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Abstract: Several classes of polysaccharides have been described to have hypocholesterolemic po-
tential, namely cholesterol bioaccessibility and bioavailability. This review will highlight the main
mechanisms by which polysaccharides are known to affect cholesterol homeostasis at the intestine,
namely the effect (i) of polysaccharide viscosity and its influence on cholesterol bioaccessibility;
(ii) on bile salt sequestration and its dependence on the structural diversity of polysaccharides;
(iii) of bio-transformations of polysaccharides and bile salts by the gut microbiota. Different quanti-
tative structure–hypocholesterolemic activity relationships have been explored depending on the
mechanism involved, and these were based on polysaccharide physicochemical properties, such as
sugar composition and ramification degree, linkage type, size/molecular weight, and charge. The
information gathered will support the rationalization of polysaccharides’ effect on cholesterol home-
ostasis and highlight predictive rules towards the development of customized hypocholesterolemic
functional food.

Keywords: polysaccharides; chitosan; β-glucans; cholesterol homeostasis; viscosity; bile salt seques-
tration; microbiota; hypocholesterolemic ingredients; fiber

1. Introduction

Cholesterol related diseases are responsible for high levels of death and impairment
worldwide [1]. Although there are synthetic drugs available to control cholesterol blood
levels, which can promote adverse side effects [1–3], natural origin hypocholesterolemic
food ingredients can act synergistically, aiding their use. Polysaccharide-based ingredients
such as β-glucans are currently used as hypocholesterolemic food ingredients, with health
claims accepted by European Food Safety Agency (EFSA) and Food and Drug Administra-
tion (FDA) [4]. Industry and scientific players continue to seek the development of selective,
effective, and low-cost compounds with a wide range of applications in food matrices.
The research on the development of new polysaccharides with hypocholesterolemic poten-
tial is very active, being focused mainly on finding new sources of polysaccharides with
cholesterol reducing properties, based on new food products and customizing potential
hypocholesterolemic polysaccharides by physicochemical and biochemical methods.

Cholesterol present in the human body has two main sources, namely the diet and
that endogenously produced at the liver, accounting for one and two thirds, respectively, in
a total daily of 1800 mg [5]. Dietary cholesterol may occur as free or esterified cholesterol.
Here, the latter need to be deesterified by cholesterol esterase, in order to be able to be

Molecules 2021, 26, 4559. https://doi.org/10.3390/molecules26154559 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-8020-5994
https://orcid.org/0000-0003-3076-9905
https://orcid.org/0000-0001-7217-2790
https://orcid.org/0000-0001-8898-6342
https://orcid.org/0000-0001-9498-2460
https://doi.org/10.3390/molecules26154559
https://doi.org/10.3390/molecules26154559
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26154559
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules26154559?type=check_update&version=2


Molecules 2021, 26, 4559 2 of 17

absorbed [6]. Prior to absorption, both cholesterol sources are emulsified by the action
of bile salts (BS), fatty acids, and phospholipids among others, forming different dietary
mixed aggregates, suffering different disassembly processes. These reassemble into mixed
micelles prior to absorption [7,8]. Polysaccharides can affect cholesterol homeostasis, de-
pending on their intrinsic physicochemical characteristics, such as viscosity, molecular
weight, solubility, and charge among others, as well as sugar composition, ramification,
and sugar linkages. The effects are mostly through BS sequestration and/or through
active moieties produced by polysaccharide fermentation by gut microbiota [9–14]. Re-
garding dietary cholesterol, the inhibition of cholesterol esterase by polysaccharides in
intestinal lumen has been described to affect cholesterol bioavailability [6]. It is therefore of
paramount importance to understand the mechanisms of action by which polysaccharides
affect cholesterol bioaccessibility, but also how they can affect cholesterol biosynthesis, as
well as possible synergies between the different known hypocholesterolemic mechanisms.
One of the most described mechanisms that affects cholesterol homeostasis concerns the
effect of polysaccharides on the viscosity of the intestinal lumen content. This rise of
viscosity affects the diffusion of dietary mixed micelles loaded with cholesterol towards
the intestinal epithelium membrane, limiting cholesterol bioavailability [13,14]. Moreover,
the sequestration of BS by polysaccharides is relevant as a hypocholesterolemic strategy,
because the lower amount of bile salts in solution reduces the emulsification power towards
cholesterol, leading to its precipitation and consequent excretion into the feces [15]. The higher
excretion of BS also leads to a lower extent of BS enterohepatic recirculation at ileum, which
in turn increases the conversion of endogenous cholesterol produced at the liver to primary
bile salts, namely cholic and chenodeoxycholic acids conjugated with glycine [16]. Another
important mechanism regarding the hypocholesterolemic potential of polysaccharides con-
cerns their fermentation by microbiota and their resulting metabolites. This generates short
chain fatty acids (SCFA), which interfere with cholesterol biosynthesis, and convert primary
into secondary BS, relevant for cholesterol emulsification [17–19]. Figure 1 shows a schematic
description of cholesterol homeostasis steps, focusing on non-systemic hypocholesterolemic
strategies affecting cholesterol bioaccessibility at intestinal lumen and systemic strategies
which are related to the effect of bioavailable metabolites towards the blood stream and their
influence on the endogenous cholesterol production at liver.
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This work addresses the structure of hypocholesterolemic polysaccharides from both
in vitro and in vivo experiments and, whenever possible, clarifies their possible mecha-
nisms of action. The work is divided into three main sections: (1) Polysaccharide viscosity
and its influence on cholesterol bioaccessibility; (2) Bile salts sequestration and its depen-
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dence on the structural diversity of polysaccharides; (3) Microbiota bio-transformations of
polysaccharides and BS: hypocholesterolemic implications.

