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Abstract: Cancer is the second cause of death worldwide. Among cancers, hepatocellular carcinoma
is one of the most prevalent. Evidence indicates that the daily consumption of fruits and vegetables
can prevent the onset of various cancers due to the presence of bioactive compounds. Sweet cherries
are known for their richness in phenolics, including anthocyanins, which are the major constituents,
and presumably, the key contributors to their biological activity. Therefore, the present study aimed
to evaluate the effects of three different cherry fractions on human hepatocellular carcinoma (HepG2)
cells viability and effectiveness to improve the redox status of these cells under oxidative damage
induced by nitric oxide radicals and hydrogen peroxide. Phenolic characterization of fractions was
performed by Fourier transform infrared spectroscopy. The obtained results indicated that enriched
phenolic fractions of sweet cherries (cv. Saco, can impair cell viability and suppress cells growth after
72 h of exposure, promoting necrosis at the highest tested concentrations (>50 µg/mL). Additionally,
fractions also showed the capacity to protect these cells against oxidative injury by capturing radicals
before they can attack cells’ membrane and by modulating reactive oxygen and nitrogen species
generation, as demonstrated by bioinformatic tools.

Keywords: antioxidant effects; cytotoxicity; molecular docking; HepG2 cells; sweet cherry phenolics

1. Introduction

Cancer is considered one of the most alarming medical problems worldwide. This
disease results from genetic and epigenetic alterations of oncogenes or tumour suppressor
genes, leading to uncontrolled and rapid cells growth, proliferation and invasion to other
organs and tissues [1]. Chemotherapy is frequently used to heal this malignancy, however
this treatment presents few tumour-selectivity drug delivery and can cause several side
effects, such as anaemia, emotional distress, depression, fatigue, vomits, pain, among
others [2–4]. Hepatocellular carcinoma is one of the most lethal cancers. Indeed, in the
last year, it was responsible for killing approximately 830,000 individuals [1]. It is mainly
caused by hepatitis B or C virus infection, cirrhosis, non-alcoholic fatty liver disease,
alcohol-induced liver disease, and exposure to aflatoxins, nitrosamines and/or other
carcinogens [5]. When detected at an early-stage, patients can be subjected to curative
surgical treatments, such as tumour resection and ablation. However, in the majority of the
cases, its diagnosis is difficult and only occurs at an advanced stage, resulting in death [3].
In fact, this cancer type presents an overall 5-year survival rate very low (below 9%) [1,5].
Current palliative treatment medicine includes the administration of sorafenib, which is a
multi-kinase inhibitor for systemic chemotherapy. Nevertheless, this one is very expensive,
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displays serious side effects, namely at cardiovascular level, and only increases survival
rates for about 2.5 months [3,6].

Therefore, there exists an urgent demand for developing novel, more efficient, specific,
and safer chemopreventive, chemotherapeutic and/or adjuvant agents to fight against
cancer. Since several epidemiological and animal studies highlight that daily consumption
of vegetables and fruits are robust and viable strategies useful to reduce the development
and/or to act as a complementary treatment against various cancer types, being capable
of increasing survival rates [7–10], it is not surprising the increasing incorporation of
molecules derived from natural products in antitumor drugs [7].

Among these molecules, phenolic compounds, such as phenolic acids, flavan-3-ols and
anthocyanins, have been largely studied due to their antioxidant, anti-inflammatory and
antimutagenic effects, as well as capacities to inhibit cell development and differentiation,
modulate cell metabolism, induce cell cycle arrest and apoptosis, and control the expression
of genes involved on cancer cells growth, among others [3,11–14]. Thus, natural products
rich in these bioactive compounds, such as sweet cherries, have been a target of extensive
and deeper studies in order to discover their full biological potential and safe dosage. Sweet
cherries (Prunus avium Linnaeus) are perishable and colourful fruits that belong to the
Rosaceae family [15]. They are highly attractive and appreciated owing to their taste, aroma
and colour, as well as due to their nutritional values and functional properties, once they
present considerable levels of phenolics, including anthocyanins (0.61 to 108.5 mg cyanidin
3-O-rutinoside equivalent per 100 g of fresh weight), which are the main responsible for
their red colour and considered the key contributors for their noticeable antioxidant effects
and ability to mitigate many pathological conditions, including cancer [12,16–19].

In fact, the health benefits of Prunus avium plant parts are known since ancient times,
where they were used to treat several ailments, such as ague, bellyache, diarrhea, jaundice
and tonsillitis conditions and urogenital, urinary and intestinal disorders [20]. Focusing
on their fruits, they are preferentially consumed fresh, but they also can be dried (with
or without sugar residues) or processed into juices, jam, jellies, beverages, being, hence
available all year in the market [21]. Given the crescent interest in this fruit, its cultivation
is increasing worldwide. According to Faostat, in 2019, around 3,600,000 tons of sweet
cherries were produced globally (which corresponds to an increase by 60% comparatively
to 10 years before), being Turkey (628,000 tons), the United States of America (398,000 tons)
and Iran (140,000 tons) the biggest producers.

