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ABSTRACT 

 

Accurate demand forecasting is compulsory for a first-tier supplier to determine an 

optimal amount of parts to produce in order to minimize safety stock after supplying to the 

manufacturer. Producing under an actual order will negatively impact relationships with the 

industry while overproducing will face unnecessary carrying costs. This study was to develop 

a nonlinear autoregressive exogenous network (NARX) model to predict part demands of a 

first-tier supplier and compare its forecasting performances with an autoregressive integrated 

moving average (ARIMA) model. A parsimonious set of external variables (provisional demand 

order and the number of non-working days) were considered in the NARX model. The time-

lags for each variable and demand for the previous period were determined by analyzing 

autocorrelation functions. The dataset was obtained from a first-tier supplier for a year and 

divided into 70% training, 15% validation, and 15% testing sets. The performance evaluation 

resulted in the root mean square error (RMSE) of the proposed model being better than an 

ARIMA model in both training (18%) and testing (15%) sets. The promising results of the 

proposed NARX model could be crucial for improving manufacturing planning to efficiently 

reduce carrying costs and prevent stock out. 

 

Keywords: demand forecasting; automotive industry; neural network; parsimonious variable; 

ARIMA 
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CHAPTER 01 

INTRODUCTION 

 

1.1. Problem Statement 

A first-tier supplier of the upstream supply chain needs to predict future demands of a 

production company (main contractor). For an example of the automotive industry, a first-tier 

supplier (e.g., part manufacturing company) is responsible for supplying the number of 

automotive parts ordered from an automotive company on time. However, its demands keep 

fluctuating because of several relevant factors such as sales volumes, national holidays, and 

unexpected events. Therefore, to respond to its demand fluctuation, a first-tier supplier should 

accurately predict supply on time for lean or just-in-time manufacturing. Overproduction due 

to inaccurate prediction causes a carrying cost by holding unnecessary stock in inventory. 

Meanwhile, underproduction causes stock out that probably causes additional direct and 

indirect costs.  

 

 

Figure 1. Supply chain flow (Adapted from Junior, Reche, and Estorilio, 2018) 

 

Even where customer sales seem to be stable, there is significant inconsistency in 

supplier orders to wholesalers in a supply chain. Orders to the producer and the manufacturer's 

supply have increased even more. This is known as the "Bullwhip effect" which is an issue 

with misleading facts. The bullwhip effect occurs as a result of logical actions in the supply 

chain's system. Because of this crucial difference, businesses seeking to monitor the bullwhip 

effect must concentrate on changing the chain's infrastructure and associated procedures rather 
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than the policymakers' actions. The bullwhip effect can be caused by human actions, such as 

misunderstandings regarding inventory and demand facts. Request prediction updating, order 

batching, market fluctuation, rationing, and scarcity cooperation are all established as causes 

of the bullwhip effect. The bullwhip effect is created by both of these powers working together, 

as well as the chain's technology and order managers' sound decision-making. Managers will 

design and build methods to combat it by first identifying the triggers.  

 

 

Figure 2. Bullwhip effect of supply chain (Adapted from Rabe, Jäkel, and Weinaug, 2006) 

 

Demand forecasting is used by about every organization in the supply chain for 

production management, capability preparation, inventory tracking, and commodity needs 

planning. Forecasting is frequently dependent on the company's recent customers' order 

experience. Many behavioral causes, such as the partners' expectations and distrust, result as a 

result of this. Each partner's thinking process in forecasting the demand trend depending on 

what one observes is a significant aspect. When a downstream process puts an order, the 

upstream manager interprets the data as a forecast of potential commodity demand. The 

upstream updates their market estimates and, as a result, the orders put with the upstream 

operation's suppliers based upon the signal. The bullwhip effect is thought to be exacerbated 

by demand signal processing. The dealer's instructions to the seller are often more variable than 
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the demands of the customer. Since the volume of protection stock plays a role in the bullwhip 

effect, it stands to reason that while the lead times between replenishment of products together 

with the longer supply chain; the fluctuation would be much greater (Lee, Padmanabhan, and 

Whang, 1997). If each stage uses local uncoordinated predictions focused on incoming orders 

or demand, the bullwhip effect, or duplication of orders in the supply chain, occurs in all 

situations and policies. As a result, the bullwhip impact is verified to be caused by poorly 

coordinated local demand forecasting. The size of the bullwhip effect is influenced by the 

responsiveness of forecasts to demand, which is an expansion of this finding. The bullwhip 

impact is increased by forecasts that are strongly sensitive to changes in demand, whereas it is 

reduced by forecasts which are less responsive (Barlas and Gunduz, 2011).  

To deal with the above challenge, the moving average (MA) is used to perform the daily 

task of prediction for production which is known as a traditional method. The inefficiency from 

the MA’s prediction result with low accuracy is too limited to address the problems in this 

company condition. Alternating to a new method to approach as high accuracy as possible is a 

major requirement to stabilize the production line. 

 

1.2. Exiting Studies 

Since it is challenging to reach a better accuracy of demand prediction, several studies 

attempted to apply various methods including both traditional and state-of-the-art approaches. 