2. Polysaccharides Viscosity and Its Influence on Cholesterol Bioaccessibility

Cholesterol solubilization at intestinal lumen by mixed micelles composed of BS and
dietary components is a mandatory process for cholesterol to reach the intestinal epithe-
lium, where it may be absorbed by simple diffusion or through the action of cholesterol
transporter (e.g., Niemann Pick C1 L1) [5]. Polysaccharides, usually present in the human
diet, have an impact on micelle diffusion and therefore on cholesterol bioaccessibility.
They can affect intestinal lumen viscosity due to their ability to thicken or form gels po-
tentiated by physical entanglements, dependent on the monomeric units that compose
the polysaccharide.

Several polysaccharides (both neutral and charged) are described to affect viscosity,
such as β-glucans, galactomannans, glucomannans, arabinoxylans, pectin, alginate and
chitosan (Table 1). β-Glucans are commonly found in the cell walls of cereals, fungi
(mushrooms and yeast), some bacteria, and seaweed (Figure 2).
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diversity.

Cereal β-glucans, such as those from oat and barley, are composed by glucose residues
in (β1→ 4) glycosidic linkages, forming cellotriosyl (3 glucose residues) and cellotetraosyl
(4 glucose residues) domains, intercalated by (β1→ 3) glycosidic linkages. The presence of
(β1→ 3) linkages in cereal β-glucans prevents the formation of hydrogen bonds between
the polymeric chains, promoting their solubility in water, contrarily to cellulose which is
only composed by (β1→ 4) glucose linkages. The proportion of cellotriosyl/cellotetraosyl
domains are 2 for oat and 3 for barley [20]. β-glucans with lower proportion of cellotrio-
syl/cellotetraosyl are more viscous. For example, a solution of 1.5% oat β-glucans with a
molecular weight of 1584 kDa has a viscosity of 4500 mPa.s, whereas barley β-glucans with
a similar molecular weight (1300 kDa) leads to a solution viscosity of 2600 mPa.s, measured
at the same shear rate (20 s−1) (Table 1). Due to their viscosity, oat β-glucans have a high
capacity to decrease the mobility of cholesterol solubilized in dietary micelles through
intestinal lumen and this has been shown to lower serum cholesterol [21]. High viscosity
oat β-glucan (2930 mPa.s) has been shown to decrease serum LDL cholesterol [22].

Fungi β-glucans, namely from yeast and mushrooms, are composed by (β1 → 3)-
glucose residues, with side chains linked at O-6. The average molecular weight of yeast
β-glucans, namely from Saccharomyces cerevisiae, was shown to be 175 kDa with a viscosity
of 66 mPa.s. A decrease of molecular weight to 28 kDa leads to a viscosity of approximately
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half (Table 1) [23], showing that depolymerized polysaccharides still generate viscous
aqueous solutions. Mushroom β-glucans, such as from Agaricus bisporus, with a reported
average molecular weight of 181 kDa, quite resembling yeast β-glucans, present a higher
viscosity, i.e., 191 mPa.s [24], than that reported for S. cerevisiae. The range of viscosity
determined for these fungi polysaccharides is much lower than the one described for cereal
β-glucans. Nevertheless, a potential decrease in cholesterol bioaccessibility can be expected,
explaining the observed decrease of serum cholesterol in hyperlipidemia rat models using
yeast β-glucans [25]. Laminarans (or laminarins, the old name) are also β-glucans. They
occur in brown seaweeds and, similarly to fungi, are composed by linear (β1→ 3)-glucose
residues with some (β1→ 6) ramifications. However, their ramifications are mainly single
residues, and their reducing end can have mannitol. Laminarans low molecular weight
(2–7 kDa [26]) and the occurrence of ramifications, render these polysaccharides highly
soluble in water. These characteristics may explain the lack of information regarding
laminarans dynamic viscosity and absence of hypocholesterolemic activity.

β-glucans can also have origin in bacteria, such as curdlan, an exopolysaccharide
derived from Alcaligenes faecalis fermentation, composed by linear (β1 → 3)-glucose
residues, forming a triple helix with an average molecular weight of 1.1 MDa. This polysac-
charide is not soluble in aqueous solutions. However, in alkaline medium, it can be solubilized
due to the increase of flexibility of the β-glucan chains, probably due to the breakdown of
hydrogen bonding. Even for polysaccharides with a molecular weight of 2.5 MDa, solubilized
in a 0.5 M NaOH solution, the viscosity seems to be low (average viscosity 30 mPa.s, measured
at a shear rate of 100 s−1) [27]. Although curdlan has been reported to have cholesterol
lowering potential [28], the viscosity values determined for this polysaccharide do not
seem to be relevant for its hypocholesterolemic properties.

