed disperser for most of the cases (experiments with polyphosphate,
polyacrylate and CMC) led to homogeneous aqueous phases of palygorskite during the
evaluated period of the time (20 days). These results clearly show the major influence of
the pH on the stability of the palygorskite suspensions.

Additionally, the particle size of the suspensions tended to decrease with a rise in pH
and the polydispersity index decreased as well, indicating a suspension with a narrower
distribution of the particle size (Table 2).

Two synthetic and two bio-based dispersing/stabilizing agents were evaluated. To un-
derstand whether the viscosity, which can be induced by the presence of those chemicals,
is a key factor in the stabilization of the palygorskite suspensions, the dispersants were
studied for their viscosity properties in an aqueous solution, in the absence of the mineral.
Measurements were made for two different dispersant concentrations and at the three
distinct pH values previously addressed (Figure S3). At the concentration of the disper-
sants used to stabilize the palygorskite suspensions (0.1 wt.%), all the solutions presented
very low viscosity, below ca. 18 mPa·s, independently of the pH of the solution, with the
exception of alginate at a low pH (pH of 3) due to alginate aggregation and gelation [37].
When increasing the concentration of the polymers (1.0 wt.%), it was possible to observe
very different behaviours, depending on the polymer nature and molecular weight. The
two bio-based polymers (CMC and alginate) presented similar behaviours and solution
viscosities of a similar magnitude for near neutral and alkaline pH (pH of 12), while they
were very different from each other at low pH (Figure S3c,d). CMC solutions did not face
gelation at pH 3, contrary to alginate, which is probably related to the alginate monomers
nature and higher chain rigidity. On the other hand, the synthetic dispersants showed
very different behaviour. Polyphosphate is a low molecular weight substance, and thus
the viscosity of its solutions is always very low, i.e., close to the solvent (water) viscosity
(Figure S3a). Polyacrylate behaviour is very dependent on the solution pH (Figure S3b). At
pH values above ca. 6.5, the polymer is extended, and the solutions containing 1.0 wt %
polyacrylate are very viscous, due to the high molecular weight of the polymer and the
formation of an entangled polymer network. At low pH values, the polymer collapses, and
the solution viscosity is very low, approaching that of water [38].
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Table 2. Particle sizes of palygorskite as a function of the different conditions used for preparation of the suspensions.

Mechanical Treatment
pH 3 pH 8 pH 12

Di50 (nm) PDI Di50 (nm) PDI Di50 (nm) PDI

Without dispersing agent
Magnetic stirring 2ϕ - 2ϕ - 2ϕ -

High-speed homogenization 2ϕ - 2ϕ - 2ϕ -
Ultrasonication 313 1.00 827 0.71 563 0.30

With 0.1% polyphosphate
Magnetic stirring 2ϕ - 2ϕ - 2ϕ -

High-speed homogenization 2ϕ - 544 * 0.25 286 * 0.26
Ultrasonication 837 0.96 506 0.27 330 0.25

With 0.1% polyacrylate
Magnetic stirring 2ϕ - 2ϕ - 2ϕ -

High-speed homogenization 2ϕ - 2ϕ - 1502 0.48
Ultrasonication 290 1.00 2ϕ - 509 0.27

With 0.1% CMC
Magnetic stirring 2ϕ - 2ϕ - 2ϕ -

High-speed homogenization 2ϕ - 1172 * 0.34 937 0.43
Ultrasonication 2ϕ - 485 0.27 552 0.34

With 0.1% alginate
Magnetic stirring 2ϕ - 2ϕ - 2ϕ -

High-speed homogenization 2ϕ - 1680 * 0.60 2ϕ -
Ultrasonication 659 0.71 2ϕ - 242 0.23

2ϕ—refers to two separate phases; * an aqueous phase with dispersed particles was found together with some amount of solid settled in the bottom of the tube.
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Table 3. Zeta potential values for palygorskite suspensions as a function of the different conditions used.

Mechanical Treatment
pH 3 pH 8 pH 12

Zeta potential
(mV) Zeta Deviation Zeta Potential

(mV) Zeta Deviation Zeta Potential
(mV) Zeta Deviation

Without dispersing agent
Magnetic stirring 2ϕ - 2ϕ - 2ϕ -

High-speed homogenization 2ϕ - 2ϕ - 2ϕ -
Ultrasonication −18 3.0 −20 3.1 −44 4.7

With 0.1% polyphosphate
Magnetic stirring 2ϕ - 2ϕ - 2ϕ -

High-speed homogenization 2ϕ - −47 3.2 −57 5.9
Ultrasonication −24 3.0 −35 4.7 −49 7.6