Through those existing approaches which are applied in different areas, applying them into this 

specific condition can be an approach to get insights in finding a suitable method for future 

implementation.  

Auto regressive integrated moving average (ARIMA) was used to predict future data 

of time series with good performances. Since ARIMA is based on historical data in forecasting 

future values, it can efficiently forecast a short-term value (Box et al., 2015). Basically, 

ARIMA was formed by integrating auto regression (AR) and moving average (MA) to balance 

each other for a better prediction which is compared to only-MA model (Ariyo et al., 2014; 

Sun et al., 2019). Many existing studies showed that ARIMA responded with better mean 

absolute percentage error (MAPE) and mean squared error (MSE) among other traditional 

methods. For example, a study applied the ARIMA approach on a plastic manufacturing 

company’s data to predict a demand of raw material (Siregar, Nababan, Yap, and Andayani, 

2017). Two years of sales data was used to build the model which resulted in 74% and 68% 
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accuracy for the respective products, PP Trilence and PP Tintapro. The forecasting values were 

flattened because the ARIMA lost its ability to capture the independent variable (Input data) as 

predicting on only the near previous predicted values. In addition, in the same area of the plastic 

industry, a study of ARIMA was conducted to dive deeper to check the improvement of 

performance by comparing with other methods (Udom and Phumchusri, 2014). The data which 

was used as the input for model development was in a five years period of sales volume. With 

the study’s measurement as Mean Absolute Percentage Error (MAPE), four different methods 

were used in comparison as Naive, MA, Winter Exponential, and ARIMA to predict a future 

sale volume for five individual products. As a result, one of the five products respectively 

showed a similar output as 43%, 39%, 48%, and 37% in which ARIMA presented as the lowest 

MAPE resulted model. Furthermore, another attempt was conducted in forecasting demand for 

food manufacturing industry which used a larger data as six years with ARIMA (Fattah, Ezzine, 

Aman, El Moussami, and Lachhab, 2018). To receive various outputs for comparison to 

distinguish model performances, this study used the parameter switching approach to measure 

model performance in standard error (SE), log likelihood, Schwarz Bayesian criterion (SBC), 

and Akaike criterion (AIC). Forecasting a future ten months period of the demand by using 

IBM SPSS application for changing the parameter resulted in the best fit in ARIMA(1, 0, 1) 

with 12% SE. Hence, these attempted studies proved that the ARIMA model has a better 

capability to forecast future demands which reduced error percentage compared to other 

traditional methods. 

On the other hand, artificial neural networks (ANN) have been integrated for 

forecasting in most sectors including the manufacturing industry. The flexible and dynamic 

ANN algorithm is capable of dealing with big datasets which are in complex form of various 

data types (Hsu et al., 1995). Since forecasting using ANN resulted in better error values and 

was suitable in both short-term and long-term demand forecasting (Al-Saba and El-Amin, 

1999), ANN is considered as a precise model in the automotive parts manufacturing company 

too. For instance, a study of comparative analysis on demand forecasting models using various 

ANN training methods showed distinctive outcomes. The goal of the study was to determine 

the best training approach for forecasting demand signals in the supply chain using the ANN 

method. By focusing on ANN and various training approaches, they established a comparative 

forecasting mechanism. The market forecasting problem was studied on new data from a real-

world case to show the feasibility of the suggested technique. The TrainLM system 

outperforms other training approaches in estimating more accurate predictions in our case, 
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according to the evaluation findings. Because of further on-time delivery, the potential to 

improve forecasting performance would result in reduced prices and better customer loyalty. 

In terms of predicting consumer needs, the proposed approach is a positive attempt with a less 

Mean Absolute Error (MAE) percentage of 5% in MLP – TRAINLM which was compared to 

12% in MLP – TRAINGD, 15% in MLP – TRAINGDA, and 11% in MLP – TRAINCGF 

(Kumar, Herbert, and Rao2014). Moreover, in the field of renewable energy, ANN was applied 

to forecast electricity demand of smart grid technology. This research aimed to see how well 

Artificial Neural Networks performed when it came to load forecasting in a real microgrid. 

Afyon Kocatepe University's ANS campus area is used as a micro grid for this purpose. The 

region's first load data is obtained on an hourly basis. This data was then divided into train and 

test data. Next, the neural network is used to forecast hourly load values. It is concluded that 

load forecasting is critical for micro grid preparation in order to reduce losses and improve 

output unit performance. It is proposed to build a 1 MW solar power plant in the city. The 

findings showed that ANNs are capable of making accurate predictions. However, increasing 

the number of input parameters relevant to the loads, such as general human activities in the 

field, temperature, humidity, and other meteorological parameters, is expected to improve 

forecast accuracy (Akarslan and Hocaoglu, 2018). In addition, in the area of water supply, the 

HLSALOA provided the highest degree of precision, according to the results of the applied 

ANN algorithms. Residential end-use demand forecasting models were developed by the 

HLSALOA, with R2 ranging from 21% for bath demand forecasting to 60% for shower 

demand forecasting. But for the dishwasher and bath demand forecasting models, all of the 

models' root mean standard errors (RMSEs) were less than half. The validation collection 

yielded comparable results when the models were added. Except for the bath demand 

forecasting models, the HLSALOA was able to estimate the means and medians of observed 

demand frequency distributions (Bennett, Stewart, and Beal, 2013). 

