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Abstract: The Picoto mining area is in the village of Vilar Seco (Viseu), central Portugal. Mineral-
ization occurs mainly in quartz veins with meta-torbernite and uranophane and some U-bearing
minerals, cutting a Variscan granite. Exploitation took place in two phases, between 1917 and 1953,
and since the closure, the area has never been remediated. Water–rock interaction processes, includ-
ing the mobility of potentially toxic elements through soil and water (surface and groundwater),
were identified with the determination in situ of physicochemical parameters and selected anions
and cations, by ICP-OES. The soils are contaminated with As (>44 mg/kg), Cu (>23 mg/kg), and U
(>40 mg/kg) and cannot be used for agricultural or domestic purposes. The waters are generally
weakly mineralized and have pH values ranging from acidic to neutral. However, some of them
are contaminated with NO2 (up to 2.3 mg/L), Fe (up to 1849 mg/L), Mn (up to 777 mg/L), Cu
(up to 5.4 µg/L), As (up to 14.7 µg/L), and U (up to 66.2 µg/L) and cannot be used for human
consumption or agricultural activities. The soil and water contamination are mainly related to the
old mine activities and the subsequent human activities that have developed in the area.

Keywords: radium/uranium mines; soil; water; environmental risk; central Portugal

1. Introduction

Minerals are the main repositories of chemical elements in the Earth’s crust and are
the main sources of elements that could affect global and local ecosystems. These elements
are mainly released from minerals by anthropogenic activities such as mining [1] and
can be transferred to other environmental compartments through water-rock interaction
processes, promoting human exposure to potentially toxic elements, including metals and
radioisotopes [2–4]. Particularly in mine areas, there are dumps containing tailings, waste-
rock piles, and accumulated leach residues, which are subject to weathering processes and
are the main reservoirs of potentially toxic elements.

Water-rock interaction processes are responsible for the transfer of toxic elements to
soil and water (surface and groundwater) at high concentrations. Trace elements are persis-
tent in the environment and can be accumulated in soils and waters through geochemical
processes [5–7]. However, the different geochemical behavior of elements can lead to water
geochemistry variations during water-rock interaction processes. In fact, during water–rock
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interaction, a variety of geochemical reactions occur, such as weathering and dissolution,
ion exchange, competitive adsorption, oxidation, and reduction processes [8–10].

In Portugal, between 1908 and 2001, about 60 deposits of radioactive ore were mined
from the production of radium and uranium [11]. The exploration of uranium mines,
ore treatments, and leaching of uranium from open pits, underground mines and dumps
going towards streams and soils are causing significant contamination. The abandoned
uranium mine areas with relatively high concentrations of uranium pose some risk to
ecosystems and human health. The abandoned U mining sites contain the resulting tailings
and discarded materials that have been deposited and discharged into the air and water
since those years. After their closure, these mines were abandoned, and some of them
were studied to evaluate the impact of environmental radioactivity and potentially toxic
elements on human health, e.g., [11–19].

The main objective of the present research is to investigate and characterize water-rock
interaction processes, and the resulting mobility of potentially toxic elements through
environmental systems, particularly in abandoned mining areas. The identification of the
geochemical characteristics of the mineralization of the area and the associated soil and
water—both surface and groundwater—in the abandoned radium and uranium mining
area will reveal the potential environmental risk and the associated contamination patterns.
Nowadays, the integration of soil and water properties from the Picoto mine area obtained
about seventy years after closure, and the resulting contamination, will be presented.

2. Study Area

The Picoto uranium mine area is located close to the Vilar Seco village (Nelas, central
Portugal), within the autochthonous sector of the Central Iberian Zone of the Iberian Massif
(Figure 1a). This sector contains granitic batholiths (Figure 1b) that intruded, during the
last ductile deformation phase of the Variscan orogeny (late- to post-D3), into Precambrian
to Cambrian phyllites and metagraywackes [20,21].
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A medium- to coarse-grained porphyritic biotite-muscovite granodiorite-granite
(300–295 Ma; [21]) crops out in the Picoto area and intruded into a coarse-grained por-
phyritic two-mica granodiorite-granite (306 Ma; [21]) (Figure 1b). The Picoto granite is
peraluminous and contains 9–17 ppm U, hosted in U-bearing minerals such as uraninite,
zircon, and monazite [22]. The granite is intersected by a brecciated, milky, and smoky
quartz vein system, filling mainly 37◦ N–45◦ E, 50◦ N–70◦ E and, rarely, 5◦ N–20◦ E,
trending fractures and faults [22].

