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Abstract: Molecular diagnostics based on discovery research holds the promise of improving screen-
ing methods for prostate cancer (PCa). Furthermore, the congregated information prompts the
question whether the urinary extracellular vesicles (uEV) proteome has been thoroughly explored,
especially at the proteome level. In fact, most extracellular vesicles (EV) based biomarker studies have
mainly targeted plasma or serum. Therefore, in this study, we aim to inquire about possible strategies
for urinary biomarker discovery particularly focused on the proteome of urine EVs. Proteomics data
deposited in the PRIDE archive were reanalyzed to target identifications of potential PCa markers.
Network analysis of the markers proposed by different prostate cancer studies revealed moderate
overlap. The recent throughput improvements in mass spectrometry together with the network
analysis performed in this study, suggest that a larger standardized cohort may provide potential
biomarkers that are able to fully characterize the heterogeneity of PCa. According to our analysis
PCa studies based on urinary EV proteome presents higher protein coverage compared to plasma,
plasma EV, and voided urine proteome. This together with a direct interaction of the prostate gland
and urethra makes uEVs an attractive option for protein biomarker studies. In addition, urinary
proteome based PCa studies must also evaluate samples from bladder and renal cancers to assess
specificity for PCa.

Keywords: extracellular vesicles (EVs); urine extracellular vesicles (uEVs); prostate cancer;
proteomics; biomarkers

1. Introduction

Prostate cancer (PCa) is mostly an asymptomatic and slowly growing tumor, which
might start developing in young men, but is typically only possible to start detecting
around the age of 40–50 with an average age of about 66 years [1]. PCa is the most
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frequently diagnosed cancer in 112 countries and the second leading cause of cancer related
death among men in developed countries, with an estimated 1.4 million new cases and
375,000 deaths worldwide in 2020 [2–4]. Its incidence is increasing and is highest in Japan
and the USA [5]. Current PCa screening methods consist of serum prostate-specific antigen
(PSA), digital rectal examination (DRE) which upon suspected PCa is recommended for
Magnetic Resonance Imaging (MRI) or transrectal ultrasound (TRUS) analysis. Despite
many controversies, serum prostate-specific antigen (PSA) measurement remains the most
widely used tool for PCa detection. Nevertheless, PSA measurement performance is far
from ideal (Figure 1). PSA has only 25–40% positive predictive value for PCa detection,
and eventually 65–70% of men with PSA serum levels between 4.0 and 10.0 ng/mL present
a negative prostate biopsy [6]. Additionally, up to 15% of men with PCa have PSA levels
below 4.0 ng/mL. Both serum PSA and digital rectal examination (DRE) present low
specificity for diagnosis. As such, the lack of a specific marker(s) for PCa diagnosis with
a capacity to distinguish indolent from aggressive disease leads to unnecessary prostate
biopsies and unnecessary treatments. Furthermore, a subset of clinically significant PCa
(csPCa) will be left undetected [7].
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Figure 1. Systematic representation of the present and future possibilities for diagnosis of the PCa.
The upper left panel highlights current limitations in screening methods. The lower left panel
indicates future possibilities for EV based diagnostics and especially uEVs for PCa detection which
will be further discussed in this study. The right panel indicates current diagnostics methods. CTCs:
circulating tumor cells, cfDNA/cfRNA: cell free DNA/RNA, DRE: digital rectal examination, TRUS:
transrectal ultrasound, and MRI: Magnetic Resonance Imaging.

Additionally, standard transrectal ultrasound (TRUS) is unreliable for detecting
PCa [8,9]. Consequently, ultrasonography–guided biopsy of the prostate is associated
with under detection of higher-grade csPCa and the over detection of low-grade csPCa [10].
On the other hand, multiparametric magnetic resonance imaging (mpMRI) of the prostate
allows higher accuracy and identification of significant lesions. Although achieving better
accuracy, mpMRI findings still miss identification of the cribriform variant and tumors
with predominantly cribriform pattern. Importantly, mpMRI is not highly sensitive at
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identifying International Society Urological Pathology (ISUP) Grade Group 1 (Gleason 6)
lesions [11].

Options to overcome these limitations include targeted biopsy techniques such as
mpMRI-guided biopsies. As mpMRI of the prostate progresses, better correlation with
histology is expected, allowing for pre-biopsy identification of aggressive tumor patterns.
The studies that have investigated the histologic correlation between mpMRI findings and
a type of aggressive histologic growth (cribriform pattern) have shown conflicting results,
as cribriform predominant tumors were often less visible on mpMRI than noncribriform
predominant tumors [12]. Most MRI-guided biopsy misdiagnosis are due to errors in lesion
targeting (51.2%), followed by MRI-invisible lesions (40.5%), and MRI lesions missed by
the radiologist (7.1%) [13]. Despite higher accuracy of MRI-guided biopsy compared to
standard TRUS biopsies, mpMRI targeted biopsies with collection of tissue of detected
suspicious lesions, still presents limitations, leading to potentially under diagnosis of
aggressive patterns, namely cribriform. Template mapping biopsy involves applying a
template to insert several fine needles through the skin in the area between the scrotum and
the anus (the perineum) into the prostate gland in order to obtain several tissue samples
for testing. Template mapping biopsy is more accurate in assessing volume and grade of
tumor compared to TRUS biopsy [14].

The above impediments of the current diagnosis methods call for improved early
diagnostics, new methods for reducing over diagnosis and over treatment of insignificant
PCa tumors. As such, biomarkers with increased reliability and accuracy are paramount
for addressing these clinical problems.