 

1.3. Methodology 

Nonlinear autoregressive exogenous networks (NARX) can predict more accurately 

since it can consider the pattern of historical data as well as external variables that may help a 

better prediction. Although ARIMA and ANN showed an acceptable prediction, it is only 

dependent on the pattern of its own historical data.  
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Specifically, NARX can additionally consider external variables along with ARIMA 

does not. Thus, many studies have attempted to apply NARX for future value predictions in 

several fields. For example, in environmental surveillance for health risks, accurate peak 

measurement of ozone concentration data is critical. This research focuses on using nonlinear 

black-box regression models to model and forecast these types of data, which is a difficult 

problem due to the insufficient knowledge provided by the existing data and the high pulse 

variability of the concentration data. The use of a recent modelling framework for ozone 

forecasting (polynomial NARX models), a consistency comparison between such models and 

neural networks, and the use of alternate cost functions for model recognition are among the 

study's key contributions. Polynomial NARX models deliver outcomes that are comparable to 

NN-based NARX models (which are usually assumed the state-of-the-art models for predictive 

ozone forecasting), and they often include details about the best regressors for a certain 

nonlinear phenomenon.  

The study further demonstrates the advantages of amplitude weighting of the identity 

cost function in spike estimation accuracy (independent of the model class used). It is shown, 

in particular, that such weighting can improve peak estimation reliability, allowing for further 

assured model utilization in the monitoring phase (Pisoni, Farina, Carnevale, and Piroddi, 

2009). Also, using the NARX technique, a study developed a model that predicts wind speed 

one step forward. The Mahalanobis distance was used to find outliers in the multivariable 

sample, and the Granger test was used to decide which variables could be included in the model.  

Finally, the NARX model was compared to the one-variable NAR and the persistence 

model to assess the contribution of the variables used in the NARX model to the forecast. Apart 

from wind direction, solar radiation was the most important factor. 22 outliers were identified 

in the raw dataset, deleted, and replaced using the one-point linear tendency. The descriptive 

mathematical measurements, which were compared with the processed data and the clean 

sample, confirmed that the sample data had not been significantly altered. The Granger test in 

La Mata, Oaxaca, revealed that solar radiation is the only element that influences wind speed 

production, making its configuration as the entry vector in the NARX model crucial. The test 

data and the error prediction measurements: MSE, MAE, and MAPE were used to compare the 

NARX, NAR, and persistence models for each technique. The NARX outperformed the NAR 

by 4% and outperformed the longevity model by 11%, according to the findings (Cadenas, 

Rivera, Campos-Amezcua, and Heard, 2016). Furthermore, NARX was successfully designed 

for flood simulation and prediction. Training data was used to improve the model, and testing 
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data was used to evaluate its accuracy. The data used for model construction was in meters and 

ran from November 18, 2010 at 8:20 to November 21, 2010 at 18:20 in 10-minute intervals. 

The water peaks condition at time steps 60-80 and 250-275, where estimation was 

unsuccessful, contributes the most errors. Other regions have close to zero errors, indicating 

strong estimation. The NARX model's prediction outputs are defined as showing good results 

with errors close to zero and a Best Fit of 87 percent. The flood water level at the downstream 

channel, also known as the flood site, was successfully forecast 10.83 hours in advance, with 

excellent results. In this analysis, the effects of physiographic factors such as basin area, 

mainstream volume, and mean slope were ignored (Ruslan, Zain, and Adnan, 2014). In 

addition, on a horizontal layer, a NARX neural network model for predicting direct solar 

radiation. The key result of this research is that the neural network's training process is 

conducted on a regular basis, considering a variety of factors such as solar characteristics, 

sailboat mobility, and cloud cover. The built predictor is useful for calculating direct solar 

radiation on a mobile horizontal surface, but it ignores the two tilt angles used to account for 

sailboat pitch and roll motions. Furthermore, the sails' shadow is not considered. As a result, 

the built predictor will be enhanced to take into account these new constraints. The developed 

predictor will be built as part of the previously discussed project for a 100 percent renewable 

race sailboat, first to forecast direct solar radiation on a sloped and theoretically shady surface, 

and then the amount of usable power from the boat's PV arrays. The energy control scheme of 

the boat will use this new indicator. MSE and DMPE failures are used to test some models that 

were run with various assessment parameters. The best findings (0.00279 for MSE and 24.0584 

W/m2 for DMPE) were obtained using the following parameters: a 10-day dataset with a MA 

of 30 minutes over one-hour cycles, a NARX model with 15 nodes on the input and hidden 

layers, a sigmoid function input and hidden layer, a tansig function output layer, and a 

randomized initialization of weights (Boussaada, Curea, Remaci, Camblong, and Mrabet 

Bellaaj, 2018). Moreover, internal and external faults in distillation columns were investigated 

using a NARX network-based fault detection system. The simulation of a pilot size distillation 

column in both steady-state and dynamic modes has been presented. Since the NARX approach 

is a data-driven technique, it can only detect past faults. The intelligent detection system can 

also be used in real-world industrial distillation column applications where noise and 

disturbances are present. This tracking technique can be used to track multiple faults as well as 

detect them in real time. This approach may be applied to a diagnostics device for identifying 

defective plant parts. Co-simulation of the APD-MATLAB interface produced the results. The 

input signals were produced using random perturbations. Many of the measurements were 
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subjected to a simulation of sensor noise, which included zero mean normal distributed noise. 

