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Abstract: In the current context of climate change, plants need to develop different mechanisms of
stress tolerance and adaptation to cope with changing environmental conditions. Temperature is one
of the most important abiotic stresses that forest trees have to overcome. Recent research developed
in our laboratory demonstrated that high temperatures during different stages of conifer somatic
embryogenesis (SE) modify subsequent phases of the process and the behavior of the resulting
ex vitro somatic plants. For this reason, Aleppo pine SE was induced under different heat stress
treatments (40 ◦C for 4 h, 50 ◦C for 30 min, and 60 ◦C for 5 min) in order to analyze its effect on the
global DNA methylation rates and the differential expression of four stress-related genes at different
stages of the SE process. Results showed that a slight decrease of DNA methylation at proliferating
embryonal masses (EMs) can correlate with the final efficiency of the process. Additionally, different
expression patterns for stress-related genes were found in EMs and needles from the in vitro somatic
plants obtained; the DEHYDRATION INDUCED PROTEIN 19 gene was up-regulated in response
to heat at proliferating EMs, whereas HSP20 FAMILY PROTEIN and SUPEROXIDE DISMUTASE
[Cu–Zn] were down-regulated in needles.

Keywords: Aleppo pine; conifers; DEHYDRATION INDUCED PROTEIN 19; epigenetics; priming;
SUPEROXIDE DISMUTASE [Cu–Zn]; 5-hydroxymethylcytosine; 5-methylcytosine

1. Introduction

As long-lived sessile organisms with complex life cycles, plants need to develop
different mechanisms of protection and adaptation for a broad range of biotic and abiotic
stresses in order to maximize growth, reproduction, and survival [1,2]. As well as genetics,
epigenetics has become an emerging and promising research field to understand tree
phenotypic plasticity and adaptive responses [3–7].

Alterations in epigenetic marks are reversible enzyme-mediated modifications of DNA
and/or associated histones that regulate transcriptional activity of genes as well as their
sequences [8–10]. The most studied epigenetic mark is DNA methylation because of its
stability, its incidence in both plants and mammals, and its influence on gene expression
and genome structure regulation [11].

Most epigenetics marks are reverted when the environmental constraints that triggered
them are no longer present. However, higher plants appear to be able to retain some “stress
memory” or “stress imprinting”, since a first stress exposure often leads to an enhanced
resistance to a later stress [12,13]. What is also known as “priming” or “hardening”, prior
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exposure to the eliciting factors leads to a faster and stronger induction of basal resistance
mechanisms (or greater tolerance) against them. In some cases, crosstalk among different
stimuli can happen, leading to multiple stress memory attainments (cross-priming) [14].
Heat is sometimes accompanied by other stresses, such as drought, and recent studies
showed that both stresses have overlapping roles [15–17].

Variations in epigenetic marks were revealed to be involved in morphological and
physiological changes in trees in a large number of processes, including embryogenesis,
organ maturation, phase change, and bud set or burst [18–21]. Moreover, epigenetic
regulation plays a critical role in modulation of multiple aspects of plant development
through the adjustment of gene expression in response to environmental factors [8].

Somatic embryogenesis (SE) is a worldwide studied biotechnology tool that allows
large-scale propagation for many conifers [22]. The first report of SE in Aleppo pine was
carried out in our laboratory [23]. Later, a subsequently developed experiment showed
that changes in temperature and water availability at the induction phase of SE affects the
success of the process in this species [15]. Considering those results, we focused on the
application of higher temperatures (40 ◦C (4 h), 50 ◦C (30 min), and 60 ◦C (5 min)) at the
initial stage of SE to see if a “priming” effect could be obtained. It was already found that
this stress application during SE induction can modulate the morphology and hormonal
profiles of embryonal masses (EMs) as well as the efficiency of the process itself [24].

Notwithstanding that stress affects plants at different levels and several defense
mechanisms are activated, it leads to the accumulation of reactive oxygen species (ROS)
that can reach toxic levels and cause cell damage and death [25]. To avoid this, plants have
evolved antioxidant machinery consisting of enzymatic components, such as superoxide
dismutase [26]. Additionally, as previously mentioned, heat is sometimes accompanied
with drought, and the dehydration-induced 19 family of proteins appears to be involved
in the response to both stresses [27,28]. Finally, the induction of heat shock proteins
(HSPs) seems to be essential to facilitate continued homeostasis and survival against heat
stress [29,30].