The prostate lies in direct contact with the urethra, and secretes products that can
be detected in urine and therefore constitute a liquid biopsy source of biomarkers for
PCa [15–17]. Unfortunately, urine is a challenging fluid for the discovery of protein-based
biomarkers due to the presence of certain salts, the low protein concentration and the
extreme dynamic range of protein concentration [18].

Urinary extracellular vesicles (uEVs) overcome these challenges by concentrating
proteins and at the same time lower highly abundant proteins such as serum albumin and
uromodulin [19,20]. Furthermore, the isolation of EVs lowers concentration of salts in the
sample. Moreover, EVs contain a rich source for prostate-derived products and can be
isolated from urine. EV preparations typically contain various particles such as exosomes,
microvesicles (MV), ectosomes, protein aggregates and large protein complexes [21,22].
In PCa studies, different nomenclature is applied to a mixture of different vesicles such
as prostasomes, EVs, apoptotic bodies, tumor-derived MVs or exosomes. In this study,
the term EV is applied throughout to a mixture of different subpopulations of various
vesicles types. Exosomes are 50–150 nm sized membrane vesicles that are shed by many
mammalian cell types, including malignant cells, which are formed within the endosomal
network and released upon fusion of multivesicular bodies with the plasma membrane [23].
EVs have been considered a promising and easily accessible biomarker reservoir for various
diseases, as their content (such as proteins, lipids, DNA, and RNA) is thought to reflect the
molecular composition of their tissue of origin [24–26]. Recently, Zhang et al. described
a sub population termed exomeres (~35 nm) isolated from cell culture media [27]. It
is currently unclear if exomeres are detectable in liquid biopsies and if they have any
clinical potential.

Relatively few reviews provide a focused discussion on urinary EVs’ application in
PCa diagnosis (Table 1).
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Table 1. Reviews that provided a focused discussion on urine EVs’ application in PCa diagnosis.

Authors Summary

Salciccia et al., 2021 [28]

• biomarkers in PCa diagnosis including those derived
from urine EVs

• compiled all clinical approved diagnostic kits for PCa

Drake and Kislinger, 2014 [29]
• proteomics based PCa associated exosomes and their

potential applications
• the EV proteome in PCa diagnosis

Nawaz et al., 2014 [30]
• roles of extracellular vesicles in the most common

urogenital cancers (prostate, kidney and bladder)
• EV isolation methods

Wang et al., 2020 [31] • exosome isolation techniques
• exosomal protein biomarker studies

Wu et al., 2019 [32] • EVs’ biophysical properties, roles and applications in
the most common urologic neoplasms

The literature review by Drake and Kislinger, 2014 [29], is the only one focusing on
potential protein biomarkers for prostate cancer. Furthermore, at the publication time there
were few high quality data sets available. Additionally, recent reviews tend to focus mainly
on isolation methods for EVs.

Presently, no standardization of uEV studies exists, and this constitutes a need for pos-
sible improvement for future research. The goal of the Urine Task Force of the International
Society for Extracellular Vesicles assembled nephrologists, urologists, cardiologists and
biologists with active experience in uEV research to establish best practice and standardize
the methods in the field. The Urine Task Force provides an excellent source of information
on standardization and recommendations for uEVs [33].

Currently, approved molecular diagnostic tests either measure mRNA expression [28]
or detection of TMPRSS2:ERG (T2:ERG) gene fusion [34]. ExoDx is the only test approved
that measures PCA3 and ERG RNA expression in EVs from voided urine. None of the
mentioned urinary-based diagnostic tests with approval is based on proteome biomarkers.
On the contrary, serum based markers for PCa are based mainly on proteins such as tPSA,
fPSA, p2PSA (a PCa-specific fPSA isoform) and kallikrein 2 (KLK2) [35,36]. As such, this
raises the question whether urine proteome has been thoroughly explored, especially at
the proteome level. In fact, most EV based biomarker studies have targeted plasma or
serum [28]. Therefore, we aim to highlight strategies for urine biomarkers and particularly
focus on the proteome of uEVs.

As such, we intend to discuss the benefits of liquid biopsy in comparison to tissue
biopsy, exploring functions of EVs in PCa progression and summarize the role of EV
proteins in diagnosis and prognosis of PCa from previous studies. A detailed evaluation
of studies targeting different liquid biopsies and omics technologies for PCa diagnosis
was performed. The results suggested that proteomics and metabolomics approaches are
relatively unexplored for studying uEVs. Based on this analysis, we considered that the
current number of original research studies in proteomics were well suited for a more
detailed review and evaluation.

2. Functions of EVs in Cancer

Typically, MVs are released from the cell membranes and co-isolate with exosomes
that originate from multivesicular bodies (MVBs) in EV preparations.

2.1. Exosome Biogenesis

Exosomes, distinctly from microvesicles, originate from the endosomal system [37].
Endocytosis of cell surface integral membrane proteins forming endocytic vesicles are
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rapidly targeted to a distinct membrane-bound endocytic organelle referred to as the early
endosome (EE). At this compartment, sorting events serve to target internalized proteins
and lipids between three fate decisions destining them either for recycling to the plasma
membrane, degradation in lysosomes or delivery to the trans-Golgi network. Maturation of
EE to late endosomes undergoes a process of multiple rounds of cargo sorting and intralu-
minal vesicle (ILV) biogenesis. Similarly to EE, late endosomes can fuse with the lysosome,
generating an endolysosome compartment that provides a controlled acidic environment
for the degradation of the cargo-loaded ILVs, or fuse with the plasma membrane to release
the content of ILVs as extracellular vesicles known as exosomes (Figure 2) [38]. Exosomes
contain DNA, miRNA, mRNA, glycans, soluble proteins, metabolites, and various other sig-
naling molecules from parental cells but it lacks ribosomal RNA. Glycans and glycoproteins
in EVs constitute potential biomarkers in the clinic for both stratification and prognosis of
cancer biomarkers [39], especially since EVs contain known tumor-associated glycans [39].
The biological role and loading of genomic DNA (gDNA) in exosomes is poorly understood
but potentially involves micronuclei [40]. However, EV DNA constitutes a relevant target
for diagnostics.
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Figure 2. Exosomes biogenesis. Multivesicular endosomes in the cell which are produced by the
invagination of endosomal limiting membrane and can secrete their content as exosomes or fuse with
lysosomes to originating endolysomes.

