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H I G H L I G H T S  

• Detailed energy consumption models for different appliance categories are developed. 
• Modular models can be used as building blocks enhancing their flexibility. 
• MILP models of appliance operation can be incorporated in energy management systems. 
• Models allow for the integrated optimization of all energy resources. 
• Models enable the participation in demand response programs.  
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A B S T R A C T   

Demand response programs are essential to enable accommodating larger shares of variable power generation 
based on renewable sources, the deployment of which is imperative for decarbonizing the economy and miti-
gating global warming. Consumers/prosumers are increasingly exposed to and may benefit from time- 
differentiated energy prices aimed to induce changes in regular consumption patterns. These changes are also 
beneficial for retailers and grid operators in face of the variability of wholesale market prices, renewable energy 
availability and grid conditions. The optimization models to be implemented in autonomous home energy 
management systems require a rigorous modeling of appliance operation to generate effective load scheduling 
solutions, respecting their physical operation principles and use patterns in everyday life. A balance should be 
sought between the detail level of optimization models and the computational requirements to generate usable 
solutions having in mind their implementation in low-cost processors. This paper presents a comprehensive and 
modular set of mixed-integer linear programming models aimed at enabling their seamless incorporation in 
home energy management systems, allowing for the integrated optimization of all energy resources (exchanges 
with the grid, load management, electric vehicle and stationary battery, local microgeneration). Detailed energy 
consumption optimization models for shiftable, interruptible and thermostatic loads are presented, also including 
the power cost component and ways of dealing with user’s discomfort. The modular models are presented in a 
building block manner enhancing the flexibility of their utilization in overall models with different objective 
functions encompassing the economic and comfort dimensions. Computational results are presented for a case 
study using actual data, which considers a time-of-use tariff with six periods. In addition to comparing with a 
plain tariff scheme, different consumer profiles are simulated to assess the impact of comfort requirements on 
cost. These results show that whenever consumers have the flexibility to change their consumption patterns, they 
are able to lower the net electricity bill by having an energy management system endowed with the models 
herein proposed to make optimized decisions on their behalf.   
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1. Introduction 

The increasing deployment of distributed generation based on 
renewable sources is essential to decarbonize the economy, mitigate 
global warming and, in countries without endogenous fossil resources, 
reduce the energy external dependence. Distinct, and sometimes con-
flicting, trends contribute to shaping the energy transition underway. 
The electrification of the transportation sector, including private and 
fleet vehicles, requires the ubiquitous deployment of battery chargers, 
including fast and superfast ones. Comfort requirements in buildings 
lead to increasing climatization loads. Consumers have a more active 
role in managing their energy resources, becoming prosumers who 
should globally optimize exchanges with the grid, load management, 
local microgeneration (namely rooftop photovoltaics, PV) and storage 
assets (static and electric vehicle batteries). The traditional grid, based 
on the supply follows load paradigm, is steadily evolving to smart grids 
facilitating a load follows supply operation, with the widespread 
deployment of sensing and control equipment particularly in the dis-
tribution grid, including smart meters at the customer premises offering 
bidirectional communication with the grid. This technological infra-
structure and the amount of data it enables to gather allow for a more 
efficient grid management. In this setting, all tariff components (energy, 
power, network use) can become time-differentiated according to the 
variability of wholesale market prices, renewable energy availability 
and grid conditions (e.g., congestion in distribution transformers), thus 
inducing adequate changes in consumption patterns. Therefore, in face 
of these pervasive trends, demand response programs play a key role in 
the energy transition, offering potential benefits to multiple players. 

Demand response programs may be broadly categorized as price- 
based and incentive-based. Price-based refers to time-differentiated rates 
that may display large variations leading consumers to modify load 
operation schedule to obtain bill savings without jeopardizing comfort. 
Incentive-based refers to schemes as direct load control, interruptible 
load contracts, peak time rebate, demand bidding/buy back emergency 
programs, capacity and ancillary service markets. Consumers can reduce 
the electricity bill adjusting consumption patterns by making the most of 
the integrated optimization of all energy resources according to their 
flexibility regarding the provision of the energy services required 
(laundry, hot water, electric mobility, etc.). Retailers can profit from 
offering a portfolio of time-differentiated tariffs to distinct consumer 
segments by making the most of the difference between wholesale and 
retail prices. Aggregators can develop new business models to provide 
demand response capability as a service to the grid. Grid operators can 
avoid power peaks, reducing losses and avoiding/postponing expensive 
network reinforcements. Generators can prevent operating expensive 
and less environmentally friendly peaking units. 

The literature on simulation and optimization models devoted to the 
implementation of demand response is abundant. We mention some 
pertinent review papers offering extensive perspectives in the field with 
distinct emphases, as well as selected references of recent works pro-
posing optimization models with different scopes and depth regarding 
appliance physical modelling. Siano [1] presents a survey of demand 
response potentials and benefits in smart grids, encompassing enabling 
technologies and systems, energy controllers and communication sys-
tems, including reference to industrial case studies and research pro-
jects. A broad review of demand response in smart grids is made in [2], 
which can be categorized according to control mechanisms (centralized 
vs. decentralized), stimuli (price vs. incentive based) and decisions (task 
scheduling vs. energy management). A review mainly from the stand-
point of the optimization models and methods is offered in [3]. Beaudin 
and Zareipour [4] offer a literature review of modelling optimal 
scheduling of residential energy resources, considering device hetero-
geneity, occupants’ objectives, consumption uncertainty and infra-
structure implications, including methods as mathematical 
optimization, model predictive control, and heuristic control. The au-
thors recognize the need to create a baseline for Home Energy 

Management Systems (HEMS) evaluation, allowing for modelling 
household devices and comfort, as well as providing data as consump-
tion and occupancy patterns, and PV generation. Hussain and Gao [5] 
offer a review of demand response programs and propose a communi-
cation and computation-based demand response program for future grid 
systems, considering an inclined-block tariff and the consumers’ income 
and consumption profiles. Morales-España et al. [6] address demand 
response mainly from the power system perspective, including defini-
tions and classifications of different types of demand response, the 
products and services it can provide for energy, capacity and ancillary 
services. The authors also present simple optimization models for 
aggregated flexible load management involving curtailment and/or 
shifting. 

Several authors proposed specific optimization models for demand 
response. Althaher et al. [7] consider that it is critical including in the 
models consumer satisfaction (e.g., volume of curtailed energy) in 
addition to minimizing electricity payments; however, the relation be-
tween the volume of curtailed energy and consumer’s (dis)satisfaction is 
arguable since it should refer to the quality of the energy service being 
provided by loads (as proxied by hot water temperature, indoor comfort 
temperature, time of operation, etc.) and not to the volume of energy 
itself. The importance of reducing the computational complexity of the 
decision models embedded in energy management systems has been 
recognized in [8]. The aim is enabling the models to be solved on low- 
cost hardware to massify the implementation of HEMS. In [9], it is 
considered that a price-based model requires lower computational ca-
pabilities than an incentive-based model at the expense of less certainty 
of the response from the loads to the price signals. Nan et al. [10] pro-
pose a scheduling scheme for the dispatch of residential loads by an 
aggregator, considering the minimization of the electricity consumption 
cost, the peak load, the peak-valley difference and the users’ discomfort, 
through which residential communities can participate in demand 
response programs. Adhikari et al. [11] present a direct load control 
approach for a set of heating, ventilation and air conditioning (HVAC) 
units to maximize the load reduction potential during a demand 
response period, considering indoor temperatures within individual 
consumers’ preference bounds and transforming the control problem 
into a job scheduling problem. Shafie-Khah and Siano [12] present a 
stochastic model of a HEMS guaranteeing the users’ satisfaction by 
means of a response fatigue index, also accounting for uncertainties of 
electric vehicles availability for charging/discharging and local renew-
able energy generation. Elkazaz et al. [13] present a hierarchical two- 
layer HEMS to minimize daily household energy costs by means of a 
model predictive controller using a mixed-integer linear programming 
(MILP) model to determine the operating schedule for shiftable domestic 
appliances and the profile for energy storage for the next 24 h, and 
maximize photovoltaic self-consumption using a rule-based real-time 
controller to determine the optimal settings of the battery storage system 
compensating for the effects of forecast uncertainties and sample time 
resolution. Javadi et al. [14] develop a self-scheduling model for a 
HEMS including a linear discomfort index encompassing the end-users’ 
preferences in the daily operation of home appliances. The problem is 
modelled as a multi-objective MILP model, considering the minimiza-
tion of the energy bill and the discomfort index to determine the optimal 
time slots for appliance operation. Zhang et al. [15] propose a concep-
tual architecture of a price-based demand response management 
controller implementing a multi-agent reinforcement learning-based 
algorithm to optimize the energy consumption of various devices. 
Mohseni et al. [16] develop an energy consumption model of home 
appliances based on the “set of sequential uninterruptible energy pha-
ses” approach, in a residential microgrid equipped with PV generation, 
battery storage systems and electric vehicles, to activate time-based 
demand response programs in day-ahead planning. 