In this sense, in the present study, the effects of different temperature treatments applied
during the initial stage of Aleppo pine SE on the epigenetic patterns were evaluated. For this
reason, levels of cytosine residues 5-methylcytosine (5mC) and 5-hydroxymethylcytosine
(5hmC), both at proliferating EMs and at needles from the in vitro somatic plants produced,
were measured. At the same time, the expression of stress-related genes involved in the
defense mechanisms mentioned above was analyzed to assess if the initial heat stress
triggered long-lasting modifications at the transcriptome along the different stages of the
process.

2. Results
2.1. Global DNA Methylation/Hydroxymethylation Analysis

No statistically significant differences were found regarding global DNA methylation
rates (%) between samples from the different induction temperature treatments applied at
the initiation stage of P. halepensis SE (Table S1).

Regarding the results obtained for EMs, the treatment that presented the lowest levels
of 5mC was 60 ◦C (5 min) (37.52%), followed by the control (23 ◦C) (38.01%), and the
highest methylation rate was obtained at 50 ◦C (30 min) with a difference of 3.3% with
respect to the lowest (40.82%) (Table S2). The values obtained in needles were very similar
between treatments (Table S2). All samples presented high rates of global DNA methylation
(between 37.52 and 41.56%) (Table S2).

The detection of 5hmC was not possible in proliferating EMs, and it was only achieved,
at very low levels, in five out of twelve analyzed samples of needles from in vitro somatic
plants. Thus, no further analysis was carried out concerning hydroxymethylation data.
Even so, it should be noticed that three of the five detected values at needles corresponded
to the samples from the control (23 ◦C).
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2.2. Relative Expression of Stress-Related Genes

The different induction temperature treatments applied during the initial stage of
P. halepensis SE led to changes in the relative expression patterns of the stress-related genes
with respect to the control (23 ◦C).

The results found in proliferating EMs showed that statistically significant differences
were found for the relative expression of DEHYDRATION INDUCED PROTEIN 19 (DI19)
(Table S3); in both 50 ◦C (30 min) and 60 ◦C (5 min) treatments, despite the lower fold
change obtained (Figure 1a), the relative expression of this gene was considerably higher
than in the control treatment (23 ◦C). CHLOROPLAST SMALL HEAT PROTEIN (P439),
HSP20 FAMILY PROTEIN (P444), and SUPEROXIDE DISMUTASE [Cu–Zn] (SOD) were
slightly higher expressed in samples induced at higher temperatures when compared to
the control, except for SOD at the 50 ◦C treatment (Figure 1a), but these differences were
not significant.
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Figure 1. Fold-relative gene expression of four stress-related genes (P439, P444, DI19, and SOD)
between P. halepensis samples induced under different temperature treatments (40 ◦C, 4 h; 50 ◦C,
30 min; 60 ◦C, 5 min) from (a) proliferating embryonal masses (EMs); (b) needles from in vitro
somatic plants. Data are presented as mean values ± SE, and * represents statistically significant
differences at p < 0.05 of different temperature treatments with respect to the control (23 ◦C).
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In contrast, in needles from in vitro somatic plants, statistically significant differences
were found for the relative expression of P444 and SOD genes. A gradual decrease of P444
relative expression was observed when priming temperature increased, being significantly
repressed compared to control (23 ◦C) for the 60 ◦C treatment. Expression of the SOD
gene was lower in relation to the control (23 ◦C), but significant differences were only
detected in samples coming from the 50 ◦C treatment, which attained the highest fold
change (Figure 1b). P439 and DI19 were slightly down-regulated at samples induced at
higher temperatures when compared to the control (23 ◦C), but these differences were
not significant. In conclusion, induction of SE at higher temperatures resulted in different
relative expression patterns of these stress-related genes in proliferating EMs and in needles
from in vitro somatic plants. At proliferating EMs, the stress-related genes studied were
generally overexpressed in primed plant material, whilst in the in vitro somatic plants
obtained, their expression was lower in primed than in control.

3. Discussion

Accumulating data have shown that epigenetics changes are involved in many phys-
iological processes, and the understanding of these mechanisms is crucial for forest tree
management and breeding in the context of climate change [31–33]. One of the most
important epigenetic marks is DNA methylation. It occurs through the addition of a
methyl group at position 5 of the pyrimidine ring of cytosine in the CG, CHG, and CHH
(where H = A, T, or C) contexts [34,35], and understanding how its levels change under
stressful conditions can lead to a better knowledge of the plant response to environmental
changes [11,36]. Considering the use of epigenetic variations for breeding applications
relies on their transmission features, and since 5mC patterns can be transmitted through
mitosis as well as meiosis, this DNA methylation mark could be valuable in all crops
regardless of their propagation method [37]. In this sense, the concentrations of 5mC and
5hmC were assessed in order to perform a global DNA methylation study in samples from
proliferating EMs and needles from in vitro somatic plants of Aleppo pine induced under
high temperatures.