Considering the high liver cancer death rates and the lack of reports about the effect of
sweet cherries on tumoral hepatic cell proliferation and cytotoxicity, the present study pro-
vides the first information about the pharmacological effects of sweet cherry concentrated
phenolic-rich fractions (cv. Saco) on inhibiting the growth of human hepatocarcinoma
(HepG2) cells. This cell line was the selected one once it presents many morphological
characteristics of liver parenchymal cells and enzymes responsible for the activation of
various xenobiotics, being, therefore, a widely used in vitro model for human liver cancer
research.

Additionally, the cytoprotective effects and mechanism of action of the fractions
against oxidative damage induced by nitric oxide (NO) and hydrogen peroxide (H2O2) on
HepG2 cells proliferation, apoptosis, migration and invasion were also explored herein
for the first time. Additionally, the phenolic profile was characterized using the Fourier
transform infrared (FT-IR) spectroscopy.

2. Materials and Methods
2.1. Chemical Reagents

All chemicals used were of analytical grade. N-(1-Naphthyl)ethylenediamine dihy-
drochloride, sulfanilamide, and sodium nitroprusside dihydrate (SNP) was obtained from
Alfa Aesar (Karlsruhe, Germany). The remaining were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Water was deionized using a Milli-Q water purification system
(Millipore Ibérica, Madrid, Spain).
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2.2. Cherry Samples

Approximately 1 kg of Saco sweet cherry from Fundão region (Portugal) was collected
manually at the commercial stage in June of 2017 and provided by Cerfundão, a local
company. The fruits were immediately transported to the laboratory facilities, where
pits were removed and separated from the pulp. Then, cherries’ pulp was frozen with
liquid nitrogen and maintained at −80 ◦C until lyophilization. After lyophilization, cherry
fruit was powdered and divided into three aliquots, which, in turn, were used for the
preparation of the extracts. Saco was the cultivar chosen since this one already proved to
have notable health-promoting properties, including antioxidant and anti-cancer activities
on human colon HT29 and Caco-2 cancer cells [12,19,22–26].

2.3. Preparation of Crude Cherry Extracts

One gram of dried cherry pulp powder was homogenised with 20 mL ethanol:water
(70:30, v/v) and subjected to 2 h stirring in the dark at room temperature. Then, the extract
was centrifuged at 2900× g for 10 min. The supernatant was separated and evaporated
under reduced pressure at 37 ◦C. Finally, the resulting extract was dissolved in 50 mL
deionised water and stored at −20 ◦C to avoid phenolic degradation until purification.

Preparation of Phenolic Concentrated Cherry Extracts

In order to obtain the phenolic-rich extracts, a solid-phase extraction (SPE) procedure
was performed using a Sep-Pak C18 column (70 mL/10,000 mg) from Macherey-Nagel
(Düren, Germany). The purification is presented in Figure 1. Briefly, the aqueous cherry
extract was placed into the column preconditioned with 20 mL ethyl acetate, 20 mL ethanol
and 20 mL 0.01 mol/L HCl. A fraction containing non-coloured phenolics was eluted with
20 mL ethyl acetate (fraction I). A second fraction with anthocyanins (fraction II) was eluted
with 40 mL ethanol acidified with 0.1% HCl to prevent anthocyanins degradation. To obtain
fraction III (total extract), another C18 solid-phase extraction was performed, being this
one eluted with 40 mL ethanol containing 0.1% HCl. Finally, each fraction was evaporated
to complete dryness. The obtained residues were resolubilized in 5 mL deionized water
and lyophilized. After that, they were stored in silica protected from light until analyses.
Extractions were carried out in triplicate.
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between samples using alcohol. The spectral data were compared with reference to 
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Figure 1. Schematic diagram regarding the obtention of extracts enriched in phenolic compounds. To prevent the
degradation of anthocyanins, ethanol was supplemented with 0.1% HCl. The solvent in each fraction was removed by
reduced pressure evaporation at 37 ◦C. Each fraction and total extract were already characterized through chromatographic
techniques by our research group. This analysis revealed their richness in hydroxycinnamic acids (69.8% and 99.7% of the
total phenolic compounds for total extract and non-coloured fraction, respectively) and cyanidin 3-O-rutinoside (comprising
24.5% and 81.5% of the total compounds for the total extract and coloured fraction) [12,27].
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2.4. Fourier Transform Infrared (FT-IR) Spectrometry Analysis

Functional groups of cherry fractions were investigated using a Nicolet Is10 FT-IR
spectrometer (Thermo Scientific, Waltham, MA, USA) equipped with a diamond total
reflectance accessory (ATR) with a zinc selenide crystal. Briefly, lyophilized and powdered
samples were applied on ATR, compressed, and pressed under vacuum placed in the
sample holder of the equipment to maximize the surface of contact. All fractions were
analysed three times in the same conditions. The background was collected under identical
conditions to the samples and then subtracted from the sample spectra. The software
OMNIC version 8.3 (Thermo Nicolet Co., Waltham, MA, USA) was the one used for spectral
acquisition. Raw FT-IR spectra were converted in absorbance. The measurements were
performed in the range of 600–4000 cm−1 with 120 scans at a resolution of 4 cm−1 optical
resolution. The averaged spectra were obtained using 32 scans, including subtraction of a
background scan of the clean diamond crystal. The diamond was cleaned between samples
using alcohol. The spectral data were compared with reference to identifying the functional
groups existing in each sample.