With 0.1% polyacrylate
Magnetic stirring 2ϕ - 2ϕ - 2ϕ -

High-speed homogenization 2ϕ - 2ϕ - −45 3.7
Ultrasonication −16 2.8 2ϕ - −50 5.0

With 0.1% CMC
Magnetic stirring 2ϕ - 2ϕ - 2ϕ -

High-speed homogenization 2ϕ - −47 3.8 −59 4.2
Ultrasonication 2ϕ - −53 4.3 −54 4.2

With 0.1% alginate
Magnetic stirring 2ϕ - 2ϕ - 2ϕ -

High-speed homogenization 2ϕ - −53 3.8 2ϕ -
Ultrasonication −23 3.7 2ϕ - −49 4.4

2ϕ—refers to two separate phases; zeta deviation is the standard deviation of the zeta potential measurements.
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It was observed that among the studied agents, polyphosphate and CMC enabled
the preparation of stable colloidal suspensions in a wider range of conditions. With poly-
acrylate and alginate, when only using ultrasonication but not at near neutral pH, or with
high-speed homogenization in one case each, it was possible to prepare stable suspensions
of palygorskite within the established 20-day period. Without the addition of any chemi-
cal dispersants, stable suspensions were obtained only when employing ultrasonication,
as high-speed homogenization was not effective. These observations indicate that the
viscosity of the solutions, induced by the presence of the stabilizers/dispersants, is not
the key factor to stabilize the palygorskite suspensions but the interactions between the
dispersing/stabilizing agents and the mineral nanocrystals.

To get a further insight into the morphology, aggregation, and size of the palygorskite
particles when dispersed at near neutral pH using ultrasonication, TEM images of the
suspensions prepared with and without the addition of chemical dispersant were obtained.
In Figure 5, significant differences in the micro and submicron particles of palygorskite
were observed, as a function of the type of dispersant added. In the micrograph for the
suspension prepared without chemical dispersants (Figure 5a), aggregated nanocrystals
could be observed, with sizes in the order of 500–800 nm in length and 25–30 nm in
thickness. “Face-to-face” aggregated bundles are observed, indicating that the disaggre-
gation was not fully achieved in the absence of a dispersing agent. With the addition of
polyphosphate, a better disaggregation was obtained. It was possible to observe single
crystals with 500–900 nm in length and 10–20 nm in thickness, as well as some “face-to-face”
aggregated crystals (Figure 5b). On the other hand, the use of HM-PAA (Figure 5c) led to
a similar disaggregation level of polyphosphate, but the bundles appeared as disordered
aggregates, revealing that this dispersing agent is able to disaggregate the crystal bundles
of palygorskite. Although due to the nature of this polymer, the suspension was not well
stabilized (formation of gel occurred), and aggregation was observed some days after the
suspension preparation (Figure S4). This behaviour was also observed when this dispersing
agent was used with sepiolite [21]. Conversely, the use of a bio-based polyelectrolyte as a
dispersant, i.e., CMC, led to a fully disaggregated suspension (Figure 5d). The nanorods
of palygorskite appear as individual rods with 250–600 nm in length and 10–20 nm in
thickness. Additionally, some breaking of nanocrystals can be anticipated, with this rupture
being induced by the power characteristics of the ultrasonicator operating by cavitation
phenomena. The cavitation is responsible for the good efficiency of disaggregation of paly-
gorskite bundles [39]; however, due to its great intensity, it can result in the size reduction
of individualized nanocrystals.

CMC and alginate are polymers with some similarities. In addition to both being
bio-based, they possess similar pKa values for their carboxylic acid groups (ca. 4.6 for
CMC and 4.5 for alginate, respectively [40]), and both are amphiphilic polymers in na-
ture [41,42], enabling different types of interactions between the clay and the biopolymers.
Thus, favourable interactions of the biopolymers with the clay particles, derived from
their nature, are expected to allow for a better stabilization and dispersion for palygorskite
particles in aqueous suspensions. However, as stated in a previous paper [21], alginate
possesses a higher degree of substitution by carboxyl groups than the used CMC (higher
electrostatic repulsion with the palygorskite fibers), and, additionally, it is based on a more
rigid structure (because of the presence of guluronate blocks with an axial–axial conforma-
tion). These characteristics limit the flattening of the alginate chains on the palygorskite
fibre surface and therefore also its behaviour as dispersing agent for this type of clay. Ac-
cordingly, only three successful stable colloidal suspensions of palygorskite were produced
when using alginate as a chemical dispersant. Considering the structural characteristics of
the biopolymers and palygorskite, the interactions involved are hypothesized to be mainly
hydrogen bonding between the hydroxyl groups of the biopolymers and the ionized silanol
groups on the outer surface of palygorskite. Water molecules bonded to the external metal
atoms in the octahedral sheet (coordinated water) may also interact with the biopolymers.
Direct interaction of the carboxyl functional groups from biopolymers with the clay surface
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may be less favoured, particularly for pH 8 and pH 12, once those groups are negatively
charged and the palygorskite surface is, overall, also negatively charged. However, after
the eventual biopolymer adsorption on the palygorskite surface, the negative charge of
the ionized carboxyl groups could be helpful in restraining the clay–clay aggregation, thus
enhancing the dispersion state of the palygorskite particles. In fact, better results were
obtained with CMC for higher pH values.
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dispersing agent, (b) with polyphosphate, (c) with polyacrylate, and (d) with CMC. TEM of the suspension with polyacrylate
was done using freshly prepared suspension, due to the high instability of this suspension with time. The scale bars represent
100 nm.