Two fundamental dimensions are at stake for evaluating the merit of 
solutions to this type of models: minimizing cost and discomfort. The 
cost refers to energy and power costs and may also include a revenue 
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component if selling back to the grid is allowed using some remunera-
tion scheme. Energy costs (€/kWh) result from a time-of-use (ToU) tariff 
scheme contracted between the retailer and the consumer for a specified 
period (e.g., one year), which can be dynamic in the sense of being 
announced at short notice (for instance, 24 or 48-hour ahead). Power 
costs (€/kW per day) result from a contracted limit power or a scheme in 
which the consumer pays for the maximum power taken during a certain 
period (e.g., one hour or one day). The discomfort can be assessed by 
means of several axes associated with the quality of the energy service to 
be provided: time, regarding the most preferred periods for the opera-
tion of some appliances (e.g., washing machine); temperature, con-
cerning the comfort ranges for indoor or water temperatures; state of 
charge of electric vehicle (or static) battery. 

The cost and discomfort dimensions can be incorporated in the 
models by means of objective functions to be minimized, as constraints 
or in a mixed way. The model can consider an objective function 
minimizing costs of energy and power subject to constraints expressing 
the comfort thresholds acceptable by the consumer, which would indi-
cate a more economic-oriented consumer. The model can, instead, 
consider an objective function minimizing discomfort, in general rep-
resenting deviations from a user-specified comfort setting or range, e.g., 
number of minutes of load operation postponement beyond the desired 
time, indoor/water temperature outside a desired range, or state of 
charge of the electric vehicle battery below the required value. The 
discomfort can also be monetized, i.e., the cost assigned by the consumer 
to a certain postponement in operation or temperature degree above/ 
below the preferred setting, subject to a budget constraint. The mone-
tization of discomfort allows for considering an overall cost objective 
function involving different components. Moreover, multiobjective 
models explicitly considering cost and discomfort objective functions 
can be developed, which enable deriving a Pareto optimal frontier of 
solutions displaying different tradeoffs between the competing objec-
tives [17]. 

Some approaches consider a utility function to be maximized, which 
is a proxy for the level of satisfaction with the energy services delivered, 
in general directly associated with (the perceived benefit of) energy 
consumption, or a disutility cost associated with the load suppressed 
[18]. Quadratic utility functions are often used to model individual 
consumer’s preferences, displaying linear decreasing marginal benefit 
related to energy consumption [19,20]. However, the elicitation of 
realistic utility functions characterizing the consumer’s satisfaction, as a 
result of the energy consumed by each appliance providing an energy 
service, is problematic in practice and does not capture explicitly the 
decisions at appliance level. The use of functions penalizing the devia-
tion to an expected “optimal” consumption value is also not represen-
tative of users’ energy behaviors. Hence, demand response optimization 
models ought to incorporate the physical characteristics and type of 
control of each load, as well as typical operation patterns, time slots and 
comfort settings preferred for operation. A compromise should be 
established between the accurate load operation and control modeling 
and the computational effort to solve the models, particularly with fine- 
grain time discretization, due to the models’ combinatorial nature. 

The integrated optimization of all energy resources (exchanges with 
the grid, loads, storage, microgeneration) requires the design of 
Autonomous Home Energy Management Systems (AHEMS) located 
behind the meter, which are endowed with optimization models and 
algorithms capable of making 24/7 decisions on the consumer’s behalf. 
For this purpose, it is necessary to develop thorough load operation 
mathematical programming models to be tackled by optimization al-
gorithms so that effective operational solutions are obtained. These 
models should respect the physical operation and control principles of 
the appliances as well as their habitual utilization patterns in everyday 
life. The accurate physical-based load operation modelling may require 
many binary variables and constraints, which makes more difficult to 
obtain an optimal solution (single objective models) or Pareto optimal 
solutions (multiple objective models) in an acceptable computation 

time. Therefore, a balance should be sought between the modeling detail 
level and the computational requirements to obtain practical solutions, 
having in mind their implementation in AHEMS running on low-cost 
processors. According to the type of control, residential loads can be 
categorized in shiftable (the operation cycle cannot be interrupted), 
interruptible (can be interrupted and resume operation at a later stage), 
and thermostatic (controlled by a state variable such as indoor temper-
ature) loads [21]. 

Although the literature in optimization models for demand response 
is vast, many models presented in the literature consider a number of 
simplifications that deviate them from the reality. Thus, there is a lack of 
effective physical-based models. The models we present in this paper are 
the result of an in-depth study of the appliance operation, taking into 
account several parameters such as: operation cycles requiring different 
power at different stages, the behavior of a thermostat with hysteresis, 
main principles of heat transfer in buildings, etc. The main contributions 
of this paper are the following:  

- development of a comprehensive and modular set of MILP models of 
appliance operation that are aimed at being seamlessly incorporated 
in AHEMS allowing for the integrated optimization of all energy 
resources;  

- development of detailed energy consumption models for each load 
category; 

- consideration of different cost objective function components (en-
ergy and power costs, and monetized discomfort) as well as ways of 
dealing with the possible user’s discomfort derived from operating 
appliances out of the habitual periods/settings and/or temperature 
ranges; 

- assessment of the computational efficiency in real settings consid-
ering a fine-grain time discretization (1 min);  

- for shiftable loads, alternative models have been developed and 
compared to determine the most efficient one;  

- the modular models are developed in a building block manner 
enhancing the flexibility of their utilization in overall models with 
different objectives encompassing the economic and comfort 
dimensions. 

To the best of our knowledge, such a consistent and complete set of 
models is for the first time presented in the literature, which includes the 
accurate modeling of a large diversity of energy resources and exchanges 
with the grid (buying and selling electricity) that can be used according 
to different needs. 

This work contributes for the development of reliable AHEMS that 
can be parameterized with the user’s preferences to optimally manage 
all energy resources on behalf of consumers engaged in profiting from 
the benefits of demand response programs. Moreover, the detailed 
optimization models are key to retailers interested in offering time-of- 
use tariff schemes to anticipate the consumers’ reaction, which is an 
essential step for tariff design (prices and time periods in which they 
apply) [22]. 