2.5. Cancer Cell Models

Human liver (HepG2) cell lines were from American Type Culture Collection (Man-
assas, VA, USA). Cells were cultured in low-glucose Dulbecco’s Modified Eagle Medium
(DMEM) supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin and
incubated at 37 ◦C, in a humidified atmosphere of 5% CO2.

HepG2 Culture Conditions and Treatments

After a few passages, HepG2 cells were plated at a density of 10,000 cells/mL (viability
and cytoprotection assays), 30,000 cells/mL (determination of NO levels), 20,000 cells/mL
(comet assay) and 75,000 cells/mL [nuclear staining and reactive oxygen species (ROS)
production]. After 24 h, different concentrations of cherry fractions dissolved in medium
containing 0.5% (v/v) dimethylsulfoxide (DMSO) (6.25–100 µg/mL) were added. To assess
the cytotoxicity effects after exposure to the fractions, plates were incubated for 24, 48
and 72 h [28–32]. On the other hand, for evaluating the antioxidant potential, preliminary
assays were performed to choose the appropriate concentration and exposure time of each
oxidative stress inductor able to cause around 50% cell death (data not shown). Then, cells
were first exposed to the fractions for 24 h. After that, the fractions were removed, and
they were exposed to 0.5, 1, 1.5 and 2 mM SNP for 24 h, or 200 µM H2O2 for 6, 12 and
24 h [29,33]. Regarding the determination of NO levels, cells were exposed to 1 and 2 mM
SNP for 24, 48 and 72 h, respectively [29].

Culture conditions and procedures were common through all assays. All studies were
conducted when the cells were in the logarithmic growth phase.

2.6. MTT Reduction

After cell treatment, the culture medium was discarded, and the adherent cells were
treated for 4 h with 0.5 mg/mL MTT. Then, the MTT was removed, and formazan crys-
tals were dissolved with 100 µL DMSO, including the control group, and quantified by
measuring the absorbance at 570 nm in a microplate reader Bio-Rad Xmark spectropho-
tometer (Bio-Rad Laboratories, Hercules, CA, USA) [28]. Cell viability was expressed as a
percentage of the control. Six experiments were performed in triplicate.

2.7. Membrane Integrity Assay

The release of the stable cytosolic enzyme lactate dehydrogenase (LDH) into the
medium by cells with disrupted cell membrane was spectrophotometrically determined
at 340 nm (Bio-Rad Laboratories, Hercules, USA), in a kinetic mode, by following β-
nicotinamide adenine dinucleotide (NADH) oxidation during the conversion of pyruvate
to lactate. Briefly, after cell treatments, 50 µL of culture medium was placed in 96-well
plates, together with 200 µL of NADH (252.84 mM) and 25 µL of pyruvate (14.99 mM) [12].
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Both pyruvate and NADH solutions were prepared in phosphate-buffered saline (PBS)
(pH 7.4). A decrease in absorbance is directly related to the quantity of LDH released by the
cells in the culture environment. A total of six independent experiments were performed.
Untreated cells were used as a control.

2.8. Cells’ Morphology

Nuclear staining with 4,6-diamidino-2-phenylindole (DAPI) was executed after 24, 48
and 72 h of incubation with the fractions at the indicated concentrations. Briefly, treated
cells were washed with PBS and fixed with 4% of paraformaldehyde (PFA) in PBS for
10 min at room temperature. Then, fixed cells were washed again with PBS and incubated
with 1 µg/mL DAPI solution for 10 min at room temperature, protected from light. After
that, cells were washed two times with PBS and chromatin fluorescence was analysed
using a Zeiss AxioImager A1 fluorescence microscope with 405 nm laser excitation for
DAPI. Digital images were generated with Zeiss ZEN software [30].

2.9. Determination of DNA Damage (Comet Assay)

After exposure to the extracts, cells were collected by trypsinization, and DNA single
strand-breaks were evaluated by the alkaline version of the comet assay based on the work
of Tulipani et al. [32] with some modifications. Basically, after trypsinization, treated and
nontreated cells were suspended in 1% low melting point agarose dissolved in ultra-pure
water (37 ◦C) and immediately pipetted onto frosted glass microscopic slides pre-coated
with a layer of 1% (w/v) normal melting point agarose also prepared in PBS. Without delay,
glass cover slips were placed on the top of the slides, and the agarose/cell mixture was put
at 4 ◦C for 5 min. After that, the cover slips were removed and slides were immersed in
ice-cold lysis solution [2.5 M NaCl, 0.1 M EDTA, 10 mM Tris (pH 10) adjusted to pH 10 with
10 M NaOH and supplemented with 1% (v/v) Triton X-100] for 16 h to remove cell proteins.
Next, slides were placed in a submarine gel electrophoresis for 30 min to unwind before
being electrophoresed at 20V (300 mA) for another 30 min. Following electrophoresis,
the slides were firstly immersed in neutralizing buffer (0.4 M Tris-HCl, PH 7.5, 4 ◦C) for
10 min, and then in ultra-pure water for another 10 min. After neutralisation and fixation,
slides were stained with DAPI (1 µg/mL) and covered with coverslips for 15 min to colour
the DNA, before being visualised using a Zeiss AxioImager A1 fluorescence microscope
with 405 nm laser excitation for DAPI. Digital images were generated with Zeiss ZEN
software. One hundred nucleoids per slide were scored visually for comet tail size based
on an arbitrary scale of 0 (undamaged nucleus) to 4 (extensive damage of DNA). Samples
were scored blindly, and results were expressed as arbitrary units.