No statistically significant differences in methylation status were found between the
induction treatments applied. Nonetheless, at proliferating EMs, a difference of 3.3% was
found between the 60 ◦C (5 min) treatment that presented the lowest concentrations of
5mC with respect to the highest methylation rate obtained at 50 ◦C (30 min). In Pinus
nigra, specific DNA methylation levels were analyzed in tissues with different embryogenic
potentials, and the lowest levels were found in those with higher embryogenic capacity [38].
In Coffea canephora indirect SE, 5mC rates were stable during cell differentiation, and a
significant increase occurred during somatic embryos regeneration [39]. Several studies
suggest that DNA methylation is critical for SE success, and it is common to find lower
values in embryogenic tissues with respect to the non-embryogenic tissues [5,40,41]. Taking
this into account and correlating the results presented here with the ones obtained in a
previous study, where the effect of Pinus halepensis SE induction under high temperatures
on the efficiency of the process was assessed, we can reaffirm this plausible hypothesis.
The highest number of somatic embryos produced was obtained in EMs from the 60 ◦C
(5 min) treatment (a mean of 317.4 somatic embryos per gram) followed by those from the
control; the lowest number was gained when a priming treatment of 50 ◦C (30 min) was
applied (a mean of 135.2 somatic embryos per gram) [24].

Considering the effect of heat stress on the variation of DNA methylation levels,
different species and cell types display different responses. In a similar study, performed
with P. radiata, the same decrease in samples induced at the highest temperature of 60 ◦C
(5 min) compared to the control temperature and the 40 ◦C (4 h) treatment was found [42].
On the contrary, in Norway spruce, seedlings originating from a warm embryonic envi-
ronment [43] and the exposure of Arabidopsis plants to heat [44] resulted in an increase of
global DNA methylation. Interestingly, also in Arabidopsis, DNA methylation increased
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during heat stress, followed by the reduction of DNA methylation levels after transfer to
the control conditions [36].

Needles presented slightly higher concentrations of 5mC relative to EMs, and the
global DNA methylation values were stabilized between treatments at this stage. This is in
accordance with the fact that a gradual increase in DNA methylation throughout ageing
was previously reported for several forest trees [45,46]. In P. radiata needles from field trees,
DNA methylation increased with both ageing and phase change [47]. In contrast, 5mC
levels in proliferating EMs and needles from one-year-old somatic plants of P. radiata were
similar [42].

The 5hmC was detected in needles from in vitro somatic plants of Aleppo pine. As
reviewed in [48], numerous studies indicate that 5hmC acts not only as an intermediate dur-
ing 5mC demethylation but also plays important roles during maintenance of pluripotency
in animal embryonic stem cells; however, in plants the roles of 5hmC during development
are still unknown. The first discovery of its presence in conifers was in Norway spruce [49],
and it was found that its concentration can fluctuate not only at different tissues but also at
different temperatures in P. radiata [42].

The differential expression of stress-related genes (P439, P444, SOD, and DI19) in
primed plant material was also assessed in this study. To respond and adapt to different
stresses, plants have developed a complex of molecular mechanisms by modulating the
expression of a specific set of genes [11,33,50,51], and we found that differential expression
patterns changed between the two stages of the propagation process analyzed.

Regarding the relative expression of the stress-related genes in proliferating EMs,
statistically significant differences were only found for DI19. A gradual increase at the
relative expression of this gene along the higher temperature treatments was found and
in EMs initiated at 50 ◦C (30 min) and 60 ◦C (5 min) was considerably higher than in
the control (23 ◦C). The DI19 family of proteins is a novel type of Cys2/His2 zinc-finger
proteins involved in the response to several abiotic stresses, especially drought [52]. In
Populus simonii, it was found that there is an overlapping heat–drought response [53], and
our results suggest that DI19 overexpression is involved in the abiotic stress response in P.
halepensis. In accordance, in rice, the overexpression of the DI19-4 resulted in significantly
increased tolerance to drought stress [54], and in Arabidopsis, DI19-1 overexpressing lines
presented higher tolerance to drought stress than the wild-type lines [55]. On the other
hand, in P. radiata emerging EMs induced at higher temperatures, DI19 initially presented
similar levels to control; however, after 4 weeks, actively proliferating EMs induced at 40 ◦C
(4 h) were significantly underexpressed [42]. In another study in Arabidopsis, transgenic
lines with DI19–3 overexpression were more sensitive to salinity and drought than wild-
types [52]. It appears that different protein members of this family, despite being clearly
involved in stress response mechanisms, may have different functions unknown yet.