The data collected was used to train a neural network model. The network's accuracy was 

validated using error autocorrelation. Based on these findings, it can be inferred that the 

evolved model is suitable for representing machine behavior and, as a result, for fault detection. 

This soft computing approach yields a viable outcome for a distillation column fault detection 

system that is both accurate and stable. The MDR is used to assess the algorithm's reliability, 

which is important when using fault detection and diagnosis methods in real-time processes 

(Taqvi, Tufa, Zabiri, Maulud, and Uddin, 2020). 

However, very limited studies were conducted to develop the NARX method to predict 

the demand of a first-tier supplier in the automotive industry even though several external 

factors may influence its actual demand. For instance, Diagonal Feeding had been introduced 

as a method for predicting Build-To-Order goods. When future delivery dates are known, it 

aids in improving precision. Domain expertise, comprehensive feature engineering, or 

specialized technological skills are not needed for this approach. Many studies demonstrate 

that there is no one-size-fits-all technique for time series prediction. Furthermore, this study 

made a highly important and unique data collection accessible. The lack of publicly available 

data sets presents a problem in designing strategies for predicting demand for BTO goods. It is 

also worth looking into the effect of transforming the goal variable on Diagonal Feeding, as it 

has been shown that some transformations do better than others. From an algorithmic aspect, 

the approach can be improved with non-parametric pre-processing methods to filter out 

anomalies, such as multichannel anomaly detection, online aggregation of diverse forecasting 

models through long-term aggregation strategies, and techniques to model quasi-periodic data 

and trend detection in the presence of non-stationary nodes, among other things. With a 

SMAPE of 0.17, Adaboost was the best model. The Ensemble of Random Forests came in 

second with 0.18. However, it was worth noting that these models underwent comprehensive 

feature engineering, with over 300 features produced. The best approach for Diagonal Feeding 

was a random forest with log transform fitted on the entire data collection. It received a score 

of 0.34. This was slightly greater than the SMAPE of 0.42 achieved by the average of methods 

educated on the data set of function engineering (Rivera-Castro, Nazarov, Xiang, Pletneev, 

Maksimov, and Burnaev, 2019). In addition, a manufacturing demand forecasting was studied 

in a setting with only partly accurate details. Request, which is based on three independent 

variables: price, efficiency, and lead time, was considered in an unpredictable setting. Partial 

knowledge characterizes the demand climate. As a result, Z-numbers are used to characterize 
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input and output data for demand forecasting. On the basis of historical Z-information, the 

problem is to create a relationship among the demand variable and the variables price, cost, 

and lead time. The forecasting model is a Z-regression model, with demand as the dependent 

variable (represented by a Z-number) and price, cost, and lead time as independent variables 

(represented by Z-numbers). The proposed Z-regression model has been tested and found to be 

accurate (Aliyeva, 2017). In this sense, a study is needed to develop a NARX model for 

prediction of demand considering the characteristics of a first-tier supplier in the automotive 

industry.  

 

1.4. Purpose of Study 

This study focuses on building a demand forecasting model using NARX using 

parsimonious variables and optimal parameters for the network (input and output delays, 

nodes). The external variables of NARX were determined by correlation analysis between them 

and demands of a first-tier supplier company. The delay of input and output of the network 

were also decided by analyzing time-lag effects of the external variables and historical demands 

on future demands. The optimal number of nodes for the network was determined to minimize 

errors in training and validation sets. This study used an actual one-year data set obtained from 

a first-tier supplier in the automotive industry.  
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CHAPTER 02 

DATA ANALYSIS AND PROPOSED METHOD 

 

2.1. Data Sets 

This study used an actual data for one year which was obtained from a first-tier supplier, 

manufactures automotive supplies such as parts and wires, in automotive industry in Korea. A 

production company (main contractor) delivered the daily demand to this supplier along with 

preorder amount (provisional demand) for upcoming 12 days. The preorder was subject to 

change according to the main contractor’s production schedule. This study divided the data 

into three subsets in order to train (70%), validate (15%), and test (15%) a proposed NARX. 

The prediction period in this study was set to 14 days since this supplier need to spend about 

14 days in procurement, production, and delivering. Hence, the first-tier supplier’s actual 

demand is considered as the target variable which is preprocessed to be a summation of the 14 

values in a time step. 