2.10. Determination of NO Levels

The quantity of NO in cell culture medium was determined by its conversion to nitrite,
using a mixture of 75 µL of culture media with an equal volume of Griess reagent (1%
sulphanilamide and 0.1% N-[naphth-1-yl]ethylenediamine dihydrochloride in 2% H3PO4).
The 96 well-plate was incubated during 10 min at room temperature in the dark. Then, the
absorbance was measured at 560 nm in a microplate reader (Bio-Rad Laboratories, Hercules,
USA) [29]. The results correspond to the mean ± SEM of 5 independent experiments
performed in triplicate.

2.11. Nitric Oxide (NO) Scavenging Assay

The ability of cherry fractions in capturing NO was based on the work of Jesus et al. [34].
Briefly, 6 different concentrations were prepared. Then, each well was composed of
100 µL of each extract dissolved in potassium PBS (100 mM, pH 7.4) and 100 µL of SNP
(20 mM). On the other hand, blank and control contained 100 µL of phosphate buffer and
100 µL of sodium nitroprusside dihydrate. The plates were incubated at room temperature
for one hour under light. Then, 100 µL of Griess reagent (1% sulfanilamide and 0.1%
naphthylethylenediamine in 2% H3PO4) was added to each well and incubated for 10 min
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in the dark (blanks received 100 µL of H3PO4). After this time, the absorbance was read at
560 nm. Three experiments for each extract were performed in triplicate.

2.12. Measurement of Intracellular Reactive Oxygen Species

The measurement of intracellular ROS was monitored using the fluorescent probe,
2,7-dihydrodichlorofluorescein diacetate (DCFH-DA) according to a previously described
method [31], with some modifications. After cells exposure to the fractions, the medium
was removed, and the cells were incubated with 200 µL of DCFH-DA for 15 min at 37 ◦C.
After that time, DCFH-DA was discarded, and the cells were incubated with 200 µL of
DAPI dissolved in PBS (1:1000). Positive control was incubated with 75 µL H2O2 30%
for 20 min at 37 ◦C. After 2 washes with incomplete DMEM, intracellular ROS levels
were immediately visualised under a confocal microscope LSM 710 (Carl Zeiss). Five
independent experiments were performed in triplicate.

2.13. Preparation of Protein and Ligands

To carry out this study, the 3-dimensional structure of i-NOS protein (Human self-
inducible nitric oxide synthase, PDB: 2NSI) was selected and downloaded from the Protein
Data Bank (http://www.rcsb.org//pdb (accessed on 15 September 2021)) and prepared
by removing, when necessary, the ligand and water molecules, using BIOVIA Discovery
Studio Visualizer 2020. After, the molecule was saved in pdb format. To perform the protein-
ligand interaction studies, the most abundant phenolic compounds in each fraction were
selected and the 3-dimensional structure of the ligands was downloaded from Pubchem
(http://pubchem.ncbi.nlm.nih.gov (accessed on 15 September 2021)) in sdf format and con-
verted into pdb by BIOVIA Discovery Studio Visualizer 2020. The PubChem CID for each
compound is the following: 3-O-caffeoylquinic acid, 1,794,427; caffeic acid, 689,043; cyani-
din 3-O-glucoside, 441,667; cyanidin 3-O-rutinoside, 441,674; kaempferol 3-O-rutinoside,
5,318,767; p-coumaric acid, 637,542; quercetin, 5,280,343; quercetin 3-O-glucoside, 5,280,804.
Additionally, the properties of the active compounds were calculated using Lipinski’s rule
of five calculated on the SWISSADME predictor (http://www.swissadme.ch/ (accessed on
15 September 2021)).

2.14. Receptor-Ligand Docking

Docking was performed using AMDocking [35], with Autodock Vina (AV) [36], which
is a graphical tool for molecular docking. Autodock Vina (AV) was run following common
protocols. Grind box was delimited manually based on the position of standard inhibitor
ethylisothiourea, using PyMol software [37] and the obtained coordinate was added to AV
software to define grind box, adapted to the optimum size for each ligand. The resulting
docking solutions were subsequently clustered with a root-mean-square deviation (rmsd)
tolerance of 2.0 Å and were ranked by binding energy values. In addition, Charmm Force
Field (v 1.02) was employed to determine binding energy with 10.0 Å as a non-bonded
cut-off distance and distance-dependent dielectric. The lowest binding energy conformer
was searched out of ten different conformers for each docking simulation in each delimited
grind box. The results of the docking calculation were shown in the output in notepad
format. The ligands’ docking conformation was determined by selecting the pose with the
highest affinity (most negative Gibbs’ free energy of binding/∆G). Docking results were
visualized with BIOVIA Discovery Studio Visualizer 2020.