2.2. Microvesicles

Microvesicle biogenesis is a process by which the direct outward blebbing and
pinching of the plasma membrane release the nascent microvesicle into the extracellu-
lar space [41]. Alternative terms for microvesicles in the literature are shedding vesicles,
ectosomes, oncosomes, shedding bodies, and microparticles. MVs, like exosomes, are
considered promising targets for advanced diagnosis and therapy.
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2.3. Function of EVs in PCa

EVs from the tumor microenvironment are important regulators for enhancing prostate
cell survival (Figure 3), proliferation, angiogenesis and evasion of immune surveillance, all
together contributing to PCa progression [42,43].
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Carcinoma-associated fibroblasts (CAFs) derived EVs can transfer miRNAs into neigh-
boring epithelial cells causing the exponential growth of PCa cells [44]. Cancer cells-derived
EVs are also involved in the regulation of signaling pathways. Proto-oncogene tyrosine
protein kinase (C-Src), insulin-like growth factor I receptor and focal adhesion kinase (FAK)
are abundantly present in EVs [45]. PCa EVs are capable of directly targeting immune cells
and inducing down-regulation of the NKG2D receptor on lymphocytes, thus promoting
tumor immune evasion [46]. Furthermore, EV miRNAs can induce inflammatory responses
on recipient cells through protein and miRNA transfer. Thereby, leading to enhanced
tumor proliferation and migration, and mediating cellular reprogramming on recipient
cells. EV miRNAs were also shown to be involved in fibroblast proliferation, angiogenesis,
differentiation, and migration in PCa [47].

Additionally, EVs were demonstrated to confer drug resistance by transferring its
genetic contents which allow the recipient cells to reprogram and develop resistance [48].
It is believed that chemotherapeutic drugs are exported via EVs [49]. Docetaxel was one
of the first drugs studied, including the analysis of 22Rv1 and DU145 cell lines and its
respective docetaxel-resistant variants 22Rv1RD and DU145RD, respectively. The research
showed that EVs from the docetaxel-resistant cells transmitted docetaxel-resistance to
previously drug-sensitive parent cell lines. Resistant cell’s secreted EVs carried substantial
amounts of P-gp drug transporter suggesting, at least partially, their involvement in the
mechanism of acquired resistance [50].

PCa cells display bone tropism, and cancer derived EVs have been shown to determine
organotropism [51]. Serum EVs from metastatic PCa patients showed high contents of
miR-21 and miR-141, which regulated osteoclastogenesis and osteoblastogenesis [52,53].
EVs isolated from the murine PCa cell line TRAMP-C1 significantly decreased fusion and
differentiation of monocytic osteoclast precursors to mature into multinucleated osteoclasts.
The authors suggest that EVs released from tumor cells in the tumor-bone interface function



Int. J. Mol. Sci. 2021, 22, 13605 7 of 22

in the pathological regulation of bone cell formation in the metastatic site [54]. We may
hypothesize that EVs potentially provide informative insight into metastatic disease as EVs
in biofluids will represent all advanced metastatic cancer cells whether these cells are in
the systemic circulation or from cells found at the site of metastasis. Moreover, melanoma
derived EVs are capable of establishing a metastatic niche for ensuing circulating tumor
cells [55].

For therapeutic purposes, EVs have gained great interest as therapeutic vectors to
target cancer cells. They serve as carriers to deliver therapeutic agents to tumor cells,
leading to effective tumor eradication, while minimizing the side effects caused by standard
targeted therapies and chemotherapies [56]. In addition, they have the capacity to deliver
different types of cargo and to target specific cells. In vitro and in vivo experiments,
confirm efficiency of EV delivery of different therapeutic agents [57]. EVs are being
pursued as intercellular vectors for RNA-based therapy (both miRNAs and siRNAs), with
a documented efficacy in animal models of disease. For example, exosome delivery of the
tumor suppressor miR-143, in mice caused in vivo suppression of PCa [58]. On the other
hand, the EV surface proteins can shield the tumor targets thereby enabling tumor cells to
escape from the immune system attack [59].

3. Current Diagnostic Methods and Advantages of Using Liquid Biopsies

PCa diagnosis is currently based on histopathological analysis of cells from prostate tis-
sue biopsy. Morphologically, prostate carcinomas are particularly complex regarding their
propensity to display multiple histological patterns within a single tumor (Figure 4) [60].
The presence of multiple, independent foci of prostatic adenocarcinoma within the same
gland is a common finding. Moreover, the initial biopsy grade may not reflect that of
the resultant prostate specimen, due to sub sampling that could result from both grade
heterogeneity and multifocality [61].

Furthermore, TRUS biopsy is unable to reliably identify PCa and is particularly poor at
sampling cancers in the anterior and apical locations, contributing to the under detection of
clinically significant disease [62]. Similarly, up to 40% of cases classified by TRUS biopsy as
low grade are in fact higher grade disease in surgical radical prostatectomy specimens [63].