 

 

Figure 3. The plot of the preorder data 
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Figure 4. The plot of the actual demand 

 

 

Figure 5. The plot of Moving average (span = 30) of the preorder and actual demand 
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Figure 6. The plot of the holiday data 

 

 

 Figure 7. The plot of the sale volume data  
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Figure 8. The plot of the actual demand and sale volume in two weeks 

 

 

2.2. Parsimonious Variables Selection 

This study considered three external variables (preorder amount, holiday number, and 

sale volume of the car) that may be related to the demand of automotive parts. Firstly, preorder 

amount is rough demand for a designated period (e.g., 12 days) estimated from an automotive 

company. An automotive company generally provides a preorder amount to a first-tier supplier 

in order for facilitating its supply chain. As shown in Figure 9, an automotive company shares 

their estimated demand for upcoming 12 days; however, this preorder amount is subject to 

change depending on the production schedule of an automotive company. Second, holiday 

number is the number of holidays (non-business days) during a prediction period. Since an 

automotive company is not working on holidays, its demand may be affected by the number of 

non-business days during a prediction period. Lastly, sale volume of the car (obtained from 

http://m.auto.danawa.com/newcar/?Work=record&Brand=303&Month=2016-12-

00&MonthTo=) is also affecting to the demand since more or less parts are required depending 

on sale volume. Besides, the sale volume data is firstly divided daily in each month's values 

since it is available monthly. The external variables are the summation of 14 values in a time 
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step, the same as the target variable, which are used as feature variables to together feed into 

the proposed network.  

 

 

Figure 9. Relationship of each external variable with the actual demand 

 

Two key variables (preorder amount and holiday number) out of the three external 

variables were chosen to avoid multicollinearity problems in a prediction model. High 

correlation among external variables may cause multicollinearity problems that may degrade 

the accuracy of a prediction model. First of all, stepwise regression analysis was performed 

and resulted that holiday number (p < 0.001) and preorder amount (p < 0.001) were included 

in the model; but rejected sale volume. In addition, this study analyzed correlation among 

variables and found that sale volume is highly correlated with preorder amount (0.813 to 0.780) 

and holiday number (0.734 to 0.725). It implies that preorder amount and holiday number 

without the sale volume can properly predict the demand since the two have high correlation 

with sale volume. 

 

 

 

 

Actual demand 

Holiday number Sale volume 

First-tier supplier’s production 

Pre-order amount 
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2.3. Time-lag Analysis 

The number of time lag for the two key variables was determined as 2 by analyzing the 

correlations with actual demand as shown in Figure 10 and 11. Correlations for the preorder 

amount (0.81 to 0.72) gradually decreased as time-lag increased. On the other hand, 

correlations for holiday numbers (0.66 to 0.68) were relatively consistent regardless of time-

lag. There were significant effects of time-lag; however, it was generally decreasing or 

sustained. Thus, this study chooses 2 for time-lag. 

 

 

Figure 10. Cross-correlation coefficients of Preorder with Actual demand (y-axis) in time 

lags (x-axis; unit: time) 

 

 

Figure 11. Cross-correlation coefficients of Holiday with Actual demand (y-axis) in time lags 

(x-axis; unit: time) 
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The number of input-output delay for the network was determined by autocorrelation 

function (ACF) and partial autocorrelation function (PACF) (Box et al., 1994). Based on the 

Figure 12 and 13, the coefficients of AFC gradually decrease to 0 as “tails off”, and PACF 

shows that, after the high correlation in lag 1 (0.96) and 2 (-0.48), the others’ correlation sharply 

decreases as “cuts off” below and close to the confidence interval. Thus, the number of input-

output delays in this study was determined as 2. 

 

 

Figure 12.  ACF of the actual demand 

 

 

Figure 13.  PACF of the actual demand 
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CHAPTER 03 

METHOD 

 

3.1. Autoregressive  

Autoregressive models are highly adaptable when it comes to dealing with a variety of 

time series trends. The following two series illustrate series from an AR(1) and an AR(2) 

model, respectively.  

 

Figure 14. Autoregressive models, AR(1), on the actual demand 

 

Figure 15. Autoregressive models, AR(2), on the actual demand 
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The variable of interest is forecasted using a linear combination of past values in an 

autoregression model. The word autoregression means that the variable is being regressed 

against itself. As a result, a p-order autoregressive model can be written as 

yt = c + ϕ1yt−1 + ϕ2yt−2 + ⋯ + ϕpyt−p + εt 

where is white noise as εt, 

−1 < ϕ1 < 1 for the AR(1) 

−1 < ϕ2 <1, ϕ1 + ϕ2 < 1, ϕ2 − ϕ1 < 1 for the AR(2). 

In the case of AR(1): 

● yt is equal to white noise: ϕ1 = 0 

● yt is equal to a random walk: ϕ1 = 1, c = 0 

● yt is equal to a random walk with drift: ϕ1 = 1, c ≠ 0, 

● yt tends to fluctuate around the mean: ϕ1 < 0. 

This is similar to multiple regression, except the predictors are lagged y values. This is 

known as an AR(p) model, which stands for autoregressive model of order p. Changing the 

parameters ϕ1,…,ϕp  causes the time series dynamics to change. The error term εt's variation 

would only affect the size of the sequence, not the trends. 