2.15. Inhibition of Lipid Peroxidation

The inhibition of lipid peroxidation was assessed according to previous methods [38,39].
Briefly, tissue samples of porcine (Sus scrofa) liver were homogenized with cold Tris-HCl
(10 mM; pH 7.2), to produce a 1:10 (w/v) hepatic tissue homogenate. After centrifugation,
100 µL of the supernatant was incubated with 200 µL different concentrations of each
fraction for 1 h at 37 ◦C. Afterward, 500 µL trichloroacetic acid (28% w/v) and 380 µL
thiobarbituric acid (1%, w/v) were added, and the mixture was heated at 100 ◦C for 15 min.

http://www.rcsb.org//pdb
http://pubchem.ncbi.nlm.nih.gov
http://www.swissadme.ch/
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After centrifugation at 3000× g for 10 min to remove the precipitated protein, the colour
intensity of the malondialdehyde-thiobarbituric acid was read at 532 nm. The inhibition
ratio (%) was calculated using the following formula: [(A/B)/A] * 100%, where A and B
were the absorbance of the control and the sample solution, respectively. Three experiments
were performed in triplicate.

2.16. Ferric Reducing-Antioxidant Power Assay

The ferric reducing-antioxidant power assay in hepatic tissue samples was performed
according to the colorimetric method described by Benzie and Strain [40], with slight
modifications. In brief, tissue samples of porcine (Sus scrofa) liver were homogenised in
PBS (pH 7.4) to produce a 1:10 (w/v) hepatic tissue homogenate. After centrifugation, 9 µL
of the supernatant was incubated with 27 µL different concentrations of each fraction and
270 µL of FRAP reagent (containing Fe3+-2,4,6-tripyridyl-s-triazine (TPTZ), iron trichloride
hexahydrate and acetate buffer at pH 3.6). The antioxidant potential of the samples was
determined by monitoring the changes in absorbance at 593 nm due to the reduction of the
Fe3+-2,4,6-tripyridyl-s-triazine (TPTZ) complex to a coloured Fe2+-TPTZ complex induced
by the samples, after 40 min of incubation at 37 ◦C. Three experiments were performed in
triplicate.

2.17. Statistical Analysis of Results

Statistical analysis was performed using Graphpad Prism Version 8.4.3 (San Diego,
CA, USA). One-way ANOVA followed by Dunnett’s test as a post-hoc test that was used
to determine the statistical significance in comparison to control. Values of p < 0.05 were
considered statistically significant.

3. Results and Discussion
3.1. FT-IR Spectroscopy Analysis

FT-IR analysis is largely used for being simple to perform, economical, as well as
due to their possibility to provide a molecular fingerprint of the sample by featuring
their molecular vibrations (stretching, bending, and torsions of the chemical bonds), and
thus allowing detailed analysis of the characteristics of the samples [41]. Therefore, the
identification of the extracted compounds was performed based on the different absorption
spectra registered according to the different types of chemical bonds and their functional
groups. Both fractions and total extract showed similar absorbance bands, which was
predictable considering they are enriched in several phenolics composed by a benzene
ring and carboxyl and hydroxyl groups. The main differences are obtained in the value
of the transmittance and the appearance of the bands, namely width and sharpness (data
not shown).

Chlorogenic, caffeic, p-coumaric, 3–4 hydroxybenzoic and 3-OH-hydroxybenzoic
acids, kaempferol, kaempferol 3-O-rutinoside, quercetin, cyanidin 3-O-glucoside, cyanidin
3-O-rutinoside and pelargonidin-3-O-rutinoside were selected to exhibit the mid-infrared
spectral profile of phenolics. For homology, it was possible to detect the presence of many
phenolics already reported in sweet cherries, such as hydroxybenzoic, chlorogenic, caffeic
and p-coumaric acids, and quercetin and kaempferol derivatives in non-coloured extract
and total extract, and cyanidin and pelargonidin glycosides on coloured fraction and total
extract. The obtained data are in accordance with the previous studies of the research
group, which analysed these fractions by chromatographic techniques and revealed their
richness in hydroxycinnamic acids (total extract and non-coloured fraction) and cyanidin
derivatives (total extract and coloured fraction) [12,27].