No differences were obtained in proliferating EMs for P439, P444, and SOD. However,
needles from in vitro grown somatic plants showed statistically significant differences in
transcript abundance for both P444 and SOD genes. The relative expression of these genes
was lower in plants coming from EMs initiated at high temperatures when compared to
the control plants. Heat stress severely affects the stability of various cellular components,
causing a state of metabolic imbalance and a cascade of cellular reactions. This disruption
of the steady-state flux of cellular metabolites usually leads to the accumulation of toxic
products, such as ROS [50,53]. Furthermore, HSPs are closely involved in cellular protec-
tion, its structures and responses to heat stress being highly conserved amongst several
organisms [29,56]. According to this, in maritime pine, when heat priming was performed
at immature megagametophytes through SE, similar levels of expression were observed in
primed and control EMs for HSP70 and SOD, but the expression of HSP70 at the derived
in vitro somatic plants was higher in control plants [57]. In P. radiata, the gene coding for a
heat shock protein (HSP20) was down-regulated in proliferating EMs and somatic plants
coming from EMs initiated at high temperatures [42]. In contrast, P. radiata one-year-old
seedlings subjected to heat treatments showed significantly higher short-term expression
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of P439 and P444 [58]. Different sampling times, as well as different tissues, seem to lead to
different relative expressions of stress-related genes. Taking this into account, we suggest
that in P. halepensis stress-related gene overexpression may happen during and/or shortly
after the heat stress occurs. With time and at different tissues, the priming effect leads to
their stabilization and their lower expression relative to controls.

Finally, it is important to note that different patterns of stress-related genes relative
expression have been observed. In this sense, DI19 presented a gradual increase along
the higher temperatures at EMs and P444 a gradual decrease in the needles from in vitro
somatic plants. In its turn, SOD was significantly repressed in needles sampled in plants
derived from priming at 50 ◦C (30 min), while those from plants primed at 60 ◦C (5 min)
showed expression rates similar to non-primed plants. When the effect of these temperature
treatments in EMs endogenous cytokinin (CK) profiles was assessed in a previous work
on this species, diverse patterns were also found for different CKs [24]. Those results
were related to the different induction times between treatments and the concept that for
some CKs, temperature treatments acted as short or mild stress, while for others they were
sensed as a prolonged or more severe stress. In Arabidopsis, heat stress has been connected
with fluctuations in the endogenous levels of CKs and ABA that seem to be involved in
HSPs regulation [59]. It is possible that an interaction between CKs and the regulation of
other stress-related genes, in response to heat stress, also occurs in P. halepensis.

4. Materials and Methods
4.1. SE Temperature Experiment and Plant Material Collection

Induction of Pinus halepensis EMs under different temperatures was performed as
described in [24]. Briefly, one-year-old green female cones, enclosing immature seeds of P.
halepensis from five open pollinated trees were used; storage and preparation of plant mate-
rial was the same as described in [60]. Whole megagametophytes were placed horizontally
on DCR initiation medium [61]. For temperature treatments, closed Petri dishes containing
initiation medium were preheated for 30 min, and immature megagametophytes were
cultured at 40, 50, and 60 ◦C for 4 h, 30 min, and 5 min, respectively. As control, 23 ◦C
was used, and, after the application of the different treatments, all explants were kept at
standard conditions in darkness.

After nine weeks on the initiation medium, proliferating EMs were detached from
the megagametophyte and transferred to the proliferation medium. This medium had the
same composition to that used in the initiation stage, but a higher gellan gum concentration
(4.5 g L−1). EMs were subcultured every two weeks and kept in the dark.

Following 4 subcultures, fresh tissue from twenty proliferating embryogenic cell
lines (ECLs) were immersed in liquid nitrogen and immediately stored at −80 ◦C until
further analysis. Eight/nine ECLs per treatment were selected to maturation at DCR
medium supplemented with 60 g L−1 sucrose, 75.0 µM abscisic acid, the EDM amino acid
mixture [62], and 9 g L−1 Gelrite®.