Polyphosphate is traditionally used as a dispersing agent for clay suspensions [43].
This compound presents a very low pKa value, being ionized and very negatively charged
in the entire range of studied pH [44]. It was thus expected that it could act as a good
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dispersing/stabilizing agent even at low pH, even though an excess of negative charge
may also limit a good interaction with the also negatively charged clay particles at higher
pH values. In fact, the present results obtained indicate a high ability for the dispersion
and stabilization of palygorskite particles in an aqueous suspension; this is much improved
compared to the experiments without a dispersing agent. Additionally, individualized crys-
tals were obtained at near neutral pH conditions, using ultrasonication. For the HM-PAA,
an apparent better performance at pH 12 was observed, where the polymer is extended
and can interact with the clay particles; specifically, two homogeneous suspensions using
ultrasonication and high-speed homogenization were obtained. This polymer possesses
hydrophobic modification, which leads to a shift in the expansion (less expanded) of
the polymer chain [38]; this may explain the poor stabilization effect observed for lower
pH values.

In summary, it can be stated that the use of ultrasonication is recommended to obtain
stable colloidal suspensions of palygorskite, and this usage typically worked for all pH
levels and chemical dispersants tested. High-speed shearing may also be used to improve
the disaggregation and stability of the suspensions of palygorskite in an aqueous medium,
if working with specific dispersants, such as CMC or polyphosphate (both at near neutral
pH and at high pH). On the other hand, regarding particle size (Figure 5 and Table 2),
for near neutral pH conditions, using CMC or polyphosphate provided a higher degree
of stabilization of individualized palygorskite fibers, in comparison to the experiments
without a chemical dispersant or with polyacrylate.

4. Conclusions

In the present work, a study was conducted that aimed at developing appropriate
conditions for the preparation of stable colloidal aqueous suspensions of palygorskite,
a mineral whose fibrous particles have a propensity to aggregate in water to form bundles
and large aggregates. Most of the palygorskite applications require the mineral to have a
good dispersion in water, namely when this mineral is used as a colloidal/stabilizing agent
or as a carrier of catalysts, or when used for superabsorbent materials, controlled drug
delivery, and tissue engineering, among other uses; this issue is particularly important
when dealing with the production of composites. The previous characterization of the
palygorskite sample showed it to be composed, aside from palygorskite, of several con-
taminants, such as quartz, opal-CT, calcite, dolomite, an apatite-rich phase, and sepiolite.
Of the three physical treatments employed (i.e., magnetic stirring, high-speed shearing,
and ultrasonication), ultrasonication was clearly the most effective procedure in generating
homogeneous and stable suspensions, with a low concentration of palygorskite, for at
least 20 days after their preparation. Some interesting results could also be obtained using
high-speed homogenization, although typically the prepared suspensions were not found
to be as stable for the same evaluated period of time as those prepared by ultrasonication;
on the other hand, magnetic stirring was completely ineffective. As a tendency, highly
alkaline medium (pH = 12) generated more stable suspensions, which is in agreement with
the more negative zeta potential value (−42 mV) of the palygorskite sample for this pH.
The biopolymer CMC and the polyphosphate were the chemical dispersants that worked
better among the tested ones. Overall, from the results of the present study, including
particle size assessment by dynamic light scattering and transmission electron microscopy,
ultrasonication combined with the addition of CMC or polyphosphate, at near neutral pH,
can be recommended for the preparation of suspensions of well-dispersed palygoskite
particles in water.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073
-4360/13/1/129/s1. Figure S1, Thermogravimetry (solid) and derivative (dashed) curves for the
palygorskite. Figure S2, FTIR spectrum of the palygorskite. Figure S3, Flow curves of the four different
dispersing agents at two different concentrations (1.0 wt % and 0.1 wt.%), at 20 ◦C: (a) Polyphosphate,
(b) Polyacrylate, (c) CMC, (d) Alginate. Figure S4, TEM image of 0.05 wt % palygorskite suspension
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prepared using the ultrasonic probe at pH ca. 8, with polyacrylate, taken 20 days after preparation of
the suspension.
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