When it comes to p ≥ 3, the constraints are far more complex. When estimating a model, 

R considers these constraints. Usually, autoregressive models are limited to stationary data, 

which necessitates certain restrictions on parameter values (Hyndman, and Athanasopoulos, 

2018). By changing the regression coefficients ϕp, the Autoregressive model will predict a 

broad range of time series. The distinction between Autoregressive models and other traditional 

regression models is that the error term is assumed to be independent. The assumption of 

uncorrelated error is usually generated since the predictors are time-lagged values for the 

explanatory variables (Zhai, 2005). 
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3.2. Moving Average  

The formula of Moving Average is present as: 

Yt = w0 + εt - w1εt-1 – w2εt-2 – …  – wqεt-q 

where: 

● Yt : the series value at time t 

● w0, w1, w2, …, wq: the weights used to account εt-1, εt-q, …, εt-q for 

prior prediction errors 

● εt the residual error. 

To determine a Moving Average, the number and value of the q moving average 

parameters w1 to wq must be determined while keeping in mind some value limits in order for 

the procedure to be stationary. The Moving-Average model performs well with stationary 

results, which is a type of time series that does not have a pattern or seasonality. 

 

Figure 16. MA(1) of the actual demand 
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Figure 17. MA(2) of the actual demand 

 

The fundamental theory behind the Moving-Average model is to first find the mean for 

a series of values, then use that mean to predict the next time while adjusting for any errors 

made in previous forecasts (Zhai, 2005).  

In a regression-like algorithm, a moving average model uses historical prediction errors 

rather than previous values of the forecast component. Moving average smoothing is used to 

estimate the trend-cycle of past values when a moving average model is used to predict future 

values. The variance of the error term εt, like that of autoregressive models, can only shift the 

size of the sequence, not the trends (Hyndman and Athanasopoulos, 2018). 

 

3.3. Autoregressive Integrated Moving Average  

Time series forecasting can also be done using ARIMA models. The two most 

commonly used methods to time series prediction are exponential smoothing and ARIMA 

models, which offer alternative approaches to the challenge. If exponential smoothing models 
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attempt to identify the data's pattern and seasonality, ARIMA models attempt to explore the 

data's autocorrelations (Hyndman and Athanasopoulos, 2018). 

The ARIMA equation as: 

Yt = ϕ0 + ϕ1yt−1 + ϕ2yt−2 + ⋯ + ϕpyt−p + εt - w1εt−1 + w2εt−2 - … - wqεt−q 

where: 

● p : the number of autoregressive terms 

● d : the number of non-seasonal differences 

● q : the number of lagged prediction errors 

The AR and MA models can be combined to form a third class of general models known 

as ARMA, which is a specific ARIMA(p, 0, q) model. With the addition of non-seasonal 

variations d to the formula, the ARIMA(p, d, q) model can handle a wide range of time series 

prediction problems. The ARIMA(p, d, q) model uses a mixture of previous values and past 

prediction errors to suit models that would otherwise be difficult to fit using an AR or an MA 

model alone.  

Besides that, the differencing reduces the majority of non-stationarity in the sequence. 

The Akaike Information Criterion (AIC) is used by the Best ARIMA function in R to select the 

p, d, q, value and define the best ARIMA model. The ARIMA approach differs from previous 

approaches in that it makes no claims regarding the number of terms or the relative weights 

that should be applied to the terms. To define the formula, the analyst first chooses the required 

model, including the number of p, d, and q terms; then, using a nonlinear least squares 

procedure, determines the coefficients and provides a refined suggestion of the parameters of 

the model (Hyndman, and Athanasopoulos, 2018). 

 

3.3.1. Non-seasonal ARIMA 

 A non-seasonal ARIMA model is created by combining differencing with 

autoregression and a moving average model. ARIMA stands for AutoRegressive Integrated 

Moving Average (integration is the inverse of differencing in this sense), which describe as:  

 y′t = c + ϕ1y′t−1 + ⋯ + ϕpy′t−p + θ1εt−1 + ⋯ + θqεt−q + εt, 
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ARIMA models must meet the same stationarity and invertibility requirements as 

autoregressive and moving average models. The scale of the prediction intervals is also affected 

by the value of d; the greater the value of d, the larger the prediction intervals become. When 

d = 0, the long-term forecast standard deviation is equal to the standard deviation of the 

historical results, resulting in exactly the same prediction intervals (Hyndman, and 

Athanasopoulos, 2018). 

 

3.3.2. Seasonal ARIMA 

ARIMA models may also be used to model a variety of seasonal data. Additional 

seasonal words are added to ARIMA models to create a seasonal ARIMA model. The seasonal 

portion of the model consists of concepts that are identical to the non-seasonal elements but 

include seasonal backshifts. 

The formula is described as: 

ARIMA(p, d, q)(P, D, Q)m  

where: 

● (p, d, q) : Non-seasonal part 

● (P, D, Q)m : Seasonal part 

● m :  Observations number per year. 

For ARIMA(1,1,1)(1,1,1)4 model  

● Without a constant 

● m = 4 : Data is collected every three months. 