For germination, somatic embryos were transferred to Petri dishes containing half-
strength macronutrient LP medium [63,64] supplemented with 2 g L−1 of activated charcoal
and 9.5 g L−1 Difco® granulated agar (Becton Dickinson, Franklin Lakes, NJ, USA). Cul-
tures were cultured under dim light for 7 days and afterwards were kept under a 16:8 h
photoperiod at 100 µmol m−2 s−1 provided by cool white fluorescent tubes (TFL 58 W/33,
Philips, France). The obtained plantlets were transferred onto fresh medium of the same
composition every 4 weeks. During the first 8 weeks, plantlets were cultured in Petri dishes
and then transferred to glass culture vessels. After 6 months, needles from in vitro somatic
plants from eleven ECLs were immersed in liquid nitrogen and immediately stored at
−80 ◦C until further analysis.

4.2. Global DNA Methylation/Hydroxymethylation Analysis

Genomic DNA extraction and subsequent methylation analysis were performed both
on samples from twenty proliferating EMs and needles from in vitro somatic plants from
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eleven ECLs (comprising five samples of EMs and three samples of needles, per treatment).
Previously collected samples were lyophilized, and 15 mg of homogenized lyophilized
tissue were used.

DNA extraction and its hydrolyzation were performed as described in [42].
Methylation and hydroxymethylation levels of cytosine were analyzed on a 1200 Series

HPLC system coupled to a 6410 Triple Quad mass spectrometer (Agilent Technologies,
Santa Clara, CA, USA). The chromatographic separation was performed on a Zorbax SB-
C18 column (2.1 × 100 mm, 3.5 µm, Agilent Technologies). The mobile phase was 11%
methanol and 0.1% formic acid in water, and 5 µL of samples were injected in the column
at a flow rate of 0.1 mL min−1. The electrospray ionization source (ESI) was operated in
the positive ion multiple reaction monitoring mode (MRM) set to an ion spray voltage of
3500 V, 40 psi for nebulizer, and source temperature at 350 ◦C. The intensities of specific
MH+→ fragment ion transitions were recorded (5mC m/z 242→126, 5hmC m/z 258→142,
and C m/z 228→112). Identification of cytosine, 5mC, and 5hmC was assessed by injection
of commercial standards (5-Methylcytosine and 5-Hydroxymethylcytosine DNA Standard
Set, Zymo Research, Irvine, CA, USA) under the same LC-ESI-MS/MS-MRM conditions.
The percentage of 5mC and 5hmC at each sample was calculated from the MRM peak area
divided by the combined peak areas for 5mC, 5hmC, and cytosine.

4.3. Relative Expression of Stress-Related Genes

RNA extraction and further analysis of expression patterns from stress-related genes
were performed on samples from sixteen proliferating EMs and needles from in vitro
somatic plants from eleven embryogenic lines (comprising four samples of EMs and
three samples of needles, per treatment). As initial material, 10 mg of lyophilized tissue,
previously grinded for homogenization in a TissueLyser II (Qiajen, Hilden, Germany), were
used. The analysis was performed based on the protocol described in [42].

Total RNA extraction was carried out using a plant/fungi total RNA purification kit
(Norgen Biotek Corp., Thorold, ON, Canada), and genomic DNA was degraded by using
recombinant DNase I (RNase-free, Takara Bio Inc., Shiga, Japan), following manufacturer’s
instructions. A NanodropTM 2000 was used for RNA quantification, and its integrity was
assessed by agar gel electrophoresis.

cDNA was synthesized from 1000 ng of RNA using the PrimeScript RT Reagent Kit
(Takara) and random hexamers as primers following the manufacturer’s instructions. Real
time PCR amplifications were performed in StepOne Plus (Applied Biosystems, Carlsbad,
CA, USA), using a final volume of 20 µL containing 0.8 µM of each primer and 10 µL of
SYBR Green I Master mix (Takara Bio Inc., Shiga, Japan) in triplicate for each sample. The
PCR conditions were an initial denaturation at 95 ◦C for 20 s, followed by 40 cycles of 95 ◦C
for 3 s and 60 ◦C for 30 s.

Primers previously described [28,58] were used and their efficiencies estimated using
the qPCR Efficiency Calculator available at Thermofisher.com, based on the standard curve
previously developed with four dilution points for each primer. Analyzed genes as well as
primers details are summarized in Table 1.