Advances in prostate mpMRI have allowed for MRI-targeted biopsies of suspicious
imaging findings [11,64,65]. MRI-targeted biopsies result in a higher rate of detection of
high-grade cancers [9,10,64,66] with an improved detection of clinically significant cancers.

The ideal test for PCa detection should embrace several properties, namely, cost ef-
fectiveness, and minimally invasive with few side effects (Figure 1). Liquid biopsy has
therefore emerged as a promising minimally invasive method to achieve a molecular profil-
ing of PCa that could overcome these limitations. Liquid biopsy is considered homogenous
in contrast to tissue biopsies for which sampling sites affect biomarker outcome. The main
biological biomarkers used in liquid biopsy originate from circulating tumor cells (CTCs),
circulating tumor DNA (ctDNA) and EVs, including exosomes.

Compared to blood, urine is a relatively easy biofluid to collect in large quantities in a
noninvasive manner, with only uromodulin and human serum albumin as relatively abun-
dant proteins [67,68]. The total protein coverage in our hands is typically 2–3 times higher
in uEV samples compared to plasma and plasma EVs. We typically identify ~600–800 pro-
teins in plasma, ~1000 proteins in plasma EVs and 2000–3000 proteins in uEVs from a
single patient sample using state of the art mass spectrometry. Under healthy physiological
conditions, urine contains few cells: either epithelial cells from the lining of the urogenital
tract, or blood-derived, such as immune cells. EVs released by cells have appeared as a
source of noninvasive biomarkers for different pathological conditions including prostatic
diseases [69–71]. Biofluids are obtained by either noninvasive or invasive methods. Exam-
ples of noninvasive biofluids constitute urine, saliva, seminal fluid, breast milk and sweat.
Examples of minimally invasive biofluids, which are typically extracted by a needle or
aspiration, range from blood, cerebrospinal fluid, pleural effusion and bronchoalveolar
lavage. In the context of PCa blood, urine, and seminal fluids account for the most stud-
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ied biofluids. All of these fluids may contain EVs released by tumor cells with a set of
specific tumor-related biomolecules that are protected from degradation by the EV mem-
brane [72,73]. Notably, among identified potential PCa biomarkers are several proteins [74],
lipids [75], RNAs [69] and microRNAs [76] present in EVs. The advantages of uEVs for
proteomics studies are multiple, namely, removal of abundant urine proteins, concentration
of low abundant proteins, increased resistance to proteases and nucleases, and long term
proteome stability at −80 ◦C storage. Furthermore, the noninvasive sampling opens the
possibility for longitudinal studies. The disadvantages of uEVs compared to direct urine
are increased processing time, increased cost, and increased variability due to additional
isolation steps.
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Figure 4. Photomicrograph of a prostatic acinar adenocarcinoma with multiple morphological
patterns, such as some uniform medium sized glands (blue arrowhead), small poorly-formed and
fused glands (black arrowhead) and both large and small round cribriform glands (arrows) with
well-formed lumina (H&E, 10×). Image provided by João Pimentel MD, Pathology Department,
Centro Hospitalar e Universitário Lisboa Central, October 2021.

4. Overview of Liquid Biopsies and Omics Technologies Used in PCa Studies

The four main omics technologies applied in biomarker discovery are genomics,
transcriptomics, proteomics and metabolomics. The different types of relevant biopsy
samples applied to PCa are prostate tissue, plasma, serum, seminal fluids, urine, and
expressed prostatic secretions (EPS) in urine. EPS in urine are collected in voided urine after
DRE [29,77]. EVs isolated from EPS urine contain exosome components found in urine and
prostasomes secreted from the prostate. EVs from tissues other than the urinary and male
reproductive tract are also present in urine. In theory, EVs should not pass the glomerular
filtration barrier (GFB) and basement membrane of the kidney (6 nm in the healthy state).
Nonetheless, the kidneys filtration properties are likely jeopardized in pathological states
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thereby enabling EV passages [33,78,79]. However, EPS urine is enriched in EVs from the
urinary and male reproductive tract. EPS urine furthermore contains cells from the urinary
and male reproductive tract making it an interesting target for biopsy. Detection of PCA3
and TMPRSS2:ERG mRNA in EVs derived from readily obtained EPS urine constitute
a viable clinical application for PCa screening [80].In order to evaluate available omics
data regarding PCa and EVs we performed a detailed PubMed search with the terms
displayed in Table S1 (performed in September, 2021). The number of retrieved studies is
depicted in Figure 5. Our main interest was to scrutinize the 24 studies retrieved on the
keywords proteomics, PCa and EVs excluding reviews (Figure 5A, depicted with a star).
These 24 studies were manually curated for analysis and further discussion. Overall, our
analysis suggests that proteomics and metabolomics studies in PCa are underrepresented
compared to genomics and transcriptomics studies (Figure 5B).
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Figure 5. Overview of omics technologies applied in PCa using different biopsy samples. (A) The
proportion of different omics technology based studies applied to each biopsy sample type are
indicated on the y axis and the total numbers in the lower bars. (B) Number of retrieved PubMed
studies in PCa for each omics technology and biopsy sample type. Abbreviations: expressed prostatic
secretions (EPS), seminal plasma (SP) and extracellular vesicles (EV).