Section 2 presents the materials and methods, establishing a common 
framework for the modular models presented in the subsequent sections. 
Section 3 is devoted to specific models for: 1) shiftable loads, 2) electric 
water heater model including sanitary constraints, 3) air conditioner 
based on the indoor temperature dynamics, 4) static and electric vehicle 
batteries. An overall optimization model is presented in Section 4 
encompassing exchanges (buying, selling) with the grid, shiftable loads, 
electric water heater, air conditioner, static and electric vehicle batte-
ries, as well as microgeneration. The overall model was applied to a case 
study, including a comparison of a ToU tariff and a plain tariff equal to 
the average price of the ToU tariff. A sensitivity analysis is also carried 
out to assess the impacts on cost of consumers being more or less willing 
to tolerate some discomfort, e.g., changing the minimum allowable in-
door temperature or the reference hot water temperature. The main 
conclusions are drawn in Section 5. 

C. Henggeler Antunes et al.                                                                                                                                                                                                                   



Applied Energy 320 (2022) 119142

4

2. Materials and methods 

Specific accurate models are developed for shiftable loads, electric 
water heater (EWH), air conditioner system (AC), static battery and 
electric vehicle (EV) battery. 

The planning period (e.g., one day) is discretized in time intervals 
with equal length. 

Shiftable loads are characterized by an operation cycle associated 
with each program (energy service), which cannot be interrupted. Ex-
amples are laundry machines, dishwashers and cloth dryers. Models 
considering that an appliance is supplied with a given amount of energy 
for service completion (as if the power required was constant, instead of 
a load diagram with diversified stages) are rather simplistic and ulti-
mately useless for optimization purposes. The consideration of the 
operation cycle (e.g., in a laundry machine, consisting of heating water, 
spinning and drying phases) is essential because this is the actual 
physical functioning and the power required at each phase is signifi-
cantly different. Therefore, for each shiftable load, in the models pro-
posed herein,  

• the technical inputs are the operation cycle duration and the power 
required at each operation stage; 

• the consumer should provide the comfort time slots for load opera-
tion according to his/her preferences, which may be disjoint in the 
planning period; 

• the optimization determines the starting operation time and gua-
rantees that the cycle is entirely executed in the due sequence within 
any of the comfort time slots, correctly mapping the operation cycle 
onto the planning period. 

In our previous works, the model we developed to accurately rep-
resenting the functioning of shiftable appliances requires a high number 
of binary variables and constraints (the model was first proposed in [23] 
and also used in other works, e.g. in [24]). We propose herein two 
alternative more efficient models, which will be compared with the 
former one. 

The EWH is an important load in most homes, accounting for a sig-
nificant share of energy consumption. The appliance rated power may 
vary in a large range from 1500 W to 6000 W depending on the volume, 
which should be adapted to the number and habits of inhabitants. The 
EWH operation is controlled by a thermostat. In our previous works, the 
EWH has been dealt with in a more straightforward manner as an 
interruptible appliance, i.e., a certain amount of energy (a surrogate for 
the quality of service provided by hot water) should be supplied in a 
certain comfort time slot, so that the control was modeled using binary 
variables stating the on/off supply status [24]. The present model con-
siders the water withdrawal and supply as well as sanitary constraints to 
avoid the formation of legionella bacteria, which requires heating the 
water to a safety temperature for a specified time. Therefore, in the EWH 
model proposed herein,  

• the technical inputs are the power of the heating element, the 
ambient and inlet water temperatures, the tank characteristics (ca-
pacity, thermal characteristics of the envelope), and the period 
during which the water should be heated up to a certain temperature 
to eliminate the bacteria;  

• the inputs provided by the consumer include the minimum and 
maximum allowed temperatures, and the water withdrawals (time 
and quantity);  

• the optimization determines the on/off status of the heating element, 
which defines the hot water temperature in the tank. 

HVAC systems contribute significantly to residential electrical en-
ergy consumption. The thermal inertia of indoor spaces makes these 
systems an appropriate target for control by making the most of time- 
differentiated tariffs and the flexibility of consumers to accept some 

deviation of the indoor temperature to the desired one for a limited 
period of time. The model developed in [25] is considered herein, which 
accounts for the behavior of the control thermostat with hysteresis of an 
AC system. In this model,  

• the technical inputs are the nominal power and the coefficient of 
performance of the AC, the outdoor temperature and the thermal 
characteristics of the building envelope;  

• the inputs provided by the consumer are the minimum and the 
maximum comfort indoor temperatures; 

• the optimization determines the on/off status of the AC, which de-
fines the indoor temperature. 

The optimization of the operation of the static battery and the 
electric vehicle (EV) battery deals with the energy exchanges, to be in-
tegrated in the overall optimization of all energy resources. The static 
battery is, in principle, always available, whereas the EV battery is only 
available when the EV is at home and imposes further constraints in its 
utilization in vehicle to grid (V2G) mode considering the expected en-
ergy service (mobility) to be provided according to the consumer’s 
needs. In the model proposed herein,  

• the technical inputs are the charging and discharging efficiencies, the 
minimum and maximum allowed battery charges, and the minimum 
and maximum charge and discharge powers;  

• the input set by the consumer is the battery charge requested at the 
departure time of the EV;  

• the optimization determines the charging and discharging patterns of 
the static and EV batteries. 

A base load not deemed for control and local PV generation are also 
considered in the overall model. 

From the optimization process of the overall model, it results the 
power required for the operation of the shiftable loads, the EWH and the 
AC, in each time interval, as well as the battery charge and discharge, 
and the exchanges between the grid and the home. 

We consider a planning period (e.g., one day) consisting of T time 
intervals each with a length Δt, indexed by t = 1, ⋯, T. We denote as 
time t the interval from t − 1 to t. The length Δt depends on the time 
discretization adopted (typical values are Δt = 1, 5 or 15 min). In order 
to capture the actual operation of some appliances, namely the shiftable 
loads that have operation phases of short duration with a significant 
power required, a fine grain discretization (e.g., 1 min or 5 min) is 
advisable. In the analysis of the case study presented below, the plan-
ning period is discretized in intervals of 1 min, so Δt = 1/60h; therefore, 
T = 1440 for a planning period of 24 h. A ToU tariff is used with 6 
different pricing periods. These prices are input data, which are denoted 
in the models by Cbuy

t . The objective function of the overall model 
applied to the case study in Section 4 consists of minimizing the net cost, 
also considering the power cost component associated with the peak 
power required from the grid. 

Models are of the MILP type due to the need of incorporating discrete 
variables to model on/off states, discrete operation power levels, and 
enforcing logical conditions to guarantee model consistency. Therefore, 
these models can be solved using a state-of-the-art MILP solver. In this 
work, the models were solved using the CPLEX solver. In this type of 
strongly combinatorial models with a large number of interdependent 
constraints but in which all the functions are linear, using a general 
MILP solver is advantageous over meta-heuristics because it can guar-
antee an optimal or near-optimal feasible solution. Experiments we have 
carried out using meta-heuristics customized for the modular models did 
not provide good results in terms of computational efficiency and so-
lution quality. 

All the data necessary to reproduce the results of the case study 
presented in Section 4 are available at https://home.deec.uc. 
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pt/~ch/data_DRmodels. 
All the results were obtained in a computer with an Intel Xeon Gold 

6138 CPU@3.7 GHz processor. 

3. Models for demand response optimization 

This section aims to present MILP models devoted to the different 
types of loads considering their physical operation principles and con-
trol modes: 1) shiftable loads, 2) electric water heater model including 
sanitary constraints, 3) air conditioner based on the indoor temperature 
dynamics, and 4) static and electric vehicle batteries. 