The FT-IR spectra of cherry fractions showed a peak at ~3350 cm−1, which indicates a
stretching vibration of O-H group, and hence, the presence of carboxyl groups, phenols or
amino acids, as reported by previous studies [41–44]. Furthermore, the absorption band
at 3000 cm−1 results from vibrations of C-H, which suggests the presence of the benzene
ring [45]. On the other hand, the spectral region between 1800 and 1200 cm−1 is consid-
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ered a characteristic of phenolics, being associated with C=O and C=C bond vibrations
and aromatic ring deformations observed in methyl, methylene and hydroxyl groups of
flavonoids [46]. Particularly, the peak around 1640 cm−1 is due to O-H vibrations and
aromatic C=C and C=OO- strengths that occur on flavonoids structure [41,47,48]. Moreover,
the deformation vibration of the C-C bonds in phenolic groups adsorb in the region between
1500 and 1400 cm−1 [49]. In fact, the peak observed around 1500 cm−1 is associated with
the stretching of aromatic C=C existing on aromatic rings [44,50]. On the contrary, the band
at 1400 cm−1 is commonly associated with the stretching vibration of methyl, methylene,
flavonoids and aromatic rings [43], while the peak around 1300 cm−1 is closely attributed
to the O-H groups of phenols [49]. Additionally, the peaks around 1200 and 1000 cm−1 are
often related to C-O stretching and the vibration of C-OH groups from alcohols, ethers,
esters, and carboxylic acids of hydroxyflavonoids and phenolic acids [47]. The maximum
absorption peaks are identified in the frequency range of 1100–1000 cm−1 are synonymous
with fluctuations related to the C-O groups of phenolics [46]. The absorption peaks that
ranged from 900 to 700 cm−1 resulted from the out-of-plane deformation vibrations of C-H
in benzene rings [50]. The other peaks, starting around 700–600 cm−1 were not identified.

The obtained data suggest that phenolic-enriched fractions from sweet cherries present
many functional groups, which, in turn, have already been demonstrated to possess notable
antioxidant, antimutagenic and anti-cancer activities. Similar bounds were found in other
studies focused on cherries functional groups [44,46,51].

3.2. Effect of Sweet Cherry Fractions in HepG2 Cell Viability

Bioactive compounds from natural products have been a target of many studies owing
to their broad spectrum of therapeutic properties with minimal side effects. Focusing
on cancer, phenolics have already proved the ability to interfere with the various cancer
growth and development stages and, therefore, it is not surprising that they are considered
promising chemotherapeutic and/or cancer adjuvant agents [7,9,10,12,14].

All cherry extracts revealed the ability to reduce the mitochondrial activity of HepG2
cells in a dose-dependent manner (Figure 2), standing out the effect of the coloured fraction
after 72 h of treatment, which revealed an IC50 value of 27.24 ± 0.72 µg/mL. As expected,
the most significant LDH response was also obtained using the coloured fraction after
72 h of exposition in a dose-dependent manner, mainly for the highest tested concentra-
tions (25, 50 and 100 µg/mL), with values of 104.7%, 106.2% and 120.2%, respectively.
These concentrations were already tested on normal human dermal fibroblast (NHDF)
and Madin–Darby canine kidney (MDCK) cells and did not show any cytotoxic effects
(cells viability > 80%), which is another evidence about the selective toxicity to HepG2 cells
(data not published yet).

Compiling MTT reduction and LDH leakage results, it was clear that MTT results
were more expressive. Both data suggest that the loss of mitochondrial activity happened
before the membrane’s damage, ruling out a necrotic process in the lowest concentrations
(6.25–25 µg/mL) and its occurrence in the highest concentrations tested, which were ac-
companied by an increase of LDH in the culture medium (50 and 100 µg/mL). In agreement
with these results, it was observed higher amounts of debris (Figure 3), as well as cells
shrinkage events, and consequently, cytoplasmic blebs and cell structure losses as the
concentration increased (Figure 4).
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Figure 2. Viability of HepG2 cells assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction
and lactate dehydrogenase (LDH) leakage assays. Cells were treated with each extract for 24, 48 and 72 h. Values
show mean ± SEM of six independent assays performed in triplicate compared to the respective control (** p < 0.01 and
# p < 0.0001).

As expected, and considering the data of the previous Figure, an increase in debris
was observed in a concentration-dependent manner.

Marked morphological alterations, including cells shrinkage, and consequent structure
losses, cell death and cytoplasmic blebs, were clearly found.

To understand the extensive damage in DNA, the comet assay was achieved, and it
clearly shows the cytotoxicity effects of the coloured fraction (Figure 5). Control cells pre-
sented a genetic damage index of 18± 0.5, whereas cells treated with 25, 50 and 100 µg/mL
coloured fraction had a comet score of 165 ± 0.4, 202 ± 0.4 and 322 ± 0.4, respectively.
This obtained data indicate that the DNA damage becomes more extensive as extract
concentration increases. The obtained data are in accordance with other studies [52–54].
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at concentrations of 25, 50 and 100 µg/mL, respectively.
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Figure 4. Nuclear morphological study by 4′,6-diamidine-2′-phenylindole dihydrochloride staining
of HepG2 cells (control vs. treatment after 72 h of incubation). (A) corresponds to the control, (B,E,H)
correspond to Saco total extract, while (C,F,I) to the coloured fraction and (D,G,J) to the non-coloured
one, at concentrations of 25, 50 and 100 µg/mL, respectively. Three independent experiments were
performed, and a representative field was selected.
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Figure 5. Representative comet images in experiments (control vs. treatment with 6.25, 12.5, 25, 50 and 100 µg/mL the
coloured fraction after 72 h of incubation). DNA was stained with 4,6-diamidino-2-phenylindole (DAPI). The number of
cells scored in each treatment was 100.