The 24 retrieved publications on uEV proteome obtained from PCa patients are sum-
marized in Table S2. The manual curation of the 24 studies revealed that one study was
wrongly annotated in the PubMed database as an experimental paper (Table S2, red).
Another study included all keywords in the title and abstract however was focused on
bladder cancer instead (Table S2, red). Of the remaining 22, eight publications described
the clinical sample size, ranging from six to 107 subjects (Table S2, depicted in green). Two
of those were concerned with cataloging proteins, one aimed at identifying markers for
resistance to docetaxel and five with identification of markers for csPCa. The majority of
the studies were not statistically powered for biomarker discovery. Of the two studies with
an acceptable clinical cohort size of approximately 100 subjects, one did not provide access
to the mass spectrometry data [18] and the other used only mass spectrometry on PCa cell
lines from which claudin 3 was identified as potential bio-marker [81]. Claudin 3 was then
subsequently validated in a clinical cohort of 99 patients. From the eight clinical PCa EV
studies only two provided public access to the mass spectrometry data. One provided
mass spectrometry data from 12 patients [82] and the other with data obtained from cell
lines [81]. In conclusion, there is only one study with publicly available MS data on uEVs
from clinical samples with a modest cohort size of 12 patients [82]. It is our opinion that
given the promising preliminary results on uEVs there is a need for a large scale PCa uEV
proteomics profiling. Such a project will cast light on the diversity of uEV across patients,
provide vital data for system biology analysis and provide more insight into the potential
of uEV in diagnosis and prognosis of PCa. Furthermore, this can be facilitated by novel
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instrumentation with increased duty cycle enabling detailed proteome profiling based on
short liquid chromatography gradients [83].

5. Proteomics in PCa

In the previous section, we discussed different biopsy sources and models for iden-
tification of potential protein EV biomarkers for diagnosis of PCa. Among these, more
than half were based on PCa cell lines. Cell line based-biomarker discovery is a valuable
approach; however, using large scale omics profiling several considerations should be
in place. For example, one study has provided mass spectrometry (MS) data on EVs
isolated directly from FBS and FBS depleted culture media [81]. We argue that this data
set is an excellent resource to highlight potential false positive proteins in MS studies of
EVs isolated from culture media. We consequently reanalyzed this specific subset of the
data on EVs isolated from FBS media without human cells by searching against a human
database including common MS contaminants such as keratin and bovine proteins. The
search identified 954 human protein isoforms which corresponded to 463 unique protein
coding genes as a result of homology between bovine and human proteins (Table S3).
Further, iBAQ values were estimated based on ion counts and log2 transformed to rank
the proteins according to estimated iBAQ abundance. The top proteins included for exam-
ple hemoglobin isoforms, tubulin, albumin, integrin beta, and Ras-related proteins. This
protein list (Table S3) will likely overestimate potential false positive protein hits since it
is custom to deplete FBS, in for preparation of cell culture media in EV studies, for EVs
isolation by ultracentrifugation. Nevertheless, we envisage that the abundance ranked list
finds use in highlighting potential proposed markers that partly or fully originate from
culture media proteins. As discussed in the previous section, EPS urine, seminal plasma
and uEVs are based on noninvasive biopsies. From a clinical perspective EPS urine and
uEVs are practical to collect on a large scale. In addition, paraffin embedded tissue samples
are also typically readily available for protein biomarker studies.

5.1. Proteins Identified in PCa Proteomics Studies

State of art mass spectrometry facilitated the discovery of potential novel biomarkers
for improved PCa diagnosis and prognostication. There is now extensive knowledge about
tissue proteome, revealing proteomic features associated with malignant transformation as
well as progression to metastasis.

Prostate is a gland producing a serous secretion which is rich in proteins. Prostate
fluids that are collectable and clinically valuable are seminal plasma and expressed-prostatic
secretion fluids. The seminal glands open into the prostatic urethra at its proximal side
allowing collection of expressed-prostatic secretion fluids. Nevertheless, clinical collection
in the voided urine following prostate massage is largely devoid of seminal vesicle derived
proteins or sperm [77]. The prostatic fluid contains epithelial cells and secreted proteins.
The secreted cells were recently analyzed on the molecular level by applying genomics and
metabolomics analysis. In this setting, a detailed investigation of physiologic prostatic fluid
showed differences between normal and pathologic protein prostate secretion [84]. MS
analysis of prostatic secretion in urine identified 1022 proteins expressed after a prostate
massage. Of these, 49 proteins were reported as enriched for prostate tissue. This list may
serve to highlight biomarkers of prostate origin in urine-based studies [84] and represents
a useful resource to match proteins identified in urine or uEVs as likely prostate origin
(Table S4A). However, our intention is not to apply this list to restrict biomarker candidates
since it is based on only 11 clinical samples which is unlikely sufficient to characterize
the heterogeneity in PCa. Furthermore, the study was performed in 2012 and recent MS
instrumentations are far more sensitive, questioning if a more complete protein list is
obtainable with recent instrumentation.

Iglesias-Gato and co-workers performed a proteome profiling of 28 tumors and
eight nonmalignant formalin-fixed paraffin-embedded (FFPE) radical prostatectomy speci-
mens [85]. They applied super-SILAC by mixing FFPE protein extracts with isotopically
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labeled standard obtained from four prostate-derived cell lines. FFPE proteome profiling is
less sensitive than fresh tissue-based proteomics, due to protein cross linking, but super-
SILAC seems to partly mitigate this problem. Strong anion exchange chromatography
was applied to simplify each sample into six fractions. The authors reported a total of
9000 protein identifications with a 1% FDR cut off. Whole-cell lysates are expected to result
in considerably more protein identifications than FFPE samples. The authors report more
than 5000 valid SILAC ratios for each sample. Proneuropeptide Y (Pro-NPY, C-terminal of
NPY) expression, alone or in combination with the ERG status of the tumor, was associated
with an increased risk of PCa specific mortality. In total, 649 differentially expressed pro-
teins between malignant and nonmalignant were identified (Table S4B) [85]. Super-SILAC
appears promising in terms of increasing the protein coverage and number of quantifiable
proteins in clinical samples. A possibility is to explore super-SILAC for uEVs or EPS uEVs
to increase coverage of such studies.