Table 1. List of primers used in quantitative real time PCR (qRT-PCR) for relative expression analysis. Names of the genes,
forward and reverse primer sequences, and melting temperatures of primers are described.

ID Name Forward (5′ → 3′) Reverse (5′ → 3′) Tm (◦C)

ACT ACTIN CACTGCACTTGCTCCCAGTA AACCTCCGATCCAAACACTG 60

P439 CHLOROPLAST SMALL HEAT
PROTEIN AAGTTGTCGGTTCGAACCCC CAGAACACCGTCCTCCACAG 62

P444 HSP20 FAMILY PROTEIN TTTCCGACTTCTTCACGGGG TTTGACAGTCCCGGCATGTC 62

DI19 DEHIDRATION INDUCED
PROTEIN 19 ATAGATGCCCATGCTGTGTAG CTTCCCTCTGTTCCCACTTG 54

SOD SUPEROXIDE DISMUTASE
[Cu–Zn] ACAAAACGGGTGCATGTCAAC CCCATCCGCTCCTACAGTTAC 66
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The relative transcript levels were normalized using ACTIN (ACT), and the relative
expression of each gene (R) was calculated on the basis of ∆Ct values using the following
formula: R = 2−∆Ct [65]. Finally, the fold changes between expression values obtained at
control treatment (23 ◦C) and different temperature treatments were calculated in logarith-
mic scale.

4.4. Statistical Analysis

A one-way analysis of variance, through the application of the non-parametric Kruskal–
Wallis test, was carried out to assess the effect of different temperature treatments both
for total DNA methylation rates (%) and for genes’ relative expression values. When
significant differences were found (p < 0.05), Dunn’s multiple comparison test was carried
out to find out which treatments were statistically different.

5. Conclusions

As far as it is known, this is the first report concerning the effect in DNA methylation
and expression of stress-related genes in response to heat stress application during SE
induction in Aleppo pine.

Regarding the DNA methylation results, the temperatures treatments applied were
not enough to provoke significantly different levels of DNA methylations at the analyzed
samples. Nonetheless, it is important to note that the treatment that presented the lowest
methylation level was also the one that produced the highest number of somatic embryos
(60 ◦C, 5 min) [24]. It appears that lower levels of DNA methylation/DNA hypomethylation
are associated with higher embryogenic capacity and, therefore, with a higher number of
somatic embryos produced.

Concerning the application of high temperatures at the early stage of P. halepensis SE
at the expression of stress-related genes, long-term changes in the differential expression
of stress-related genes, specifically DI19, P444, and SOD, at different stages of SE were
found. Despite the fact that the pattern of overexpression of primed EMs and lower
expression of primed needles were consistent, it appears that different induction times
between treatments had an effect on the relative expression of the stress-related genes
studied.

Further analysis concerning the effect of heat stress application during the induction
phase of P. halepensis SE regarding its effect on metabolomics and protein profiles will be
performed. This data can lead to a better understanding of all the mechanisms involved on
the heat stress response in this species.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants10112333/s1, Table S1: One-way analysis of variance for methylation rates (%) detected
in P. halepensis embryonal masses (EMs) and needles from in vitro somatic plants induced under
different temperature treatments (23 ◦C, 9 weeks; 40 ◦C, 4 h; 50 ◦C, 30 min; 60 ◦C, 5 min). Table S2:
Total methylation rates (%) detected in P. halepensis proliferating embryonal masses (EMs) and needles
from in vitro somatic plants induced under different temperature treatments (23 ◦C (control); 40 ◦C,
4 h; 50 ◦C, 30 min; 60 ◦C, 5 min). Table S3: One-way analysis of variance for expression of different
genes detected in P. halepensis embryonal masses (EMs) and needles from in vitro somatic plants
induced under different temperature treatments (23 ◦C, 9 weeks; 40 ◦C, 4 h; 50 ◦C, 30 min; 60 ◦C,
5 min).
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1. Baránek, M.; Křižan, B.; Ondrušíková, E.; Pidra, M. DNA-methylation changes in grapevine somaclones following in vitro culture

and thermotherapy. Plant Cell Tissue Organ. Cult. 2010, 101, 11–22. [CrossRef]
2. Edreva, A.; Velikova, V.; Tsonev, T.; Dagnon, S.; Gürel, A.; Aktaş, L.; Gesheva, E. Stress-protective role of secondary metabolites:
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56. Efeoǧlu, B. Heat shock proteins and heat shock response in plants. Gazi. Univ. J. Sci. 2009, 22, 67–75.
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