Mineralization occurs mainly in quartz veins, which cross the granite. These quartz
veins fill 37◦ N–45◦ E and 50◦ N–70◦ E orientation failures and fractures and are locally
brechified [22]. The quartz veins (50 m long, 5–10 m thick) contain torbernite, meta-
torbernite and uranophane (Figure 2a), and other U-bearing minerals, such as muscovite,
chlorite, and Fe- and Ti- and Mn-hydroxides (Figure 2b,c). Fe- and Mn-hydroxides contain
nano inclusions of U-phosphates [23].
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(b) Fe-hydroxides (Fe-hyd A and Fe-hyd B); (c) Mn-hydroxides (Mn-hyd) filling microfractures in quartz (Qz).

In adjacent areas of the fractures and faults, reddish altered rocks or “episyenites” oc-
cur because of hydrothermal alteration, involving alkali metasomatism, quartz dissolution,
and the transformation of primary minerals [22,24]. Those fractures and faults cut across
older NW-SW trending regional structures. The “episyenites” are alkali-rich metasomatic
rocks that are commonly associated with U- and Th-enriched areas [25–29]. Metatorbernite
was found associated with both alteration stages.

The Picoto granite is usually weathered, with feldspar kaolinization and oxidation of
Fe in biotite. Locally, in the meteoric weathered zones, there are disseminated metatorber-
nite and Fe-hydroxides, filling the microfractures and spaces between grain boundaries.
The secondary U-phases are associated with oxidizing conditions during solidification
processes, with low-temperature hydrothermal fluids dissolving primary U-bearing min-
erals (e.g., uraninite) and carrying the uranyl ion (UO2

2+). The U-bearing fluids ascend
along fractures and faults, and precipitate as secondary epithermal uranyl minerals, such
as oxyhydroxides, silicates, and phosphates, in structural traps [22,30,31].

In the area, mining activity was carried out in open pits and underground. In the first
period, radium exploitation occurred in two open-pit mines (between 1917 and 1921) and
after that, uranium was exploited (between 1950 and 1953), in underground galleries, about
150 m long. The exploitations ceased activity in 2001, and three waste heaps remain in the
area (about 35,000 t; Figure 3a), without any intervention and rehabilitation processes.

The soils are occupied by local crops, with an emphasis on vineyards and agricul-
tural products mainly for local domestic consumption (Figure 3b). The topography has a
smooth slope (varying between 360 and 380 m, Figure 1c) and the area is included in the
hydrographic basin of the Cagavaio river, with dominant NE-SW drainage (Figure 3c).
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3. Materials and Methods

Representative samples from Picoto granite, episyenite rocks, and quartz veins were
collected by transmitted and reflected-light microscopy and scanning electron microscopy
studies. A total of six samples of soils were collected in the study area. Five samples
were collected on the mine influence area; one sample (SL6; Figure 1c) was from outside
the mine influence area and represents the natural background. The soil samples were
collected at a depth between 20 cm and 30 cm, were transported to the laboratory in
polyethylene bags, dried at 40 ◦C, disaggregated with a rubber hammer, and sieved
through a 2 mm nylon sieve. The pH was measured in a solid-water suspension with a
liquid/solid ratio of 2.5 [32], while for electrical conductivity (EC) a liquid/solid ratio of
1/5 was used [33]. Only the <250 µm fraction of soil samples were digested with aqua
regia (3:1 HCl-HNO3), filtered through a 2 µm filter, and analyzed by inductively coupled
plasma optical emission spectrometry (ICP-OES), using a Horiba Jobin Yvon JY 2000 2
spectrometer with a monochromator (operating in a plasma Ar flow rate) to determine
metals and metalloids. The certified sewage sludge amended soil BCR 143R was used to
validate an internal reference soil (Table 1), prepared with aqua regia. Duplicate blanks
and a laboratory standard were included at the beginning and the end of the analyzed
samples. Detection limits were obtained using a blank signal, and dispersion estimated by
a sampling signal in the 0.5 s interval following the ICP-OES [34]. The detection limits in
mg/kg for soils were 1.30 for Al, 1.45 for Mn, 1.76 for Zn, 2.1 for Cu, 2.4 for W, 2.5 for Pb
and Co, 2.6 for Ni and Sr, 2.7 for Cd, 2.9 for Th, 3.0 for Cr, 3.3 for Sb and U, 3.5 for As and 4.9
for Fe. The conversions from mg/L to mg/kg were estimated using the following equation:

DL (mg/kg) = (X ∗ 0.1)/m (1)

where X is the DL at (mg/L) given by the ICP-OES, and m is the average of the heavy
masses of the samples in kg.