Galactomannans are polysaccharides with a linear chain of (β1→ 4)-linked D-mannose
residues substituted with single (α1→ 6)-linked D-galactose residue. Guar gum is a galac-
tomannan in which the ratio of mannose to galactose is 2:1. Although this polysaccharide
has one of the highest molecular weights of all naturally occurring water soluble polymers,
it is soluble in cold aqueous media, forming highly viscous solutions even at low concen-
trations. The viscosity depends on the molecular weight of the galactomannan, which
ranges from 0.16 to 1.4 MDa [29]. This has been related with intermolecular chain entangle-
ments between side chains of galactose interacting with water molecules. The viscosity of
solutions containing guar gum of increasing concentrations, from 0.5% to 1.5% (Table 1),
increased from 106 to 3933 mPa.s, when measured at a shear rate of 5.4 s−1 [30]. When
measured at a shear rate of 150 s−1, the viscosity of a solution containing 2.0% guar gum
was 1546 mPa.s [31], values that are comparable with those reported for oat β-glucans [11].
Galactomannans from locust bean gum, which have a mannose to galactose ratio of 4:1,
present a higher viscosity when compared with those from guar gum (with a lower man-
nose to galactose ratio of 2:1) at the same shear rate and concentration (Table 1) [32]. Higher
shear rates tend to decrease the measured viscosity of polysaccharides solutions, as shown
in Table 1. Different authors used different shear rates, occasionally preventing a compari-
son of the reported polysaccharide viscosities. Due to its high viscosity, galactomannans
can interfere with the diffusion of luminal cholesterol toward the epithelial cell surface [33].

Arabinoxylans, which are the main non-starch polysaccharide in cereals, consist of
a backbone of (β1 → 4) linked xylose residues substituted with arabinose residues on
the O-2 and/or O-3 position [34]. Psyllium arabinoxylans have shown to exhibit hypoc-
holesterolemic activity mediated by their viscosity by interfering with fat and cholesterol
absorption, leading to a reduction of blood cholesterol concentrations [35]. A daily con-
sumption of 15 g of psyllium for 52 weeks was able to reduce total and LDL cholesterol by
7% and 8.1%, respectively, in overweight and obese individuals [36]. Psyllium seed husk
arabinoxylans, with an Ara/Xyl ratio of 0.2–0.4 [37,38], form viscous solutions, presenting
a viscosity of 519 and 15,340 mPa.s at 1.0–2.0%, respectively (Table 1) [39]. The molecular
weight of these arabinoxylans is very high, ranging from 216 kDa to 1100 kDa [37,40].
This contrast with wheat bran arabinoxylans, which present an average Ara/Xyl ratio of
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1 [41] and a molecular weight ranging from 83 kDa to 336 kDa [42–44], being less viscous
(240 mPa.s) than psyllium at a concentration of 2.0%.

Glucomannan is another polysaccharide that originate viscous solutions, usually
present in konjac plants, composed of D-mannose and D-glucose linked by (β1 → 4)-
glycosidic bonds at 1.6–1.4:1 Man/Glc ratio [45]. The viscosity of konjac glucomannans
(KGM) with an average molecular weight of 700 kDa, measured at a shear rate of 100 s−1, is
1000 mPa.s (Table 1) [46], in a similar range to that of galactomannans and cereal β-glucans
solutions, allowing to infer that these polysaccharides present a viscosity that can influence
cholesterol bioaccessibility. Indeed, KGM has been shown to effectively reduce plasma
cholesterol (11.1%) in hyperlipidemic type 2 diabetes patients when administered for
28 days (3.6 g/day) [47].

Chitosan is a linear polysaccharide composed by β-(1→ 4)-linked D-glucosamine and
N-acetyl-D-glucosamine randomly distributed, being positively charged. This polysaccha-
ride is usually obtained from the deacetylation of chitin, which is the structural element
in the exoskeleton of crustaceans (such as crabs and shrimp), insects and cell walls of
fungi [48]. Depending on the deacetylation degree, molecular weight, and working con-
dition (solvent, temperature pH), solubility, and viscosity can vary extremely [49]. As
expected, decrease in molecular weight of chitosan leads to a lower viscosity. When com-
pared with β-glucans, in similar conditions, chitosan showed lower values of viscosity
(Table 1). Chitosan hypocholesterolemic effect in rats was demonstrated both for low and
high molecular weight chitosan, being the ones with higher deacetylation degree the most
effective [50]. In humans the consumption of 3–6 g of chitosan per day allows a decrease
of 6% of serum cholesterol [51]. Chitooligosaccharides have shown to decrease the total
and LDL cholesterol levels in hyperlipidemic rats [52] and in humans [53]. These findings
regarding chitooligosaccharides indicate that, aside from the viscosity effect, other mecha-
nisms can be responsible for the decreased cholesterol bioaccessibility. The sequestration of
BS by these oligosaccharides can demote cholesterol absorption, promoting its excretion in
the feces [13].