In a general way, the obtained data were expected since it was already described
that phenolics and phenolic-enriched extracts, namely in anthocyanins, can affect cell
functions and induce toxicity effects on various cancer cell lines. Recently, Xiao et al. [55]
revealed that the cyanidin 3-O-rutinoside can induce apoptosis on Hepg2 cells (IC50 value
of 22.62 µg/mL). Additionally, Gonçalves et al. [12] already reported that anthocyanins-
enriched fractions from sweet cherries were more effective in interfering with Caco-2 cells
growth than the non-coloured phenolics fraction and total extract. Focusing on HepG2 cells,
Forbes-Hernández et al. [28] revealed that anthocyanin-enriched fractions of strawberries
exhibited more notorious effects to affect the viability of these cancer cells than their whole
methanolic extracts. Furthermore, anthocyanins from Vitis coignetiae Pulliat (5 µg/g of
animal per day) already showed the capacity to reduce tumour development in mice
infected with Hep3B human hepatocellular carcinoma cells as compared to the control
group [56]. Similar results were verified after the daily administration of anthocyanins
extract from Lonicera caerulea fruits (200 mg/kg bw/day) in hepatoma cells (H22)-bearing
mice after 15 days of treatment [57].

The strong anti-cancer effects of anthocyanins are intimately linked to their catechol,
pyrogallol, and methoxy groups present in their chemical structure, which confer them no-
table antioxidant, anti-cancer, antimutagenic and anti-inflammatory effects, including the
capacity to (i) interfere with ERK, JNK, MAPK, NF-κB and PI3K/Akt pathways, (ii) arrest
cells proliferation in G1/S and G2/M phases, (iii) activate the caspase cascade, (iv) in-
crease intracellular antioxidant enzymes, (v) modulate aromatase activity, (vi) regulate
estrogenic/antiestrogenic levels, (vii) reduce mitochondria membrane potential and (viii)
inhibit procarcinogens activation by interfering with phase I metabolizing enzymes, such
as cytochrome P450 [11,56–60].

3.3. Cell Culture Radical Scavenging Activity

Considering that oxidative stress contributes to the development of many disorders,
including cancer, the second step of this study was to evaluate the capacity of the enriched-
phenolic fractions and total extract from sweet cherries to protect HepG2 cells against
induced-oxidative stress.

In a first step, it was verified that, the preincubation with the highest concentration
tested (100 µg/mL), of both fractions and total extract revealed capacity to reduce ROS
concentration (Figure 6) near basal levels. The coloured fraction was the most effective to
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improve the redox intracellular status in cells under induced oxidative stress, with respect
to positive control (100%).
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Figure 6. Protective effects of sweet cherry extracts (100 µg/mL) after 24 h of treatment against
reactive oxygen species production in HepG2 cells. HepG2 cells were pre-incubated with 2,7-
dihydrodichlorofluorescein diacetate (DCFH-DA) (5 µM, 15 min). Control cells were incubated
with Dulbecco’s modified Eagle’s medium plus vehicle (negative control) and with 10 mM H2O2

for 20 min (positive control). All cells were stained with 2,7-dihydrodichlorofluorescein diacetate
(DCFH-DA). Results are expressed as mean± SEM of five independent assays, performed in triplicate
(# p < 0.0001 compared to the respective positive control). Representative images of HepG2 cells were
taken by confocal microscopy.

Among ROS, H2O2 is a well-known ROS genotoxic agent whose overproduction
and consequent accumulation induces severe oxidative DNA damage, e.g., DNA strand
breakage and base modification and lipid peroxidation [33]. Having the previous findings
in mind, we also tested the ability of phenolic-enriched fractions and total extract to
protect HepG2 cells against H2O2. Cells were then treated with different concentrations
(6.25–100 µ/mL) of each fraction 24 h prior to H2O2 exposure (200 µM for 6, 12 and 24 h).
Cellular viability was again determined by MTT and LDH leakage assays. The obtained
data revealed that both phenolic-enriched fractions as well as the total extract were safe at
the therapeutic level and had a significant ability to prevent oxidative stress. In fact, all
the extracts exerted dose- and time-dependent protective effects in the MTT reduction and
LDH leakage assays (Figure 7). As expected, the highest concentration tested (100 µg/mL)
was the one that showed the most pronounced protective effects. Among fractions, the
non-coloured was more effective than the other ones, revealing increments on cells viability
of 19.04% (after 24 h of exposure), comparatively with 6 h of treatment with the same
concentration. On the other hand, a slight reduction in cells viability was observed after
24 h of exposure with the coloured fraction and total extract (viability of 69.31 and 74.95%
against 73.34 and 76.89%, respectively, obtained after 6 h of treatment (concentration of
100 µg/mL). This reduction was not surprising and can be associated with the presence
of anthocyanins, whose pro-oxidant behaviour and easy capacity to be transformed into
radicals were already known [61,62].