Seminal plasma is also considered for PCa protein biomarker studies and recently
reviewed by Drabovich et al. [86]. However, seminal plasma proteins arise from secretions
from the seminal vesicles which constitute about 65% of semen volume [86]. Moreover,
semenogelins are highly abundant in seminal plasma which may compromise detection of
low abundant proteins. Again, EVs are excellent for improving protein coverage by remov-
ing high abundant proteins in biofluids. For example, EVs in seminal plasma are mainly
originating from prostate epithelial cells, and referred to as prostasomes [87]. By isolating
seminal plasma EVs from vasectomized men, proteins were cataloged in two different EV
size exclusion chromatography (SEC) fractions (thereby excluding contribution from testis
and epididymis) [87]. Recently, a comprehensive multi omics approach targeting seminal
plasma identified 76 candidate biomarkers and tested 19 proteins in seminal plasma of
67 negative biopsy and 152 PCa patients [88]. The Supplementary Tables S1–S17 in the pub-
lication provided an extensive list of potential seminal plasma biomarkers and biomarker
signatures for PCa obtained from different omics approaches and literature search [88].
The most significant regulated proteins obtained from clinical samples were extracted and
added to Table S4C in this study. The authors specifically highlighted prostate-specific,
secreted and androgen-regulated protein-glutamine gamma-glutamyltransferase 4 (TGM4)
as a promising protein marker to include in biomarker panels [88]. Proteome profiling
of seminal plasma EVs from 12 healthy donors resulted in a catalog of 1474 proteins [89].
Although seminal plasma appears as a promising liquid biopsy for PCa, it poses some clin-
ical limitations in terms of sample collection on a large scale. In addition, to the analytical
problems caused by abundant semenogelins.

PCa tissues representing the five grades, defined by the current Gleason Score classifi-
cation system proposed by International Society of Urological Pathology, were quantified
by label-free LC-MSMS [90]. This work provided tissue proteome characterization of
five distinct PCa grades and benign prostate hyperplasia (BPH). The authors reported
LMOD1, GYG1, IGKV3D-20, and RNASET2 as effective discriminators of low and high
PCa grade group tissues. Furthermore, a panel of 11 prostate-derived proteins displayed
the potential to stratify patients from low and high risk PCa (Table S4D). Tissue microarrays
(TMAs) is an alternative method to direct LC-MS based studies. Tissue surface digestion
and nano-LC-MS measurements can identify and quantify more than 500 proteins from a
1.5 mm diameter tissue section [91]. The authors highlighted 20 proteins which were the
most significantly changed in expression between healthy and cancerous subjects based on
12 patients (Table S4E).

In in vitro models, Carvalho et al. [92] explored two public proteome data sets of the
NCI-60 cancer cell lines panel, analyzing whole cell [93] and secreted EVs [93] proteomes.
Proteins annotated to genes such as SLC18A2, CPM, ATP6V1B1, HECTD1, GPN3, REG4,
ZNF784, KIF4B, PKIA, RRAGB, PEMT, RNF115, and HAUS7 were uniquely identified in
cellular proteomes of PCa compared to proteins identified in the other cell lines from the
NCI 60 cancer cell line panel data set. In EVs, the proteins TRBC2, CAPN9, MSMP, UTS2B,
and MYOZ2 were unique for PCa. These proteins differ from the other proteins listed in
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Table S4E by potentially differentiating PCa from other cancers rather than from healthy
control samples. The authors concluded that cancer hallmarks proteins are contained in
EVs in general and that protein content of EVs correlated with the cell of origin supporting
the potential use of EVs as biomarkers (Table S4E).

Most of the Food and Drug Administration (FDA)-approved tumor markers are gly-
can antigens or glycoproteins [94–96]. The glycoproteome of PCa frozen tissues has also
been targeted [42]. The glycopeptides were isolated by solid phase extraction and released
by PNGase F followed by mass spectrometry analysis applying Sequential Window Ac-
quisition of all Theoretical Mass Spectra (SWATH-MS). On average, 1430 N-glycosites
were isolated from each sample and 220 glycoproteins displayed significant quantitative
changes associated with PCa aggressiveness and metastasis. N-acylethanolamine acid
amidase and protein tyrosine kinase 7 were suggested as potential biomarkers for ag-
gressive PCa [42]. Scott and Munkley [97] provide an excellent review on the potential
to exploit glycans as diagnostic and prognostic biomarkers for PCa. More specifically,
glycoforms of PSA, sialylated glycans, O-GlcNAcylation and glycan branch structures are
discussed as potential biomarkers for PCa [97]. Given the perceived relevance of glycans in
cancer hallmarks, more studies on glycopeptides in clinical cohorts are expected as sample
preparation methods and MS methodologies further develop.

Global protein profiles across large clinical cohorts are still limited in the literature
and may provide valuable information regarding tumor heterogeneity. Furthermore,
clinical studies targeting post translational modifications relevant in cancer on a large
scale are limited. For example, methodologies for MS based profiling of acetylation [98],
phosphorylation [99], ubiquitin [100], and ubiquitin like modifiers [101] start to reach a
maturity that enables large scale profiling based on small sample amounts obtainable from
liquid biopsies (e.g., phosphoproteomics by titanium oxide is possible based on even less
than 100 micrograms of proteins as starting material).

In conclusion, the above mentioned proteomics studies provided novel biomarker
candidates and improved our understanding of human physiology and molecular pathol-
ogy of PCa by cataloging expressed proteins in tissue and subcellular compartments. In
other words, these studies are justified by providing biomarker candidates and candidate
therapeutic targets through system biology analysis of integrated analysis of data sets.