Table 1. References for accuracy and precision for routine analysis.

Accuracy Precision

Concentration relative to
detection limit (DL) ∆lgC =

∣∣lgCi − lgCs
∣∣

λ =

√
∑n

i=1 (lgCi−lgCs)
2

n−1

Soils
<3 DL ≤0.024 0.031

>3 DL ≤0.015 0.018
Water
<3 DL ≤0.022 0.033

>3 DL ≤0.017 0.023

Ci—Values of BCRi for soils and Relacre for water. Ci—Standard average values of BCR and Relacre. Cs—Value
recommended for standards for BCR and Relacre. n—Total samples included in the batch.

In the mining area of Picoto, ten sampling points, for surface water (PC5, PC6, PC8,
PC10; Figure 1c) and groundwater (spring: PC1; well: PC2, PC3, PC4, PC7, PC9; Figure 1c)
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were selected and collected, twice in a hydrological year, representative of the dry (summer)
and rainy period (winter).

Temperature, pH, Eh, dissolved oxygen, electrical conductivity (EC), and alkalinity
were determined in situ. The cations were determined by ICP-OES, using a Horiba Jovin
Yvon JV2000 2 spectrometer with a monochromator, and the anions by ion chromatography
with a Dionex ICS 3000 Model, on the water samples filtered through 0.45 µm pore size
membrane. Duplicate blanks and a laboratory water standard were analyzed for quality
control. The accuracy and precision of the water analyses were obtained by inserting
2 subsamples of an external standard (Relacre, report EAA.2007 Fev. V0) within each batch
of 10 water samples (Table 1).

The validation of the determinations was carried out according to the methodologies
of [35,36]. The analytical data show ion balance errors within ±10% for most water
samples, and the measurement precision was within a relative standard deviation of 5%.
All determinations were carried out in the Department of Earth Sciences, University of
Coimbra, Portugal.

4. Results and Discussion

The abandoned mining area of Picoto is in a rural area, close to Vilar Seco, and some
of the waters are used for irrigating agricultural land.

4.1. Geochemistry of Soils

The physical–chemical parameters and concentration of selected metals and As from
soils of the Picoto mine area are presented in Table 2. The soil sample PL6 represents the
natural background of the area, and the soil samples collected under the influence of mine
activities are represented by the minimum and maximum range values.

Table 2. Physical–chemical parameters and concentration of selected metals and As from soils of the
Picoto mine area.

Soils from Picoto Mine Area

Background Mining Area influence

Minimum Maximum

pH 4.9 4.3 5.0

EC 25.0 17.0 47.0

Al 21,840.5 12,711.6 35,047.4

As 56.5 43.8 93.2

Co - 2.9 3.4

Cr - 4.7 8.6

Cu 97.2 22.8 163.5

Fe 18,680.2 15,658.2 25,210.2

Mn 255.9 149.0 437.2

Pb 32.7 18.1 37.8

Sn 21.0 17.9 43.4

Sr 11.1 5.9 14.5

Th 78.2 60.5 122.5

U 80.1 39.8 95.4

W 6.3 4.1 8.1

Zn 82.4 57.0 91.0
Cd, Ni, and Sb contents are below the detection limit. EC = electrical conductivity (µS/cm). Trace element content
is expressed in mg/kg.
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The acid pH of soils from the Picoto area influences the capacity for the adsorption
of metals and metalloids. The soil located in the influence of the mining activities contain
higher electrical conductivity values and maximum concentrations of analyzed trace ele-
ments than the natural background of the area. These trace elements were released from
the mineralization, mainly due to intensive mining activities, and retained in the soil. The
weathering of host granite and mineralized veins will also have some contribution to the U
and Th concentrations in soils because these elements occur in the accessory minerals, like
monazite, apatite, and U-bearing minerals, as have been found in other U-mine abandoned
areas from Portugal [4]. However, the highest maximum values are found in the soil
samples located downstream of the mine influence area.

In general, soils from the Picoto mine area present higher contents for As, Cu, Fe, Th, U,
and Zn than the median values recorded in the Geochemical Atlas of Europe (As = 6 mg/kg,
Cu = 13mg/kg, Fe = 1960 mg/kg, Th = 7.24, U = 2.03, and Zn = 48 mg/kg [37]).