Pectin is a polysaccharide with a backbone composed by D-galacturonic acid (GalA)
linked by (α1→ 4)-glycosidic bonds, in which some of the carboxyl groups are esterified
with methanol. Depending on the source, the main chain can contain 300–1000 galacturonic
acid residues, corresponding to an average molecular weight of about 50–180 kDa [54]. The
gelling properties of pectin are dependent on molecular weight and degree of methylesterifi-
cation. The viscosity of pectin with the same molecular weight (322 kDa) and concentration
(2%), measured with increasing shear rates, 200 and 1000 s−1, decreased from 60 to 40 mPa.s,
indicating a pseudoplastic flow behaviour (Table 1) [55]. Experiments in both mice and
humans, fed with pectins with similar viscosities but different methylation degrees (rang-
ing from 30% to 80%), showed that plasma cholesterol levels were significantly reduced
by both pectins, suggesting viscosity as the key factor behind the observed hypocholes-
terolemic effect [56,57]. Nevertheless, these viscosity regimes are much lower than the ones
observed for other polysaccharides such as cereal β-glucans, which is reflected on the daily
intake recommendations (3 g for β-glucans and 6 g for pectins) required for health claims
regarding hypocholesterolemic ingredients accepted by EFSA [58,59].

Alginate (or alginic acid) is a copolymer of (α1→ 4)-linked β-D-mannuronate and α-L-
guluronate, which can be found in the cell walls of brown algae, being a negatively charged
polysaccharide. Alginate is usually linked to the gelation process that occurs in the presence
of divalent cations like calcium ions, forming hydrogels. Alginates rich in guluronic acid
have been shown to provide stronger gels than the ones richer in mannuronate [60].
Furthermore, the solutions containing the same concentration of alginate (1%) (Table 1)
present high values of viscosity ranging from 3000 to 500 mPa.s, for shear rates of 10 s−1 and
100 s−1, respectively. Due to their gel forming properties and viscosity, this polysaccharide
has cholesterol-lowering effects, which was shown in overweight male subjects [61].
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Table 1. Non charged and charged polysaccharides’ viscosity dependence on concentration, molecular weight, shear rate
and raw material provenience.

Charge Name W/V (%) MW (kDa) Shear-Rate
(s−1)

Viscosity
(mPas−1) Food Origin Temperature

(◦C) Ref.

Non charged

β-glucans

0.5
1003 100

9.8
Barley Room [62]1.0 98

2.0 2.7 × 103

1.0 nd 76 1.1 × 104 Barley
(commercial) 25 [63]

1.5
1584

20
4.5 × 103 Oat

37 [63]
1300 2.6 ×103 Barley

1.0
175

nd
65 Saccharomyces

cereviseae (yeast) Room
[23]28 39

10 181 1.9 × 102 Agaricus bisporus
(mushroom) [24]

Galactomannans

0.5
nd 5.4

1.1 × 102
Guar gum 25 [64]

1.5 3.9 × 103

1.0
nd 200 8.0 × 102 Locust bean gum

25 [32]nd 200 90

Guar gum
1.0

nd 100
5.0 × 102

20-23 [65]1.5 1.5 × 103

2.0 2.5 × 103

2.0 nd 150 1.5 × 103 37 [65]

Arabinoxylans

1

nd nd

5.2 × 102

Psyllium

23 [39]

1.5 1.1 × 104

2.0 1.5 × 104

1.0 1.6 × 102

Wheat bran1.5 2.5 × 102

2.0 2.4 × 102

Glucomannans

1.0 757 100 1.0 × 103

Konjac

nd

[65]

1.0 253 100 1.0 × 102

1.0 87 100 10

1.0
239 50 2.9 × 102

37593 50 1.6 × 103

1006 50 3.3 × 103

Positively
charged Chitosan

0.5 400 nd 92 Crab
(commercial)

25

[65]

1.0
940

nd
3.7 × 102 Crab shell

[66]140 6.2 Aspergillus niger
(fungi)

69 3.5 Rhizopus oryzae
(fungi)

Negatively
charged

Pectins 2.0 322
200 60 Sugar beet

by-products 25 [67]1000 40

Alginate
1.0 nd

1 2.0 × 104

Algae 20 [60]10 3.0 × 103

100 5.0 × 102

0.04 20 200 4.0 25 [68]

3. Bile Salts Sequestration and Its Dependence on the Structural Diversity
of Polysaccharides

BS are biological surfactants, composed by a hydrophobic and a hydrophilic surface,
which are negatively charged at the intestinal pH. The most common BS are composed
by three hydroxyl groups, such as cholic acid (CA) and by two hydroxyl groups the
chenodeoxycholic (CDCA) and deoxycholic acid (DCA) [69]. The carboxylic group of BS
can be conjugated with glycine (G) and/or taurine (T) [70]. The designation of primary
BS (e.g., GCA and GCDCA, or their taurine conjugates) is used for BS synthetized in
the liver, and secondary BS (e.g., GDCA and GLCA) results from their fermentation by
microbiota, rendering them a more hydrophobic character. GDCA secondary BS was
shown to solubilize more cholesterol than the primary BS GCA and GCDCA [18,70–74]
and to partition to lipid membrane models with higher affinity [75].
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Polysaccharides have been shown to interact with BS at the intestinal lumen, leading
to their sequestration, which affects cholesterol bioaccessibility. The BS sequestration
promotes cholesterol precipitation into crystals, which are then expelled by feces [76]. Both
BS and polysaccharide structures can influence their interaction. The sequestration of BS
will affect the BS enterohepatic recirculation at the ileum, which promotes the conversion
of cholesterol into primary BS at the liver, recruiting LDL cholesterol from blood. The study
of the interaction between BS and polysaccharides is important to gain predictive rules that
can allow the development of strategies to modulate cholesterol bioaccessibility. Several
features have been shown to influence this interaction, namely polysaccharide composition,
their structural arrangements, such as linkages and ramifications, as well as size/molecular
weight. Neutral (e.g., arabinogalactans, galactomannans, and β-glucans), positively (e.g.,
chitosan) and negatively charged (e.g., fucoidans) polysaccharides have been shown to
sequestrate BS differently.