3.1. Models for shiftable load operation 

Let us consider J shiftable loads indexed by j ∈ {1,⋯, J}, each one 
having a specific load diagram, as illustrated in Fig. 1, for which the 
input data are: 

dj = duration of load j operation cycle; 
gjr = power requested by load j at stage (time) r of its operation cycle 

(r = 1,⋯,dj). 
The actual operation cycle is, therefore, discretized according to the 

Δt considered. 
Let [TLj , ⋯, TUj ] be the time slot allowed by the consumer for the 

operation of load j.
In the first MILP model we proposed for shiftable appliances 

([24,23]), the control is defined by binary variables with three indexes: 
wjrt = 1 if load j is on at stage r of its operation cycle in time t of the 
planning period (within the allowed time slot), and wjrt = 0 otherwise, i. 
e., it is off. 

The auxiliary variables PSh
jt (where the superscript Sh denotes 

“shiftable”) denote the power requested to the grid by shiftable load j in 
time t of the planning period (kW), j = 1,⋯,J, t = 1, ⋯, T. The power PSh

jt 

is zero for t outside the allowed time slot [TLj ,⋯,TUj ]. 
The constraints modeling the load operation guarantee that: each 

load j operates exactly once at stage r and this should occur within its 
comfort time slot (1); at each time t of the planning period, each load j 
may be off or on only at one stage r of its operation cycle (2); if load j is on 
in time t and at stage r < dj of its operation cycle, then it must also be on 
in time t+1 and stage r + 1, for r = 1,⋯, dj − 1 (3); load j should start its 
working cycle at most in time TUj − dj + 1, thus assuring that it never 
finishes later than TUj (4). These constraints also ensure that load j will 
operate only once. Constraints (5) and (6) set the value of the power 
requested to the grid by each load j in each time t. This model (presented 
in [23]) is denoted as M1 below. 

∑
TUj

t=TLj

wjrt = 1 , j = 1,⋯, J , r = 1,⋯, dj (1)  

∑dj

r=1
wjrt ≤ 1 , j = 1,⋯, J , t = TLj ,⋯, TUj (2)  

wj(r+1)(t+1) ≥ wjrt , j = 1,⋯, J , r = 1,⋯,
(
dj − 1

)
, t = TLj ,⋯,

(
TUj − 1

)

(3)  

∑
TUj − dj+1

t=TLj

wj1t = 1 , j = 1,⋯, J (4)  

PSh
jt =

∑dj

r=1
gjrwjrt , j = 1,⋯, J , t = TLj ,⋯, TUj (5)  

PSh
jt = 0 , j = 1,⋯, J , t < TLj ∨ t > TUj (6)  

wjrt ∈ {0, 1} , j = 1,⋯, J , r = 1,⋯, dj , t = TLj ,⋯, TUj (7) 

Since model M1 requires a large number of binary variables for each 
load j, as many as (TUj − TLj + 1)× dj, we propose herein and compare 
the performance of two other approaches for modeling the operation 
cycle of shiftable load. The idea is to define binary variables just to 
determine the starting time of each load j: 

sjt=

{
1 if load jbegins itsoperationintime t
0 otherwise j=1,⋯,J; t=TLj ,⋯,TUj − dj+1 

In a first approach using variables sjt – denoted below as model M2 – 

the operation cycle is enforced by data organization in a matrix Dj
tt′ : each 

element of Dj
tt′ indicates the power (kW) requested by load j in time t′ if 

the load starts operating in time t, for all pairs (t,t′) with t= TLj , ⋯,

TUj − dj+ 1, t′ = TLj , ⋯, TUj . Then, the power required is computed as in 
(8). Thus, model M2 is defined by constraints (8)–(11). 

PSh
jt′ =

∑
TUj − dj+1

t=TLj

Dj
tt′ .sjt , j = 1,⋯, J, t′ = TLj ,⋯,TUj (8)  

∑
TUj − dj+1

t=TLj

sjt = 1 , j = 1,⋯J (9)  

PSh
jt = 0 , j = 1,⋯, J , t < TLj ∨ t > TUj (10)  

sjt ∈ {0, 1} , j = 1,⋯, J, t = TLj ,⋯,TUj − dj + 1 (11) 

For the sake of illustration, let us suppose that load j has the allowed 
time slot [TLj , TUj ] = [10,17] with dj = 3 (i.e., 45 min considering Δt =
15 min), and gjr (r = 1,⋯, 3) given by gj1 = 1.2, gj2 = 1.5, gj3 = 0.5, in 
kW. 

Fig. 1. Operation cycle of shiftable load j consisting of dj stages with power gjr required at each stage r.  
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Matrix Dj
tt′ is defined for t in TLj = 10, …, TUj − dj +1 = 15 and t′ = 10, 

…, 17, as:  
(t,t′) t′ = 10 11 12 13 14 15 16 17 

t = 10 1.2 1.5 0.5 0 0 0 0 0 
11 0 1.2 1.5 0.5 0 0 0 0 
12 0 0 1.2 1.5 0.5 0 0 0 
13 0 0 0 1.2 1.5 0.5 0 0 
14 0 0 0 0 1.2 1.5 0.5 0 
15 0 0 0 0 0 1.2 1.5 0.5  

This matrix can be built with the optimization solver programming 
language (e.g., in CPLEX or Gurobi) or read once just at the beginning of 
the run from a pre-prepared data file. 

It is straightforward to expand this data matrix accommodating 
multiple operation slots, i.e. considering that load j can operate in not 
just one but multiple slots, defined by the consumer according to his/her 
convenience: 

T(j) =
[
T1

Lj
,T1

Uj

]
∪
[
T2

Lj
,T2

Uj

]
∪ ⋯

[
Taj

Lj
,Taj

Uj

]
⫅T defines the time slots in 

which each load j ∈ {1,⋯, J} can operate, where aj is the number of 
different disjoint periods allowed for the operation of load j. It is 
assumed that load j will operate only once, so it will operate within only 
one of these time slots in T = {1,⋯,T}. 

In this case, Dj
tt′ is defined for the combinations (t,t′) considering the 

lowest time (T1
Lj

) for the beginning of rows and columns, the highest time 

of the union of the different slots for t’ (Taj
Uj

) and the highest possible 

starting time for t (Taj
Uj
− dj + 1). For instance, if load j has a cycle with dj 

= 2 and can operate in slots [3–7] or [9–12] in a planning period t = 1,
⋯,20, then matrix Dj

tt′ is defined for t = 3, …, 12–2 + 1 = 11 and t′=3, 
…,12. The elements Dj

tt′ = 0 for t and t′ in between the two allowed time 
slots. 

Model M2 has the advantage over M1 of requiring fewer binary 
variables. However, it is necessary to organize a priori the Dj matrices 
from the gjr, r = 1, ⋯, dj, and the time slots data. Therefore, another 
model is proposed, which considers the same type of variables sjt as in 
model M2 but does not require the Dj matrices. This model is denoted as 
M3. 

Let us firstly consider only one operation time slot 
[
TLj

,TUj

]
for each 

load j. The constraints impose that: load operation should start once, 
enabling the cycle to end within the allowed time slot - (9) and (11); map 
the power required by shiftable load j at each stage of the operation 
cycle onto the planning period (i.e., gjr→ PSh

jt ), according to the starting 
time by defining the new constraints (12), which have the role of (8) in 
M2; PSh

jt = 0 for t outside the allowed time slot - (10). 
Let R(j) =

{
1,⋯, dj

}
.