5.2. Comparing uEV Proteins from Different MS-Based Studies

This section focuses on uEV potential protein biomarkers obtained from MS-based
studies. We refer to the recent review by Hatano et al. for discussion of potential biomarkers
obtained from a broad range of technologies [102]. Previous studies have characterized
EV proteins from PCa cells and identified annexin A2, calsyntenin 1, fatty acid synthetase,
filamin C, folate hydrolase-1, and growth differentiation factor 15, which may be specific for
PCa diagnosis [103]. Exportin-1 was also identified as a biomarker [74]. On the other hand,
Notch3, milk fat globule epidermal growth factor 8, and inter-alpha-trypsin inhibitor heavy
chain H4 were enriched in PCa EVs [104]. Khan et al. reported that exosomal survivin was
a potential biomarker for early detection of PCa [105]. In addition, prostate cancer antigen
3 (PCA3), flotillin 2, Rab3B and late endosomal/lysosomal adaptor, MAPK and mTOR
activator 1 (LAMTOR1) in EVs could be diagnostic markers for PCa [69,106].

Cancer initiation and progression are dependent on the ability of cells to communicate
with their local and distant environment through secretory products such as EVs [107].

Analysis of uEVs enables the profiling of molecular changes that would be otherwise
masked by the heterogeneity of whole urine. More than 50% of the proteins present in
urine are also represented in vesicles as reported in studies comparing uEV proteome with
whole urine [108,109]. In addition, analysis of the uEV proteome has provided information
regarding the potential diverse functions of uEVs.

In this context, by profiling matched PCa tissue-derived extracellular vesicles and
uEV, Dhondt et al. demonstrated that the uEV proteome is a reflection of the tissue of
EV origin [82]. Their work presents a thoroughly substantiated case favoring the study
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of uEV as a source of unique biological and disease signatures not uncovered by the
conventional analysis of crude urine samples. Overall, the authors have identified a total
of 3686 proteins, which represents a more than twofold increase relative to previously
published uEV proteomes. Among the identified proteins are PCa driver genes such as
NKX3-1 and PTEN. Previously described PCa markers are FOLH1/PSMA, KLK3/PSA,
androgen-regulated genes like FKBP5, and FAM129A [82]. Several proteins commonly
overexpressed in PCa tissue were selectively enriched in uEV from PCa patients compared
to post treatment. This was also the case when comparing PCa patients prior to treatment
versus men with BPH [82]. The data provided by Dhondt et al. [82] is a thorough resource
including uEV MS based proteomics data on prostate, bladder and renal cancer. However,
a deep analysis of the global data was not provided in the original paper. We consequently
reanalyzed the MS raw data files and performed multivariate analysis of all pairwise
comparisons of the different provided sample types. The analysis was performed on iBAQ
values [110] in which technical replicates were averaged before statistical analysis. The
pairwise statistical analysis was calculated with the R package limma [111] and p values
were adjusted by the method of Benjamini and Hochberg [112]. Potential biomarkers
were extracted based on statistically significant regulated proteins from four pairwise
comparisons between the samples pre-treatment, post-treatment, renal cancer, bladder
cancer with uEVs from benign patients and compared with other proteins from PCa
and PCa EV studies (Figure 6 and Table S4G–I). EV studies selected for inclusion in the
comparison were based on the studies listed in Table S4 that included patient samples
and aimed at PCa biomarker identifications [18,113,114]. Although, a list of proteins with
suggested prostate specific proteins from Principe et al. were also included [84]. The PCa
EV proteomics study by Fujita et al. [113], quantified 3528 proteins by deep proteomic
analysis, which constitute one of the largest number of proteins ever reported in uEVs from
patients with PCa, followed by validation of biomarker candidates by targeted-MS. The
study aimed to discover biomarkers that might predict high-grade PCa and investigated
the abundance of EV proteins isolated from DRE-urine in a cohort of six controls with
negative-PCa biopsy, six low-grade PCa and six high-grade PCa patients using iTRAQ
labeling LC-MS/MS.

Studies by Worst et al. [81] and Øverbye et al. [26] were not included in the comparison
due to the limited list of proposed markers. However, both studies suggest Claudin-3
(CLDN3) and TMEM256 were additionally proposed by Øverbye et al. [26]. TMEM256
based classification resulted in an area under the receiver operating characteristic curve
(AUC) of 0.87 [26]. The remaining studies included in the comparison were protein
biomarker studies on various sources of biopsy samples aiming at identifying biomarkers
for PCa [85,87,90,91]. It furthermore includes a list of proteins claimed by the authors to
contain proteins enriched in prostate specific proteins [84].
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Figure 6. Network analysis depicting the proteins proposed as biomarkers by different studies in
the intersections. The node sizes correlate with the number of potential biomarkers or prostate
enriched proteins proposed in the studies: Kawahara 2019 [90], Dhondt 2020 [82], Fujita 2017 [113],
Turiak 2019 [91], Zhang 2020 [87], Bijnsdorp 2013 [114], Iglesias-Gato 2016 [85], Principe 2012 [84],
and Sequeiros 2017 [18]. The vertex thicknesses correlate with log10 of the number of proteins in
the intersection. The actual proteins in the intersections were depicted for EV studies in which
the proposed markers were validated. The term “pre” indicates samples from patients previous to
treatment and “post” after treatment.

Among the prognostically informative proteins, it is worth mentioning that CD63 is
mainly associated with membranes of intracellular vesicles, although cell surface expression
may also be induced. It has been shown that prostate basal epithelial cells do not express
the characteristic CD antigens of secretory cells [115].