The described mechanisms of interaction between polysaccharides and BS have shown
that positively charged polysaccharides allow efficient binding to the negatively charged
BS in the intestinal lumen. However, negatively charged or neutral polysaccharides were
also shown to sequestrate BS, highlighting that other properties such as hydrophobic motifs
might also be responsible for this interaction [9,10].

The β-glucans are polysaccharides with higher BS sequestration capacity, dependent
on their structure, which can vary dependent on their origin (Figure 2). Barley and oat
β-glucans have been shown to be more efficient than mushroom β-glucans [14]. When
compared with other polysaccharides that originate viscous solutions, such as the neutral
guar gum (Table 2), cereal β-glucans are more efficient in BS sequestration.

Table 2. Bile salt sequestration by polysaccharides of different food origins.

Charge Names Polysaccharide
Content Range Bile Salt Bile Salt

Content Range Food Origin Sequestration Ref.

Non-
charged

β-glucans

0.25% (w/v) TCA 2.5–20 mM Oat 32% * [77]
0.25% (w/v) TCA 2.5–20 mM Barley 32% * [77]

0.5 mg/mL

CA (35%), DCA
(35%), GCA

(15%), and TCA
(15%)

1.4 µmol/L Mushroom
(commercial) 75.1% * [14]

2.5 mg/mL CA 1 mg/mL Mushroom
(irradiated) 17.4–48.7% [78]

0.083%, 0.42%,
0.83% and 1.7%

w/v
TCDCA 20 mM Barley

(commercial) Non-quantitative [79]

5 mg/mL

CA (35%), DCA
(35%), GCA

(15%) and TCA
(15%)

0.14 µmol/mL Oat 18.9–24.3% [62]

Arabinoxylans

25 mg/mL GCA, GDCA
and GCDCA 0.5 mM Wheat

GCA: 0.96–1.21 GCDA:
1.08–1.41 GCDCA:

1.14–1.4 µmol BS/100 mg
fiber

[80]

0.083%, 0.42%,
0.83% and 1.7%

w/v
TCDCA 20 mM Wheat

(commercial) Non-quantitative [79]

Arabinogalactans/
Galactomannans 6–18 mg/mL GDCA 50 mM coffee 9–46% [81]

Galactomannans

0.5 mg/mL

CA (35%), DCA
(35%), GCA

(15%) and TCA
(15%)

1.4 µmol/L

Guar Gum

80% * [14]

4 mg/mL TCA and TDCA 5 mM TDCA: 31–38% TCA:
32–36% [10]

0.25% (w/v) TCA 2.5–20 mM 25% * [77]
25 mg CA 2 mg/mL 50% * [82]

16.5 mg/mL CA and CDCA 133 µM/mL Psyllium CA: 1.2 mg/g; CDCA: 0.8
mg/g [83]

25 mg CA 2 mg/mL Locust bean gum
(Commercial)

54% * [82]
0.25% (w/v) TCA 2.5–20 mM 17% * [77]
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Table 2. Cont.

Charge Names
Polysaccharide

Content
Range

Bile Salt
Bile Salt
Content
Range

Food Origin Sequestration Ref.

Positively
charged Chitosan

5, 10 and 50
mg/mL

CA, CDCA,
DCA and TCA 2 mM Losbter

Chitosan: CA: 9–17%:
CDCA: 17–29%; DCA:
23–32%; TCA: 24–35%.
Chitooligosaccharides:

CA: 5–7%; CDCA:
2–10%; DCA: 1–6%;

TCA: 1–4%

[13]

12 mg/mL TCA 10 mM Sea Crab Precipitation of 133–652
mg of cholesterol/g [50]

17 mg/mL CA, DCA and
CDCA 400 µmol/L Commercial

CA: 0.2–0.6 µmol/g;
DCA: 0.4–1.6 µmol/g;

CDCA: 0.6–1.6 µmol/g
[64]

Negatively
charged

Pectin

30 mM

GCDCA, GCA,
GDCA, TDCA,
TCDCA and

TCA

1 mM (0.33
mM of each

glyco- or tauro-
conjugates)

Commercial,
sugar-beet,
grapefruit,

oranges, lemon
and lime

GCDCA: 8–15%; GCA:
6–13%; GDCA: 7–15% [84]

0.1 and 0.5% TCA 2.5% w/v Commercial Non-quantitative [85]

0.25% (w/v) TCA 2.5–20 mM Commercial

5.5% (low-methoxy)
and 9.6%

(high-methoxy) of
cationic resin *

[77]

10 mg/mL CA, DCA and
CDCA 12.5 mM Olive pomace

CA: 11–39%; DCA:
21–44%; CDCA:

17–48% of cationic resin
*

[86]

Fucoidan 1, 25 mg/mL CA, DCA and
TCA 500 µmol/L Laminariajaponica

CA: 29–38%; GCA:
22–82%; TCA: 49–162%

*
[12]

Carrageenan

0.25% (w/v) TCA 2.5–20 mM Commercial 9.2% (ι-carragenan) and
10.7% (κ-carragenan) * [77]

0.05, 0.1 and
0.2%

TCA (46.87%),
GCA (30.82%),
TCDA (9.45%),
GDCA (5.95%),

TCDCA
(2.37%),
GCDCA

(1.67%) and
CA (0.08%)

2, 4 and 8 mM

Chondrus
armatus (κ-

carrageenan),
Tichocarpus

crinitus (κ/β-
carrageenan),
Ahnfeltiopsis
flabelliformis

(ι/κ-
carrageenan)

κ-carrageenan: 51–66%,
κ/β-carrageenan:70-

74%; ι/κ-carrageenan:
33–35% *

[87]

* Percentage of relative sequestration compared to a cationic resin.

Furthermore, β-glucans sequestration ability towards taurocholic acid (TCA) has been
shown to be two thirds lower when compared with cholestyramine, a pharmacological
hypocholesterolemic cationic resin [77]. In vitro digestion of barley and oat flours, contain-
ing 12% and 16% of β-glucans, have shown more affinity to bind more hydrophobic GDCA
and GCDCA than GCA [80], resulting in an increased excretion of BS [88]. On the other
hand, oat β-glucans, which are more viscous than barley, were shown to have a higher
retarding effect on the passage of BS across a dialysis membrane, not compatible with a
sequestration mechanism [11]. Furthermore, partial hydrolysis and oxidation of barley
and oat β-glucans led to a decrease in their ability to restrict the mobility of BS, attributed
to its lower viscosity. However, barley β-glucans have shown to promote NMR chemical
shifts in TCDCA, inferred as a direct interaction between the polysaccharide and the BS,
suggesting a sequestration mechanism [79]. β-glucans with similar viscosity were shown
to interact differently with BS (TCA, TDCA, and GCA) [89], showing that the diffusion of
species slowed down by viscosity may also be complemented by sequestration events.
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While the neutral β-glucans have been shown to interact at a molecular level with
BS, wheat arabinoxylans are not described to interact directly with BS but rather form a
network that restricts their mobility [79]. NMR analysis of arabinoxylans did not show a
systematic chemical shift change in BS resonances, however a decrease on the intensities
of NMR BS resonances was observed, indicating that BS in solution were decreasing. It
is not known if this decrease is due to sequestration or retention in the polysaccharide
network. Psyllium gum, an arabinoxylan [13], also showed a correlation between the
increase of viscosity of solution, due to a high polysaccharide content, and a rise in BS
sequestration [89]. Arabinoxylans structure was shown to give different levels of local
polymer aggregation and consequently distinct microvoids [90]. As reported for β-glucans,
the interaction of arabinoxylans with hydrophobic BS is stronger [80].

Guar gum galactomannans have a higher capacity to bind BS than locust bean gum
galactomannans [77,82]. For both polysaccharides, the binding of deoxycholate is higher
than the most hydrophilic CA and TCA, being the later the one with lower affinity [91].
Galactomannan rich fractions from coffee, containing arabinogalactans, showed capacity to
sequestrate GDCA. NMR analysis showed a chemical shift and a decrease in the intensity of
BS resonance’s and 13C4-cholesterol peak intensity, indicative of a sequestration event and
a decrease in cholesterol bioaccessibility [81]. Gum Arabic, an arabinogalactan, showed less
potential as hypocholesterolemic agent than guar gum and locust bean gum, since its ability
to sequestrate taurocholate is less than half [77]. Arabic gum binding of deoxycholate,
although higher than cellulose, is still lower than the previous referred gums and it showed
no capacity to bind cholate [91].

Chitosan and derived oligosaccharides, which are positively charged, have been
shown to sequestrate BS both in vitro [13,50] and in vivo [50–53,92]. Molecular weight and
deacetylation degree affect the sequestration of BS by these molecules [13]. Chitosan with
a higher deacetylation degree, and thus a higher positive overall charge, has shown to
bind DCA and CDCA more efficiently than the less deacetylated ones [64], suggesting that
the interaction between hydrophobic groups also contributes to the sequestration events.
Considering the same deacetylation degree, CA was the one showing the lowest binding
capacity when compared with the two dihydroxyl BS (DCA and CDCA), highlighting the
influence of BS hydrophilic/hydrophobic surface area on the interaction with polysaccha-
ride. Chitooligosaccharides have been shown to bind dihydroxy (CDCA and DCA) BS to a
greater extent than trihydroxy (sodium cholate and TCA) [13]. Calorimetric interaction of
TCA BS (pKa 1.4) with chitosan was shown to occur at pH 3, below chitosan pKa (6.5) [93].
However, in the intestinal lumen, it is expected that chitosan has a less global charge
character due to the higher pH, which can lead to a decrease in the electrostatic interaction.