PSh
jt =

∑

r∈R(j):r≤t∧r≤t+1− TLj

gjr.sj(t− r+1), j = 1,⋯, J, t = TLj ,⋯,TUj (12) 

Constraints (12) define the power PSh
jt required by load j in each time t 

of its allowed operation slot. Let us explain how these constraints ensure 

this purpose: suppose that load j starts to operate at t′ ∈
[
TLj

,TUj
− dj +1

]
, 

i.e., sjt′ = 1 and sjt = 0,∀t ∕= t′; at t = t′, load j should operate at Pjt′ = gj1, 
because it is at stage r = 1 of its operation cycle; at t = t′ + 1, load j 
should operate at Pj,t′+1 = gj2, because r = 2, and so forth; for t = t′, the 
only r in which sj(t′ − r+1) = 1 is for t′ − r + 1 = t′, i.e. r = 1; for t = t′ + 1, 
the only r in which sj(t′+1− r+1) = 1 is for t′ + 1 − r + 1 = t′, i.e. r = 2; and 
so forth. In the summation in (12), r must satisfy r ≤ t ∧ r ≤ t+1 − TLj to 
ensure that only existing variables are considered in sj(t− r+1). Note that 
for r = t+1 those variables become sj0, and for r = t − TLj

+2 the vari-
ables would be sj(TLj − 1) which do not exist. 

Model M3 can also be extended considering that load j can operate in 

multiple slots T(j) =
[
T1

Lj
,T1

Uj

]
∪
[
T2

Lj
,T2

Uj

]
∪ ⋯

[
Taj

Lj
,Taj

Uj

]
. The constraints 

should now account for the multiple slots aj. 

Let Tstart(j)=
[
T1

Lj
,T1

Uj
− dj+1

]
∪
[
T2

Lj
,T2

Uj
− dj+1

]
∪⋯∪

[
Taj

Lj
,Taj

Uj 

− dj+1
]
, which defines the times in which load j can start to operate. 

The decision variables sjt are defined as above but t ∈ Tstart(j). The 
constraints of M3 for multiple slots are (13)–(16). 
∑

t∈Tstart(j)

sjt = 1, j = 1⋯J (13)  

PSh
jt =

∑

r∈R(j):r≤t ∧

r≤t+1− Ta
Lj
, a=1,⋯,aj

gjr.sj(t− r+1), j = 1,⋯, J, t ∈ T(j) (14)  

PSh
jt = 0, j = 1,⋯, J, t ∕∈ T(j) (15)  

sjt ∈ {0, 1}, j = 1,⋯, J, t ∈ Tstart(j) (16) 

In addition to the typical shiftable loads generally considered 
(laundry, drying, dishwasher), other shiftable loads can be considered, 
including the ones that do not have an operation cycle, have constant 
operation power and can be interrupted, but the consumer wants them 
to operate in continuous periods (e.g., ironing). 

These three models (M1-M3) of shiftable loads have been compared 
considering as objective function the minimization of the energy con-
sumption cost: 

min cost =
∑T

t=1

∑J

j=1
Cbuy

t PSh
jt Δt (17) 

where Cbuy
t are the energy prices (cents €/kWh), t = 1,⋯,T. 

Three types of shiftable loads are considered: dishwasher (j = 1, 
[
TL1

,TU1

]
=[1,480], d1=90), laundry (j = 2, 

[
TL2

,TU2

]
=[406,870], 

d2=105), dryer (j = 3, 
[
TL3

,TU3

]
=[1126,1440], d3=220). The data used 

for the three loads in this experiment are the same as the data for the 
shiftable loads in the case study (Section 4). 

The comparison of the 3 models described above, considering just 
one comfort slot, is displayed in Table 1, revealing the clear advantage of 
M3. All models have 4320 continuous variables. The optimal cost of 
0.47013 € was obtained in all models, but with a significant difference in 
runtime, which is quite relevant for real-time optimization. 

3.2. Model for electric water heater 

The on/off status of the resistive element of an EWH, typically with a 
constant power, should consider the simulation of water withdrawal 
according to a given consumption pattern, inlet water temperature and 
losses through the envelope. In addition to thermal exchanges, the 
optimization model considers sanitary constraints to avoid the forma-
tion of legionella bacteria, which requires heating the water to a safety 
temperature for a specified time. This is modeled imposing that the 
water temperature is above 60 ◦C for at least 11 consecutive minutes or 
above 75 ◦C for at least 3 consecutive minutes in each day [26]. 

The modeling of an EWH requires the following parameters and data: 
PR = power of the resistive heating element (kW). 
τamb

t = ambient temperature around the EWH in time t (◦C), t = 1,⋯,

Table 1 
Comparison of the shiftable load optimization models.   

M1 M2 M3 

# Binary var 110,925 1008 1008 
Runtime (s) 91.238 1.952 0.162  
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T. 
τnet = inlet water temperature (◦C). 
mt = water withdrawal for consumption in time t (kg), t = 0,⋯,T. 
M = hot water tank capacity (kg). 
A = area of the tank envelope (m2). 
U = heat transfer coefficient of the tank (W/m2.̊C). 
cp = specific heat of the water (J/kg.̊C). 
τmin, τmax = minimum and maximum allowed temperature (̊C). 
treq = time required to maintain a certain temperature to eliminate 

the bacteria (min.). 
τreq = temperature specified to be kept for treq to eliminate the bac-

teria (◦C). 
Decision and auxiliary variables (all for t = 1,⋯,T): 
vt = binary variable defining the on/off control of the heating 

element in time t (v0 is a constant). 
τt = hot water temperature inside the tank in time t (◦C), (τ0 is a 

constant). 
nt = binary variable equal to 1 in the first t in which τt > τreq for treq. 
Plosses

t = power losses through the envelope in time t (kW), (Plosses
0 is a 

constant). 
The EWH optimization model is: 

min
∑T

t=1

(
Cbuy

t PRvtΔt
)

(18) 

s.t. 

Plosses
t = A.U

(
τt − τamb

t

)
, t = 1,⋯,T (19)  

τt+1 =

(
M − mt

M
.τt +

mt

M
.τnet

)

+
PRvt − Plosses

t

Mcp .Δt, t = 0,⋯, T − 1 (20)  

τt ≥ τmin − M vt, t = 1,⋯,T (21)  

τt ≤ τmax +M (1 − vt), t = 1,⋯, T (22)  

∑T − treq+1

t=1
nt = 1 (23)  

τt ≥
∑treq

t′ = 1
(t′ ≤ t)

τreq.nt− t′ +1, t = 1,⋯, T (24)  

vt ∈ {0, 1}, nt ∈ {0, 1}, t = 1,⋯,T (25)  

Plosses
t ≥ 0, τt ≥ 0, t = 1,⋯, T (26) 

Constraints (19) and (20) define the temperature inside the tank. 
Constraints (21) and (22) enable that the minimum temperature may 
not be respected when the water is being heated (vt = 1), to account for 
cases in which the initial temperature τ0 < τmin

t or there is excessive 
withdrawal, as well as allowing for τt > τmax when vt = 0. M is a big 
positive number. These constraints become hard, i.e., τt ≥ τmin and 
τt ≤ τmax, if the EWH is off or on, respectively. Constraints (23) and (24) 
ensure that the temperature is τreq or above for at least treq consecutive 
times to avoid the legionella bacteria. 

If the consumer is willing to withstand some discomfort with respect 
to a range of hot water temperatures [τmin comf ,τmax comf ], penalizing the 
corresponding deviation in the objective function, then the following 
constraints could be considered: 

τdev
t ≥ τmin comf −

(τt + τt− 1)

2
, t = 1,⋯,T (27)  

τdev
t ≥

(τt + τt− 1)

2
− τmax comf , t = 1,⋯, T (28)  

τdev
t ≥ 0, t = 1,⋯, T (29) 

The temperature deviation variables τdev
t measure, in each time t, the 

degrees ◦C of the water temperature below τmin comf or above τmax comf , 
respectively in (27) and in (28). This discomfort can be monetized using 
a penalty coefficient ρ (€/◦C deviation) as in (30) to be included in the 
cost minimizing objective function. 

min ρ
∑T

t=1
τdev

t (30) 

In a real implementation setting, some information can be physically 
obtained and incorporated in the optimization process, e.g., a temper-
ature sensor in the tank. 