Simply multiply the non-seasonal terms by the extra seasonal terms on the following 

equation (Hyndman and Athanasopoulos, 2018): 

(1 − ϕ1B)(1 − Φ1B
4)(1 − B)(1 − B4)yt = (1 + θ1B)(1 + Θ1B

4)εt 
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Figure 18. ARIMA model building flow (Adapted from Hyndman and Athanasopoulos, 

2018) 
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Figure 19. Forecasting plot using ARIMA model on the actual demand 

 

3.4. Time Series Using Shallow Networks 

Easy components acting in parallel make up neural networks. The biological nervous 

system stimulated these components. The network structure is primarily determined by the 

relations between elements, just as it is in nature. By changing the values of the correlations 

(weights) between components, a neural network can be trained to perform a specific role. 

Neural networks are usually tweaked, or practiced, such that a specific input contributes to a 

specific output. A scenario like this is shown in the next diagram. Based on a calculation of the 

performance and the target, the network is balanced so the network output meets the target. To 

train a network, several such input or target pairs are usually required. In addition, neural 

networks may be programmed to solve problems that are impossible for traditional computers 

or humans to solve. It has been programmed to carry out complicated tasks in a variety of areas, 

including pattern recognition, naming, grouping, voice, vision, and process control (Shallow 

Networks for Pattern Recognition, Clustering and Time Series - MATLAB & Simulink, 2019).  
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 Figure 20. A neural networks structure (Adapted from Yılmaz, Aci, and Aydin, 2015) 

 

Neural networks have both static and dynamic characteristics. Static networks are well-

known for their lack of feedback and delays. The static system's output is determined directly 

from the current inputs. Static networks are based on the assumption that data is continuous 

and that they have no sense of time, resulting in random actions. Though dynamic systems are 

more difficult to train than static networks, they are proven to be more efficient. Dynamic 

networks provide a kind of memory in terms of delays, which can be used to teach them to 

recognize sequence data or time series patterns (Primasiwi, Sarno, Sungkono, and Wahyuni, 

2019). 
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Figure 21. A neural networks architecture (Adapted from, MATLAB & Simulink, 2019) 

 

3.5. Proposing Nonlinear Autoregressive with External (Exogenous) Input (NARX) 

Network 

The NARX network has a wide range of implementations. It could be used as an 

indicator to forecast the input signal's next value. It could also be used for nonlinear filtering 

with a noise-free variant of the input signal as the target output. Another essential use of the 

NARX network would be in the simulation of nonlinear dynamic systems. 

The NARX was used to employ a feature of external variables as the input and the 

historical data on demand. Thus, this study used NARX with time-lag following by:  

yt = f (yt−1, yt−2, ut−1, ut−2, u’t−1, u’t−2)  

where: y  : output of the network, 

u, u’  : external input of the network, and 

f  : NARX function of the network. 

 

Previous values of the output signal and previous values of an isolated (exogenous) 

input signal are used to regress the next value of a target variable output signal yt. To estimate 

the function f, the NARX model could be applied using a feedforward neural network. The 
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resulting network is shown in the diagram below, with the approximation performed using a 

two-layer feedforward network. This implementation also allows for a vector ARX model of 

multidimensional input and output. The NARX network's performance can be thought of as a 

guess at the output of a nonlinear dynamic system attempting to model. 

As part of the traditional NARX architecture, as Parallel architecture, the output is 

passed back to the feedforward neural network's data. Since the true output is usable during the 

network's training, a series-parallel architecture may be created, in which the true output is used 

rather than the approximate output being fed back. This has two benefits. One is that the 

feedforward network's feedback is more precise. The second benefit is that the resulting 

network has a strictly feedforward design which can be trained using static backpropagation 

(Design Time Series NARX Feedback Neural Networks - MATLAB & Simulink, 2019). 

 

 

Figure 22. Parallel architecture (Adapted from MathWorks, Inc.) 
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Figure 23. Series-Parallel architecture (Adapted from MathWorks, Inc.) 

 

The NARX network has a better learning with a faster generalized convergence in 

neural networks by using gradient descent from external variables to reduce estimation’s 

parameter numbers (Pisoni et al., 2009). Mean squared error (MSE) was used in the learning 

algorithm as the performance function to select optimal weights and bias (Equation 2; Cadenas 

et al., 2016). This study used the Levenberg-Marquardt learning algorithm which is a standard 

technique for converging nonlinear least squares selection (Lourakis, 2005).   

MSEreg = 𝛾MSE + (1 – 𝛾 ) × MSW  

MSE =  
1

𝑛
 ∑𝑛

𝑖=1 (𝑡𝑖 − 𝑦𝑖)
2  

MSW = 
1

𝑛
 ∑𝑛

𝑗=1 (𝑤𝑖)
2  

 

where: ti : target,  

y : predicted value 

γ : performance ratio. 

 

The proposed network consisted of three layers (input, hidden, and output layers) as 

shown in Figure 24. The input layer had 2 inputs (preorder amount and holiday number) with 

2 time-lags, which was determined from correlation analysis between the two variables and the 

actual demand. The hidden layer had 4 nodes. The optimal number of nodes was decided by 



29 

 

analyzing network performance for training and validation data sets according to different 

numbers of nodes (1 to 20 with step size = 1). As shown in Figure 25, the training error kept 

decreasing as the number of nodes; however, the training error for validation data was 

decreasing and started to increase after 8. Thus, this study selected 4 as the optimal number of 

nodes for our prediction problem. The output layer is the predicted demand for a designated 

period (12 days in this study). In addition, the demand is recurrent to the input in order to reflect 

its historical patterns.  