Pectin is also known to bind BS, although the influence of its structure on sequestration
is still not elucidated. A high degree of pectin esterification, with a concomitantly lower
density of negative charges, is associated with a higher binding capacity [84] due to the
higher amount of hydrophobic motifs prone to interact with the BS. The BS sequestration
ability of pectin has also been studied in animal models, in which the supplementation with
this polysaccharide resulted in an increase of BS excretion [16], supporting the sequestration
mechanism proposed in in vitro studies [84–86].

Fucoidans are negatively charged polysaccharides which were shown to sequestrate
BS in vitro. Fucoidans are mainly composed by fucose, a C6 deoxysugar, providing hy-
drophobic character to these polysaccharides. This polysaccharide may be constituted by a
backbone of (α1→ 3), or alternated (α1→ 3) and (α1→ 4) fucose residues with branched
residues at C3 or C4 [94]. These polysaccharides are sulfated, which confer upon them
negative charges able to repel each other and expose their hydrophobic domains. This
effect may be responsible for the promotion of the interaction with BS [12]. Studies in mice
models have shown that the consumption of fucoidans can alter the expression of enzymes
related to cholesterol metabolism [95–97], which may be another hypocholesterolemic
mechanism of this polysaccharide.
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Similarly to fucoidans, carrageenans are polysaccharides containing sulfate groups
and composed by 3,6-anhydrogalactose units. Carrageenans are composed by different
structural motifs, such as k-carrageenan, composed of (β1→ 3)-galactose-4-sulfate and (α1
→ 4)-3,6-anhydrogalactose, ι-carrageenan which has an additional sulfate group in the O2
of the 3,6-anydrogalactose moiety, and/or β-carrageenan composed by (β1→ 3)-galactose
and (α1 → 4)-3,6-anhydrogalactose. Less sulfated κ/β-carrageenans have a superior
capacity to sequestrate CA than κ-carrageenan and ι/κ-carrageenan [87]. Carrageenans
sequestration of TCA capacity is approximately four times less than oat and barley β-
glucans [77].

4. Microbiota Bio-Transformations of Polysaccharides and Bile Salts:
Hypocholesterolemic Implications

Dietary fiber is composed by nondigestible carbohydrates that pass the upper gas-
trointestinal tract unaffected, thus reaching the colon intact, then undergoing a complete or
partial fermentation by the colonic microbiota [98–100]. Dietary fiber in turn modulates
the intestinal microbiota, promoting health benefits by selectively stimulating the growth
and/or activity of bacteria considered to have beneficial effects, such as the Bifidobacterium
and Lactobacillus species [101–104]. In addition, exopolysaccharides (EPS) produced by
Bifidobacterium sp. can also decrease cholesterol levels in obese mice [105]. An hypocholes-
terolemic effect was also observed Lactobacillus paracasei M7 EPS in an in vitro model [106].
Several mechanisms have been proposed for the EPS activity, namely BS sequestration,
deconjugation of BS and production of SCFA [107–110].

Over 400 species of bacteria have been identified in human feces, the two predominant
phyla being the Gram-negative Bacteroidetes (e.g., Bacteroides and Prevotella genera) and
Gram-positive Firmicutes (e.g., Clostridium, Lactobacillus, and Enterococcus genera) [111].
The fermentability of dietary fiber is highly dependent on the structural characteristics of its
polysaccharides, promoting the selective growth of bacterial species. Soluble arabinoxylans
contribute to the proliferation of Bifidobacterium and Lactobacillus bacterial species, while
galactomannans stimulate the growth of Bacteroides [112,113]. The fermentation of dietary
fiber by the gut microbiota generates short-chain fatty acids (SCFA), which are the main
end product of this process and are estimated to range from 70 to 140 mM in the proximal
colon [104,114]. SCFA are saturated aliphatic organic acids consisting of one (C1) to six (C6)
carbons [98]. Acetate (C2), propionate (C3), and butyrate (C4) are the most abundant SCFA
(90–95% of the SCFA present in the colon), being present in a molar ratio of approximately
3:1:1, respectively [115,116]. Alterations in their ratio may occur, depending on polysac-
charide source and its structural composition, as well as the bacterial species involved,
which can use different fermentation pathways and gut transit time [104,115,117]. Pectin, β-
glucan, arabinoxylan, galactomannan, and arabinogalactan are examples of soluble dietary
fiber that can positively affect colonic bacterial metabolism [100,115,118]. Pectin fermenta-
tion usually yields more acetate, while β-glucan yields more acetate and propionate than
butyrate, and arabinoxylan yields more acetate and butyrate than propionate [119–121].
Pectins are completely degraded by gut microbiota within 6 h. An extended degradation
seems to occur also by coffee galactomannans, which have been shown to be 93% degraded
within 24 h. However, only 84% of arabinose residues from coffee arabinogalactans are
degraded during this period [122], suggesting that the nature of sugar and the type of
glycosidic linkages might hinder the polysaccharide degradation. Bacteroides can utilize
alginate and its oligosaccharides [123]. The fermentation of alginate oligosaccharides
modulates gut microbiota and leads to an increase in SCFA production in mice fed with a
high fat diet and to a decrease in LDL-cholesterol levels [124]. A large part of the SCFA is
used as a source of energy, providing about 10% of the daily energy requirement for hu-
mans [99,122,125]. About 95% of the SCFA released to medium are readily absorbed by the
colonocytes, being the rest secreted in the feces [98]. Butyrate is the preferred energy source
of the colonic epithelial cells, playing a major role in the regulation of cell proliferation and
differentiation [115]. Once in the bloodstream, these organic acids are taken up by organs,
where they can affect the lipid, glucose, and cholesterol metabolism in various tissues, with
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acetate and butyrate acting as precursors for cholesterol and long-chain fatty acid synthesis
while propionate is mainly used for hepatic gluconeogenesis [98,125]. Despite being used
as a substrate for hepatic gluconeogenesis, propionate has been shown to inhibit cholesterol
synthesis in hepatic tissue [115].