The soil from the Picoto uranium mine area is contaminated with As, Cu, and U, and
cannot be used for agricultural or residential uses (Figure 4) according to Ontario’s soil
standards [38]. However, almost all soil samples present adequate contents that could be
used in commercial or industrial applications.
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4.2. Hydrochemistry and Water Quality

The Piper diagram shows the characteristics of the water (Figure 5). The dominant
hydrochemical facies of most water samples is of undefined type, (Na + K)-Cl or locally
Ca-HNO3 type, according to Piper’s classification.

The hydrochemical processes that control chemistry in the study area could be ex-
pressed by the contribution of major ions to the water mineralization (expressed through
the EC). However, the water has lower mineralization, and the correlations found between
EC and major ions are lower (EC-HCO3

− = 0.4805; EC-SO4
2− = 0.2253; EC-Ca = 0.498;

EC-Na = 0.3912), suggesting the influence of water-rock interaction processes, including the
weathering of minerals and the agricultural activity in this area, which could be responsible
for the low correlations found.

There is no significant difference between the composition of the waters collected
outside the mine’s area of influence, representing the natural water composition (PC8st
and PC9w; Figure 6), and the water located within the area of influence of the Picoto mine.
In general, the waters are acidic or near neutral, with pH values varying between 4.7 and
6.3; the most acidic value was found in the surface water receiving influence from the
mining area (PC6st; Figure 6) and the groundwater background associated with granitic
rocks (PC9w; Figure 6).
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purposes [39].

Most waters are poorly mineralized (EC = 44–190 µS/cm), which is supported by the
low values of total dissolved solids (TDS = 49–137 mg/L). In the summer, the waters tend
to be more acidic and have higher EC values, particularly groundwater (springs and wells).
The more acidic waters result from the oxidation of sulfides from mineralized veins and,
consequently, from tailings and heaps, which makes the water more aggressive, promoting
the leaching of potentially toxic elements from the embedding rock [40,41].

Generally, in the dry period, lower values of pH and higher levels of EC, NO2, Fe, Mn,
Cu, As, and Th occur than in the rainy period (Figure 6), probably due to the concentration
effect due to the loss water flow. However, in the groundwater from the spring (PC1sp;
Figure 6) the contents of Fe, Mn, As and U tend to be higher during the rainy period,
probably due to dissolution in pH-Eh conditions. Uranium content observed in surface
water does not show significant temporal variation.

Most waters are contaminated with NO2, Fe, Mn, Cu, As, and U, and should not be
used for human consumption or agricultural activities. Fe and Cu water contamination
occurs preferentially in the dry period (lower pH values), which promotes an increase of
chemical species dissolution with the release of the metals.

The results of external radiation (gamma) show high values, particularly close to the
heaps (0.61 µGy.h−1), exceeding the regional background value for the Oliveira do Hospital
region, being an indicator of radiological contamination resulting from mining activity [42].
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5. Conclusions

The present study characterized the soil, surface, and groundwater from an old radium
and uranium mining area, and its associated water-rock interaction processes. The mine
activities ceased and are abandoned, and the local cultivated area is developed.

The soil from the Picoto mine area presents higher contents for selected metals (Cu, Fe,
Th, U, and Zn) and As than the median values recorded in the Geochemical Atlas of Europe.
These trace elements were mainly released from the mineralization and mining activities
and retained in soils. However, it can be expected that the host granite and mineralized
veins’ weathering will also contribute to the U and Th concentrations in soils, as these
elements occur in the accessory minerals. The soil from the area suggests a geogenic and
mining influence. These soils are contaminated with As, Cu, and U, and should not be
used for agricultural or residential uses.

Water-rock interactions were identified by the hydrochemistry and water quality
assessment through groundwater and surface water samples collected in the area. There
is no significant difference between the composition of the water collected outside (back-
ground) and inside the mine area, suggesting the direct influence of water–rock interaction
processes, including the weathering of minerals and the agricultural activity in this area.
Most waters are poorly mineralized; however, they are contaminated with NO2, Fe, Mn,
Cu, As, and U and should not be used for human consumption or agricultural activities.

The obtained results from the geochemistry of soil, surface, and groundwater from
this abandoned mine area reinforce the association between environmental risk and human
health if adequate remediation processes are not implemented. Accordingly, it is essential
to define and apply appropriate remediation and/or rehabilitation actions, considering the
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potentially toxic elements’ spatial mobility associated with water-rock-interaction processes.
The present study intended to work as a pilot-scale project, aiming at future extensions in
similar abandoned mining areas, and, therefore, helping decision-making on water and
soil resources management.
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