3.3. Model for air conditioner 

A simple yet comprehensive model considering the behavior of the 
control thermostat of an air conditioner (AC) system is developed ac-
cording to [25], accounting for the thermostat hysteresis behavior as 
displayed in Fig. 2 for heating mode, where sAC

t is the on/off control 
variable. The operation depends on the minimum/maximum indoor 
temperature allowed as well as the building envelope characteristics. 

The modeling of an AC requires the following parameters and data: 
θext

t = outdoor temperature in time t (◦C), t = 0,⋯,T. 
θmin,θmax = minimum and maximum indoor temperature allowed (◦C) 

(these could be indexed by t according to the user’s preferences along 
the planning period). 

PAC = nominal power of the AC appliance (kW). 
β = (U.A/C)Δt, where U is the (weighted average) overall heat 

transfer coefficient of the building unit envelope (kW/(m2⋅◦C)), A is the 
surface area of the envelope [m2], so U.A is the overall thermal 
conductance of the unit envelope (kW/◦C), and C is the overall thermal 
capacity (kJ/◦C). 

γ = χ.Δt/C, where χ is the coefficient of performance of the AC 
appliance. 

The parameters β and γ are computed in the thermal model as in 
[25]. 

Decision and auxiliary variables (all for t = 1,⋯,T): 
sAC
t = binary on/off control variables (sAC

0 is a constant). 
θin

t = indoor temperature (◦C), (θin
0 is a constant). 

yt , zt = binary variables to enforce the logical conditions of ther-
mostat switching: yt = 1 if θin

t < θmax; zt = 1 if θin
t > θmin. 

The AC optimization model is: 

min
∑T

t=1
Cbuy

t PACsAC
t Δt (31) 

s.t. 

θin
t = (1 − β)θin

t− 1 + βθext
t− 1 + γPACsAC

t− 1, t = 1,⋯, T (32)  

θin
t ≥ θmin − M sAC

t , t = 1,⋯, T (33)  

θin
t ≤ θmin + M zt , t = 1,⋯, T (34)  

θin
t ≥ θmax − M yt , t = 1,⋯, T (35)  

Fig. 2. AC thermostat hysteresis behavior (heating mode).  
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zt + yt − sAC
t− 1 + sAC

t ≤ 2, t = 1,⋯, T (36)  

zt + yt + sAC
t− 1 − sAC

t ≤ 2, t = 1,⋯, T (37)  

θin
t ≤ θmax + M

(
1 − sAC

t

)
, t = 1,⋯, T (38)  

sAC
t , zt, yt ∈ {0, 1}, t = 1,⋯,T (39) 

Constraints (32) define the indoor temperature in each time t as a 
function of the indoor temperature, the external temperature and the AC 
operation in time t − 1. Constraints (33) ensure that the AC is on when 
the indoor temperature is below the minimum temperature. Constraints 
(34)–(37) guarantee that the system keeps the state on or off when the 
indoor temperature is between the lower and the upper bound of the 
thermostat dead-band. Constraints (38) force sAC

t = 0 when the indoor 
temperature is above the maximum allowed temperature, turning the 
AC off. 

In this model, the AC is operated in an on/off mode. If the AC can 
operate in, e.g., 4 power levels of 25 or 50 or 75 or 100%, then PACsAC

t− 1 in 
(32) is replaced by PAC

t− 1 (with PAC
0 being a constant), which is computed 

as in (40) using the auxiliary variables σk
t that establish the power level 

at which the AC operate. Constraints (42) guarantee that the AC func-
tions at one of the specified power levels or it is off. 

PAC
t =

(
0.25σ1

t + 0.5σ2
t + 0.75σ3

t + σ4
t

)
PAC, t = 1,⋯, T (40)  

σk
t ∈ {0, 1}, k = 1,⋯, 4, t = 1,⋯, T (41)  

sAC
t =

∑4

k=1
σk

t , t = 1,⋯, T (42) 

A monetized discomfort term could also be implemented as we 
illustrated for the EWH. Other models for AC control are presented in 
[25], for instance, to impose a minimum time on or off. 

However, the model above is just the MILP implementation of a rule- 
based system to reflect the thermostat behavior using the auxiliary bi-
nary variables yt and zt , i.e., it does not allow for the exploitation of the 
consumer’s willingness to trade-off some discomfort with lower price 
periods. For this purpose, the model can be reformulated as follows [24]. 
The minimum indoor temperature for which the system should turn on 
(θmin or θmin

t ) becomes a decision variable to be determined by the 
optimization model. The reference (desired target) temperature, θref , the 
maximum allowed for the indoor temperature, θmax, and the absolute 
minimum allowed indoor temperature, θmin ABS, are specified by the 
consumer. The variables δ+t and δ−t are the positive and negative de-
viations of the minimum temperature, θmin

t , to be set by the optimization 
model, with respect to the reference temperature. These variables ac-
count for the discomfort felt by the consumer, which may be included in 
the consumer’s overall cost objective function by monetizing those 
temperature deviations or considered as a separate objective function in 
a bi-objective model. Fig. 3 displays this type of control of the lower 
bound of the thermostat comfort band (AC in heating mode), at each 
time t of T, by considering θmin

t a decision variable. 
The modeling of this additional degree of freedom, in which the 

optimal value of θmin
t is determined by the model, is achieved by defining 

the discomfort variables δ+t and δ−t as in (43) and guaranteeing that the 
minimum temperature is within the bounds defined by the absolute 
minimum temperature and the maximum temperature allowed (44). 

θmin
t − θref = δ+t − δ−t , t = 1,⋯, T (43)  

θmin ABS ≤ θmin
t ≤ θmax, t = 1,⋯, T (44)  

δ−t , δ
+
t ≥ 0 , t = 1,⋯, T (45) 

A monetary term penalizing the temperature deviation (46) is added 
to the cost objective function to be minimized. 

min
∑

t∈T

(
c+δ+t + c− δ−t

)
(46) 

The coefficients c+ and c− are the costs (in €/◦C.h) associated with 
the positive and negative temperature deviations, respectively (e.g., in 
heating mode it may be set c− > c+, i.e., negative deviations are more 
penalized). 

The computational complexity results from considering θmin
t , t = 1,⋯ 

,T, as decision variables, thus allowing to profit from ToU prices while 
tolerating some discomfort. It may be beneficial to increase θmin

t to heat 
the space in periods of low prices to have higher temperatures (comfort) 
in periods of high prices. This end-user flexibility enables the imple-
mentation of price-based demand response actions. 

3.4. Model for static and electric vehicle battery 

Let x denote the type of battery: x ∈ {B, V}, where B refers to the 
static battery and V to the EV battery. Regarding the time domain Tx of 
each battery, TB = T (the whole planning period) and TV = [ta , td ]
where ta is the first time unit after arrival of the EV at home (enabling 
charging/discharging) and td is the time of departure. 

In the model below, the battery status is given in energy (kWh) units. 
The modeling of the battery systems requires the following param-

eters and data: 
ηch

x , ηdch
x = charging and discharging efficiency of the battery, x ∈ {B,

V}. 
Emin

x , Emax
x = minimum and maximum allowed battery charge (kWh), 

x ∈ {B,V}. 
E0

x = initial battery charge (kWh) at time t = 0 for x = B and 
t = ta − 1 for x = V. 