The acetate:propionate ratio is therefore an important marker to follow lipid
metabolism [104,116,119]. As this ratio depends on polysaccharides structure, they in-
directly contribute to change serum lipids, having potential to control cardiovascular risk
disease [104]. Studies where propionate and acetate were infused alone or in a mixture in
large intestine have shown that propionate alone does not affect serum lipids, while a 3:1
ratio of acetate:propionate was able to decrease free fatty acids by 10% and reduce total and
LDL-cholesterol, contrary to what was observed when acetate was infused alone [104,120].
Propionate, as well as butyrate, have been shown to stimulate the intestinal inner wall and
to promote intestinal peristalsis, thus improving constipation [99,122]. The production of
SCFA can also lower the pH of the large intestine, decreasing bile acid solubility, and to
decrease the biotransformation of primary to secondary BS by the colonic bacterial enzyme
7α-dehydroxylase, which occurs mostly at neutral pH [99,104,117,121,122]. The bile acid
pool (about 2.5–5.0 g of BS) is recycled about 4–12 times a day through enterohepatic
recirculation, occurring at ileum. Although this process is very efficient, about 400–800 mg
of BS escape this recirculation and are transformed by gut microbiota into secondary BS.
These BS are more hydrophobic than the primary ones [19,122], being reabsorbed in the
colon and transported back to the liver where they are recycled with CA and CDCA. This
can have a huge impact on cholesterol solubility, increasing its bioaccessibility at intestinal
lumen once they are released from liver and discharged from gall bladder [94]. On the other
hand, the higher hydrophobicity of secondary BS can contribute to a favored interaction
with dietary fiber, which in turn can increase its excretion. The molecular weight and/or
structure of the polysaccharides play an important role in modulating the excretion of
either primary or secondary bile acids. In vivo studies, where hypercholesterolemic rats
were fed with barley β-glucan with different molecular weights (low: 150 kDa; medium:
530 kDa), have demonstrated that a higher level of secondary bile acid excretion is obtained
in the group of rats fed with medium weight β-glucan [122].

Intestinal bacteria, such as Bacteroides, Bifidobacteria, Clostridium, Enterobacter, and
Lactobacillus, regulate the BS metabolism through a series of enzymatic reactions, such as
the deconjugation (bile salt hydrolase) and dehydroxylation (7α—dehydroxylase) of bile
acids. Thus, the diversity and amount of microbiota are determinant to the composition
and level of the bile acid pool [123]. Hence, in the absence of bacteria, the bile acid pool
would consist of mainly primary conjugated BS [17]. Deconjugated BS have a higher pKa
than the conjugated ones, and therefore a lower solubility at intestinal lumen pH. This
makes them less soluble than their conjugated counterparts, and thus less reabsorbed
into the gut, resulting in a higher excretion into the feces [123,124]. Deconjugation occurs
mainly in the presence of Bifidobacterium and Lactobacillus strains. Thus, by increasing the
colonization of these bacteria, a decrease in cholesterol solubility and an increase of fecal
excretion of bile acids are observed [124,125]. As a result, more cholesterol will be used
for de novo bile acid synthesis, replacing the excreted ones, lowering serum cholesterol
levels [124].

5. Conclusions

Food ingredients based on polysaccharides can affect cholesterol homeostasis by sev-
eral mechanisms. Viscosity may influence the diffusion of dietary mixed aggregates at the
intestinal lumen, limiting cholesterol bioaccessibility, whereas interactions between polysac-
charides and bile salts may reduce their emulsifying power towards cholesterol and also
affect BS recirculation. Polysaccharide bio-transformations by microbiota may affect the
production and ratio of different SCFA, as well as the deconjugation and conversion of pri-
mary to secondary BS, with an impact on cholesterol homeostasis. Soluble polysaccharides
may be an important ingredient class to explore in the development of new hypocholes-
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terolemic hydrophilic food matrices. The intake of these matrices after major meals, with
high cholesterol content, may be more effective for the regulation of serum cholesterol
levels. Positively charged short chain chitosan and chitooligosaccharides are an example of
BS sequestration due to electrostatic interactions. However, non-charged polysaccharides
such as galactomannans or negatively charged ones such as fucoidans are able to sequester
BS possibly by hydrophobic interactions. Moreover, the biotransformation of polysaccha-
rides by microbiota produces propionate able to inhibit the endogenous production of
cholesterol at the liver. This work highlights the importance of polysaccharide structural
features and their influence on the different hypocholesterolemic mechanisms able to
modulate cholesterol homeostasis. Therefore, polysaccharides are relevant molecules to be
considered for the development of cholesterol reducing functional foods.
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