 

 

 

Figure 24. Artificial neural network with parsimonious variables (Adapted from MathWorks, 

Inc.) 

 

 

Figure 25. Training and validation performance according to the number of nodes in the 

network 
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CHAPTER 04 

RESULTS 

 

4.1. Loss and Accuracy Comparison 

The proposed NARX showed good prediction performances as shown in Table 1. MSEs 

of the proposed NARX for the training and testing data sets were 4969 and 4081, respectively. 

In addition, RMSEs for both sets were 70 (9% of average demand for a prediction period) and 

63 (8% of average demand). The R2 between the predicted demands and actual demands was 

96% and 94% for the training and testing sets. 

 

Table 1. Result comparison between the methods 

 

 

Based on the comparison between NARX and ARIMA from Table 1, the proposed 

NARX showed a promising result. The RMSE of the NARX model (RMSE = 70) was 

sufficiently smaller for the training data set than ARIMA (85). Similarly, RMSE of NARX was 

better than that of ARIMA for the testing data set. Lastly, R2 between actual and predicted 

values was better in NARX (training = 96% and testing 94%) than ARIMA (training = 95% 

and testing 92%) for both data sets.  

 

4.2. Predicted Value Comparison 

The proposed NARX showed slightly better performance than an ARIMA as shown in 

Figure 26. Both the proposed NARX and ARIMA fitted well to the target by following the 

patterns and trends for the testing data set. However, several points of ARIMA appeared to 

have a tremendous spike in RMSE which was higher than the proposed NARX. For example, 
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in Figure 27, the points 3, 14, 17, and 31 showed relatively higher error in ARIMA than the 

proposed NARX. 

 

Figure 26. Predicted values of NARX and ARIMA 

 

 

Figure 27. RMSE of the predicted value of NARX and ARIMA 
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CHAPTER 05 

DISCUSSION AND CONCLUSION 

 

5.1. Discussion 

This study determined the inputs and parameters of proposed NARX in a systematic 

way. Three external variables (preorder amount, holiday number, and sale volume) were 

considered at first, and then two parsimonious variables were selected to avoid 

multicollinearity because one external variable (sale volume) had high dependency to the 

others. In addition, the number of input-out delays was decided as 2 by ACF and PACF 

analysis. Furthermore, the node number for the hidden layer was determined as 4 by analyzing 

the learning performance for different node numbers of the network.  

The best performance of learning in NARX is defined by the validation phrase when 

the validation error decays to the minimum value and then stops the training in order to 

optimize the network architecture (Larsen et al., 1996). Since the NARX used backpropagation 

algorithm for training, the number of hidden neurons is mandatory to determine to avoid under 

and overfitting with learning result (Kalogirou, 2013). We analyzed MSE by changing node 

number from 1 to 20 for the training and validation data sets. MSE for the training data set 

dramatically dropped from 1 node (6679) to 4 (4969) then gradually decreased until 20 (3351), 

while the validation data set sharply decreased from 2 nodes (5391) to 4 (4391) and then stop 

to improving performance. Hence, the node number for a best performance was suggested to 

be 4 in this study. 

 

5.2. Conclusion 

The NARX developed in this study resulted in a promising result since it employed 

near optimal parameters including number of input-output delays, node numbers, and 

parsimonious variables. The parsimonious variables showed the positive effect in boosting the 

network's learning process. Meanwhile, since there is no specific method to identify an exact 

optimal number of nodes for the network, the procedure used in study may be applied in 

determining a satisfying node number. 
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 The model’s improvement reflects a better performance for the company’s production. 

Approaching higher accuracy in forecasting the actual demand placed by the main contractor 

of the automotive industry aims to relieve uncertainty in managing inventory. Efficient 

inventory management mainly affects the dilemma of profitable supply chain management 

which is whether to keep low inventory level in order to keep the cost under control or high 

inventory level in order to assure the availability of products for actual demand. The supplier 

tends to eliminate waste and unnecessary processes to minimize safety stock which costs in 

maintenance and expiration of the individual product, while the high inventory level can 

guarantee to satisfy the order. So, the significant loss will be used to address the decision by 

stabilizing the inventory level. Furthermore, the forecasting also impacts the dilemma of the 

supply chain system in positioning factories and warehouses. An optimal distance between the 

first-tier supplier’s upstream suppliers and the main contractor can be confidently considered 

with a known demand of individual raw material. The precise distance strongly contributes to 

a profitable production planning by providing particular capacity preparation for human 

resource management and commodity for product categorizing in procurement.  

 Since the model was built based on a specific dataset in the certain scenario of a first-

tier supplier, adapting this study result in other companies, parameters will be required to alter 

based on the various complexity and characteristics of the respective dataset. As the availability 

of data depends on shared information between the company and partner, different methods 

will be applied. For further study, other approaches such as deep learning and hybrid models 

can be applied to study alternative insight and performance.   
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