Ereq
x = battery charge requested at the end of the planning period for 

x = B and at the time of departure td for x = V (kWh); in the case of x =

B, we consider that Ereq
B = E0

B. 
Pch max

x , Pdch max
x = maximum charge and maximum discharge power 

allowed for the battery (kW), x ∈ {B,V}. 
The decision and auxiliary variables necessary are (for t ∈ Tx,

x ∈ {B,V}): 
Px2H

t = power (kW) such that Px2H
t Δt is the energy transferred from 

the battery x to home (B2H or V2H) in time t (battery discharge). 
PH2x

t = power (kW) such that PH2x
t Δt is the energy transferred from 

the home to the battery x (H2B or H2V) in time t (battery charge). 
Ex,t = energy (kWh) in the battery x in time t (Ex,0 = E0

x is a constant 
as defined above). 

sH2x
t = binary variables equal to 1 when the battery x is charging in 

time t. 
sx2H
t = binary variables equal to 1 when the battery x is discharging in 

time t. 
The constraints modeling the operation of the static and the EV 

batteries are: 

Ex,t = Ex,t− 1 +
(
ηch

x PH2x
t Δt

)
−

(
Px2H

t Δt
ηdch

x

)

, t ∈ Tx , x ∈ {B,V} (47)  
Fig. 3. Control of the lower bound of the thermostat (heating mode) at each 
time t of T. 
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Emin
x ≤ Ex,t ≤ Emax

x , t ∈ Tx, x ∈ {B,V} (48)  

0 ≤ PH2x
t ≤ Pch max

x sH2x
t , t ∈ Tx, x ∈ {B,V} (49)  

0 ≤ Px2H
t ≤ Pdch max

x sx2H
t , t ∈ Tx, x ∈ {B,V} (50)  

sH2x
t + sx2H

t ≤ 1, t ∈ Tx , x ∈ {B,V} (51)  

EB,T ≥ Ereq
B ; EV,td ≥ Ereq

V (52)  

sH2x
t , sx2H

t ∈ {0, 1} , t ∈ Tx , x ∈ {B,V} (53) 

Constraints (47) determine the energy in the batteries considering 
the charging/discharging process. Constraints (48) impose a minimum 
and maximum energy quantity in the batteries in each time unit. Con-
straints (49) and (50) limit the maximum charging (sH2x

t = 1) and dis-
charging (sx2H

t = 1) rates, respectively. Constraints (51) establish that 
the batteries are operating in one mode only (charging or discharging) in 
each time unit. Constraints (52) enforce that the energy in the batteries 
cannot be lower than the required quantity at the end of the planning 
period (for the static battery) and at the time of departure (for the EV 
battery). 

4. Overall model and case study 

The MILP modules presented in the previous sections can be com-
bined in an overall model to make the integrated optimization of all 
energy resources (different load types, storage and local micro-
generation, exchanges with the grid). These modules can be combined 
and adapted according to the resources available for control, the con-
sumer’s preferences and the aims of the study. In the following version 
of a comprehensive overall model, we consider also the possibility of 
selling back to the grid at a stipulated price, which in some countries is a 
fraction of the wholesale market price. The following additional pa-
rameters, data and decision variables (all for t = 1,⋯,T) are required to 

model all the exchanges. 
Additional parameters and data: 
Bt = base load (non-controllable) (kW). 
PPV

t = power (kW) such PPV
t Δt is the local PV energy generation in 

time t (kWh). 
Csell

t = energy remuneration (selling to the grid) in time t (€/kWh). 
PG max = maximum power allowed for exchanges with the grid (kW). 
Decision and auxiliary variables: 
PG2H

t = power (kW) such that PG2H
t Δt is the energy (kWh) transferred 

from grid to home (G2H) in time t at unit cost Cbuy
t (€/kWh). 

PH2G
t = power (kW) such that PH2G

t Δt is the energy (kWh) transferred 
from home to grid (H2G) in time t at unit cost Csell

t (€/kWh). 
sG2H
t = binary variables that are 1 when the energy is flowing from 

grid to home in time t. 
sH2G
t = binary variables that are 1 when the energy is flowing from 

home to grid in time t. 
Also, in addition to the energy cost (€/kWh), the power cost may also 

be considered by establishing a power tariff structure (€/kW per day) 
consisting of L price levels and the consumer is charged by the peak 
power taken. For this purpose, the following additional parameters and 
decision variables are defined: 

CCont
l = power level prices (€/kW); the consumer is charged for the 

peak power taken, l = 1,⋯,L. 
PCont

l = power levels (kW), l = 1,⋯,L. 
uCont

l = binary variables defining the maximum power level l taken 
during the planning period, l = 1,⋯,L. 

The constraints to determine the power level to be used are: 

PG2H
t ≤

∑L

l=1
PCont

l .uCont
l , t = 1,⋯, T (54)  

∑L

l=1
uCont

l = 1 (55)  

uCont
l ∈ {0, 1}, l = 1,⋯,L (56) 

The power cost could also be considered as a constant but imposing 
an upper bound on the power taken by means of a constraint as estab-
lished in the contract with the retailer, which is usual in the tariff system 
of several countries. 

The overall model is (57)-(64): 

min
PG2H ,PH2G

f =
∑T

t=1

[(
Cbuy

t PG2H
t Δt

)
−
(
Csell

t PH2G
t Δt

) ]
+

∑L

l=1

(
CCont

l uCont
l

)
(57) 

s. t.     

0 ≤ PG2H
t ≤ PG maxsG2H

t , t = 1,⋯,T (59)     

0 ≤ PH2G
t ≤ PG maxsH2G

t , t = 1,⋯,T (60)    

sG2H
t + sH2G

t ≤ 1, t = 1,⋯,T (61) 

PG2H
t − PH2G

t + PPV
t = Bt +

∑J

j=1
PSh

j,t + PACsAC
t + PRvt +

(
PH2B

t − PB2H
t

)
+
(
PH2V

t − PV2H
t

)
, ∀t ∈ TV (63)   

Constraints of model M3 for shiftable loads : (9) − (12) for single (or (13) − (16) for multiple ) comfort time slots.
Constraints (19) − (26) for the EWH load.
Constraints (32) − (39) for the AC load.
Constraints (47) − (53 ) for the static battery and the EV battery.
Constraints (54) − (56) for the power component.

(58)   
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PG2H
t − PH2G

t +PPV
t =Bt+

∑J

j=1
PSh

j,t +PACsAC
t +PRvt +

(
PH2B

t − PB2H
t

)
, ∀t∈T\TV

(62)    

sG2H
t , sH2G

t ∈ {0, 1}, t = 1,⋯, T (64) 

Constraints (59) – (61) limit the exchanges between the home and 
the grid to a maximum and impose that the flow occurs in only one 
direction (i.e., G2H or H2G). Constraints (62) and (63) model the power 
balance, just differing in the operation slot of the EV battery. 

Constraints (27)–(29) could be included in the model to represent the 
discomfort the consumer would be willing to tolerate with respect to the 
hot water temperature comfort range, adding the corresponding penalty 
term (30) to the objective function. Constraints (43)–(45) could be 
considered to exploit the consumer’s willingness to endure some indoor 
temperature discomfort, which would be penalized in the objective 
function as in (46), profiting from lower price periods. 

This overall model was instantiated with the data available at 
https://home.deec.uc.pt/~ch/data_DRmodels, obtained in field audits 
and actual equipment technical specifications. The planning horizon 
discretization was Δt = 1/60h, to compute the case study results pre-
sented below (which can be entirely reproduced using the data file and 
the formulation (57)–(64) above). The model has 16,847 binary vari-
ables, 21,600 continuous variables and 39,227 constraints. With 5 min 
runtime, the relative MIP gap was 0.0107, and with 1 hour runtime the 
gap was 0.0088. The corresponding cost objective function values were 
4.0714€ and 4.0697€, respectively. 