In conclusion, uEV are enriched in multiple PCa markers such as oncogenic drivers
and androgen-regulated gene products. uEVs may provide additional insight into cancer-
specific biological processes compared to the soluble urinary proteome. There is, in general,
poor to no overlap between short listed validated protein markers for PCa across stud-
ies. However, comparing the full list of potential biomarkers from mass spectrometry
across studies typically provides a significant overlap (Figure 6). Network analysis of
PCa validated EV biomarkers are shared with potential biomarkers for bladder and renal
cancer. Therefore, biomarkers for PCa must undergo scrutiny to assess specificity to PCa or
urothelial cancers biomarkers.

In the paper by Dhondt et al. [82], results from functional analysis were presented
without the consideration of the direction of regulation. Prostate, bladder and renal
cancer patients present different responses to treatment. For example, immunotherapy
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is more efficient in bladder and renal and less effective in prostate cancer. Therefore,
an overview of the regulated proteins function may provide novel therapeutic insight
to functional differences between cancers. Therefore, we performed KEGG functional
enrichment analysis of up regulated and down regulated proteins separately (Figure 7).
The up regulated proteins in benign cases were enriched in proteasomes, and ribosomes
compared to cancer cases (Figure 7a). Proteasomes and ribosomes are considered to co-
purify in EV isolation and the data suggest that this co-purification is elevated for benign
cases. On the other hand, proteins with functions like endocytosis, tight junction, and focal
adhesion are elevated in the cancer uEVs (Figure 7b). We also observed general patterns of
differences across cancer types where bladder and renal cancer stood out as more similar
in terms of KEGG functional regulation compared to prostate cancer. The differences
in KEGG functions need further research to elucidate if they contribute to difference in
treatment response.
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6. Therapeutic Significance of EV Proteins

EVs have biophysical properties, such as low toxicity and immunogenicity, stability,
biocompatibility, and permeability, which are of vital importance to successful drug deliv-
ery systems. Furthermore, they have an enhanced circulation stability as well as bio-barrier
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permeation ability, therefore they can be used as effective chemotherapeutics carriers to
improve the regulation of target tissues and organs [116].

In this context, EVs have the capacity to deliver different types of cargo and reach
specific cells. EVs can be used as carriers to deliver therapeutic agents to tumor cells with
the advantage of decreasing the side effects of drugs [56]. αvβ3 integrin holds promise as a
non-invasive biomarker for PCa and its role in exosomes has a dominant effect on other
pathways, as a potential therapeutic target [117,118].

EVs have also been shown, as mentioned above, to play a role in cell to cell com-
munication by transferring biological material that may promote cancer progression and
metastasis, which is another strong argument to further develop their potential as thera-
peutic targets in cancer [119–121].

Multi Drug Resistance (MDR) is one of the main limitations of cancer treatment. EVs
potentially mediate multidrug resistance (MDR) through uptake of drugs in vesicles and
thus limit the bioavailability of drugs to treat cancer cells. There is emerging evidence
of the role EVs play in mediating drug resistance in advanced PCa. For other cancers,
Sousa et al. [122] compared the RNA species present in drug-sensitive and MDR counter-
part cells and in the EV’s released by those cells. They discovered two pseudogenes (a novel
pseudogene and RNA 5.8S ribosomal pseudogene 2) as potential biomarkers for MDR.

Targeting EV proteins is of particular interest in cases of metastatic castration resis-
tant prostate cancer (mCRPC), as patients frequently develop several metastatic sites that
become resistant to treatment with anti-androgen deprivation therapy (ADT) [123]. Fur-
thermore, Ishizuya et al. [123] identified novel therapeutic targets for CRPC by proteomic
analysis of serum EVs. EVs were isolated, by ultracentrifugation, from sera from 36 men
with metastatic PCa: untreated (n = 8), well-controlled with primary ADT (n = 8), and
CRPC (n = 20). The authors have identified 823 proteins in the serum EVs. Six proteins were
increased in CRPC patients compared with untreated patients. In contrast, only ACTN4
was increased in the CRPC patients compared to the ADT patients. ACTN4 was highly
expressed in the PCa cell line DU145 and secreted EVs. RNA interference-mediated down
regulation of ACTN4 significantly attenuated cell proliferation and invasion capacity of
DU145 cells. Knockdown of ACTN4 effectively suppressed growth signaling pathways and
invasive capacities of PCa cells, suggesting that blockade of ACTN4 may be a promising
target therapy in CRPC patients [123].

7. Conclusions and Future Perspectives

In-depth research has been conducted towards the discovery of new biomarkers for
diagnosis and prognosis of PCa due to the inability of current biomarkers to accurately
predict disease aggressiveness.

Many studies confirm the potential of EVs as therapeutic vehicles for cancer treatment,
according to its capacity to transfer cargos with both an immunoregulatory and genetic
action. The lipid membrane of EVs makes them promising carriers of not only drugs but
also other therapeutic molecules to target PCa. uEVs are a promising noninvasive and
easily accessible source of biological material for investigation of biomarkers. MS-based
proteomics enables large scale and deep profiling of uEV proteomes, which reflect the
cellular processes associated with tissue-of-origin, creating new biological insights on PCa.

Future research is needed to unlock the potential of EVs in PCa diagnosis, prognosis,
and therapy. We specifically suggest that uEVs from larger standardized clinical cohorts
must undergo MS profiling to fully elucidate the heterogeneity in PCa. This will addition-
ally enable systematic and meta-analysis of future proteomics studies. Furthermore, PCa
studies must also evaluate samples from bladder and renal cancer to assess specificity for
PCa. Finally, functional enrichment analysis suggested that uEV proteins from bladder and
renal cancer are more similar on a functional level compared to prostate cancer.
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