The evolution of grid to home (PG2H
t ) and home to grid (PH2G

t ) powers 
is displayed in Fig. 4. Fig. 5 displays the evolution of the static (EB,t) and 
EV (EV,t) battery charge. Fig. 6 displays the indoor temperature (θin

t ) and 
the EWH temperature (τt ) in the planning period. These results were 
obtained with 1 hour runtime, although they are very similar to the ones 
obtained with 5 min runtime. 

Purchase from the grid (PG2H
t ) is made in the lower price periods, 

selling to the grid (PH2G
t ) when the prices are higher using the PV gen-

eration and the energy stored in the battery. The static battery (EB,t) is 
charged in the lower price periods to supply loads operating in periods in 
which the energy cost is higher. The EV battery (EV,t) is used to sup-

plement the supplying of some loads during high prices periods and is 
then charged from the grid in low price periods to reach the desired state 
of charge at the time required. The indoor temperature (θin

t ) fluctuates in 
the comfort range, being the AC supplied by the grid in periods of low 
prices and by the battery in periods of high prices. The EWH is mostly 
supplied from the grid in low price periods considering water 
withdrawals. 

The EWH modeling is responsible for the major share of the 
computational effort. Without considering the EWH, the overall model 
would be solved to optimality in 1.36 s. 

Further computational experiments were carried out to assess the 
impact of consumer’s comfort specifications on the cost objective 
function. For this purpose, relaxations of the minimum allowed indoor 
and hot water temperatures, and minimum battery charge requested at 
the time of departure of the EV were considered, thus simulating a 
consumer willing to trade-off comfort for cost. These results are pre-
sented in Table 2, for 5-minute runtime, making of most of the model 
flexibility to assess the outcomes for distinct consumer profiles charac-
terized by different comfort requirements. Accepting to lower the min-
imum comfort temperature in 1 ◦C for the indoor and 2 ◦C for the hot 
water temperature enables to achieve some gain in cost, with a more 
noticeable improvement resulting from lowering the requirements for 
the electric vehicle battery charge at the departure time. The cumulative 
effect of these three preference settings offer a significant saving of 
about 12.6% with respect to the original settings (please see the data 
file). 

Experiments were also made using a plain tariff with Cbuy
=

1
T
∑T

t=1Cbuy
t . Allowing for a running time of 5 min, the cost objective 

function was 7.1284€, which shows that ToU tariff schemes are favor-
able for consumers when they have the flexibility or the willingness to 
endure some discomfort associated with appliance operation shifting, 
indoor and hot water temperatures, or battery state of charge 
requirements. 

5. Conclusions 

The integrated optimization of all energy resources (load manage-
ment, electric vehicle and stationary battery, local microgeneration, 
exchanges with the grid) to be implemented in autonomous home en-
ergy management systems requires an accurate modeling of appliances’ 
physical operation. However, a balance is necessary between the 

Fig. 4. Grid to home power (PG2H
t ) and home to grid (PH2G

t ) power.  
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optimization model detail and the capability of obtaining practical so-
lutions using mild computational requisites. For this purpose, a 
comprehensive and modular set of MILP models has been developed. 
The models have been designed to be used in a flexible building block 
manner, with objective functions involving the economic and comfort 
dimensions with different modeling approaches. These models can be 
easily adapted to specific circumstances, including appliance charac-
teristics, comfort preferences (in the operation time, indoor and water 
temperature, and battery state of charge), time-differentiated tariff 
schemes, power cost structures, etc. Results of a case study with actual 
data are presented, with complete data sets provided. The results show 
that whenever consumers have the flexibility to change their con-
sumption patterns, they are able to lower the net electricity bill by 
having an energy management system endowed with the models herein 
proposed to make optimized decisions on their behalf. 

Since combinatorial models impose a significant computational 

Fig. 5. Evolution of static (EB,t) and EV (EV,t) battery charge.  

Fig. 6. Evolution of the indoor temperature (θin
t ) and the EWH temperature (τt).  

Table 2 
Results for the overall model with different comfort parameterizations (5-min-
ute runtime).   

MIP 
gap 

Cost Cost  
improvement 

Original model  0.0107  4.0714 — 
θmin = 19 ◦C instead of 20 ◦C  0.0105  3.9451 3.1% 
τmin = 43 ◦C instead of 45 ◦C  0.0104  3.9945 1.9% 
Ereq

V = 30 kWh instead of 32 kWh  0.0114  3.7571 7.7% 
θmin = 19 ◦C and τmin = 43 ◦C  0.0106  3.8699 4.9% 
θmin = 19 ◦C, τmin = 43 ◦C and Ereq

V = 30 kWh  0.0114  3.5572 12.6%  

C. Henggeler Antunes et al.                                                                                                                                                                                                                   



Applied Energy 320 (2022) 119142

12

effort, a tradeoff is required between the computational resources 
available and the model accuracy, namely regarding the time interval 
discretization. The implementation of these models in a low-cost single 
board computer, such as Arduino or Raspberry Pi, is underway, 
including the communication with the appliances, thus offering prac-
tical and affordable solutions for consumers and prosumers to engage in 
demand response programs and play a more active role in the energy 
transition. 

CRediT authorship contribution statement 

Carlos Henggeler Antunes: Writing – original draft, Investigation, 
Conceptualization, Data curation. Maria João Alves: Writing – review 
& editing, Investigation, Conceptualization. Inês Soares: Writing – re-
view & editing, Investigation, Software. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

This work was supported by the R&D Units Pluriannual Funding 
UIDB/00308/2020 and UIDB/05037/2020, and project grants MAn-
AGER (POCI-01- 0145-FEDER-028040) and RETROSIM (POCI-01-0145- 
FEDER-032503), through the European Social Fund, European Regional 
Development Fund and the COMPETE 2020 Programs, FCT- Portuguese 
Foundation for Science and Technology. 

References 

[1] Siano P. Demand response and smart grids—A survey. Renew Sustain Energy Rev 
2014;30:461–78. https://doi.org/10.1016/j.rser.2013.10.022. 

[2] Vardakas JS, Zorba N, Verikoukis CV. A Survey on Demand Response Programs in 
Smart Grids: Pricing Methods and Optimization Algorithms. IEEE Commun Surv 
Tutorials 2015;17(1):152–78. https://doi.org/10.1109/COMST.2014.2341586. 

[3] Jordehi AR. Optimisation of demand response in electric power systems, a review. 
Renew Sustain Energy Rev 2019;103:308–19. https://doi.org/10.1016/j. 
rser.2018.12.054. 

[4] Beaudin M, Zareipour H. Home energy management systems: A review of 
modelling and complexity. Renew Sustain Energy Rev 2015;45:318–35. https:// 
doi.org/10.1016/j.rser.2015.01.046. 

[5] Hussain M, Gao Y. A review of demand response in an efficient smart grid 
environment. Electr J 2018;31(5):55–63. https://doi.org/10.1016/j. 
tej.2018.06.003. 

[6] Morales-España G, Martínez-Gordón R, Sijm J. Classifying and modelling demand 
response in power systems. Energy 2022;242:122544. https://doi.org/10.1016/j. 
energy.2021.122544. 

[7] Althaher S, Mancarella P, Mutale J. Automated Demand Response From Home 
Energy Management System Under Dynamic Pricing and Power and Comfort 
Constraints. IEEE Trans Smart Grid 2015;6(4):1874–83. https://doi.org/10.1109/ 
TSG.2014.2388357. 
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