Foods 2021, 10, 2623 13 of 21Foods 2021, 10, x FOR PEER REVIEW 14 of 22  

 

 
Figure 7. Viability of HepG2 cells assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) re-
duction and lactate dehydrogenase (LDH) leakage assays. Cells were pre-treated for 24 h with each extract and then in-
cubated with 200 µM of hydrogen peroxide (H2O2) for further 6, 12 and 24 h. Values show mean ± SEM of six independent 
assays performed in triplicate (* p < 0.05, ** p < 0.01 and # p < 0.0001 compared to the respective control without H2O2). 

 
Figure 8. Nitric oxide (NO) levels in HepG2 cells pre-treated for 24 h with each extract and then 
incubated with 1 mM (A–C) and 2 mM (D–F) of sodium nitroprusside for further 24, 48 and 72 h. 

Figure 7. Viability of HepG2 cells assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) reduction and lactate dehydrogenase (LDH) leakage assays. Cells were pre-treated
for 24 h with each extract and then incubated with 200 µM of hydrogen peroxide (H2O2) for further 6,
12 and 24 h. Values show mean ± SEM of six independent assays performed in triplicate (* p < 0.05,
** p < 0.01 and # p < 0.0001 compared to the respective control without H2O2).

Additionally, we also assessed the ability of each fraction and total extract to quench
NO. These radicals are extremely reactive with other pro-oxidant species, causing severe
damage in cells membrane. The generation of these radicals was promoted by SNP [29].

Firstly, and in order to understand the possible protective effects of the tested concen-
trations, cells were treated with each fraction or total extract for 24 h and then subjected to
SNP-induced toxicity at concentrations of 0.5, 1, 1.5 and 2 mM for 24 h (Figure S1). Once
all concentrations of each fraction showed protective effects, we decided to evaluate their
NO scavenging capacity in cell culture medium, at different times (24, 48 and 72 h) and
SNP concentrations (1 and 2 mM). As expected, all fractions showed the capacity to reduce
NO levels in a dose- and time-dependent manner (Figure 8A–F). In the majority of the
conditions, the scavenging activity was more marked using 2 mM of SNP, and the highest
concentration tested (100 µg/mL) in all fractions was the most effective to scavenging NO
in cells medium. Moreover, a significant reduction in NO levels was observed between 24
and 48 h of SNP exposure, independently of its concentration, being similar between 48 and
72 h. Even so, a notorious reduction was verified using the coloured fraction after 48 h of
exposure, with 2 mM SNP (NO reduction of 54.64% vs positive control). However, and in
accordance with the findings obtained in the previous assay with H2O2, it was also verified
pro-oxidant effects on fractions with anthocyanins, i.e., total extract and coloured fraction,
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resulting in NO levels increments of around 4% after 72 h of exposure comparatively with
those verified at 48 h. This happens due to the oxidation generated by H2O2, which in turn,
results in the formation of superoxide radicals and H2O2 species [63,64].
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Figure 8. Nitric oxide (NO) levels in HepG2 cells pre-treated for 24 h with each extract and then
incubated with 1 mM (A–C) and 2 mM (D–F) of sodium nitroprusside for further 24, 48 and 72 h.
Values show mean ± SEM of five independent assays performed in triplicate compared to the
respective control (* p < 0.05, ** p < 0.01 and # p < 0.0001).

This reduction in NO levels can be due to the capacity of phenolic-enriched fractions
from sweet cherries to modulate iNOS and/or the ability to scavenge NO (antioxidant
effect), we decided to investigate if a process of direct NO scavenging could be taken
place, also contributing to diminishing NO levels in the cellular assay. For this reason, two
different assays were executed. The first one was a cell-free assay based on NO scavenging
capacity, using the same concentrations studied in the cell system. Once again, SNP was
utilized as NO donor.

3.4. NO Scavenging Activity

Overall, all fractions displayed a moderate ability to capture NO (Figure S2). Even so,
the coloured fraction was the most active, leading to a reduction of 38.93% in NO levels
vs control at the highest concentration tested (100 µg/mL), followed by the total extract
(−22.22%) and non-coloured fraction (−11.55%). At the same time, we decided to perform
molecular docking studies.

3.5. Rule of Five (Ro5)

Before performing docking, it is important to note that some authors refer caution in
using it to design efficient drugs and appeal to its use together with other computation
studies, such as Lipinski´s rule of five [65,66]. Therefore, Lipinski’s rule of five (Ro5) of
the docking compounds calculated on the SWISSADME predictor was firstly performed,
and the obtained results are shown in Table 1. Four of the eight compounds studied
complied with Lipinski’s rule of five, presenting a good gastrointestinal diffusion and
absorption capacity [67]. However, some drugs, although violating the rule of 5, present
a good gastrointestinal permeability [68]. This fact is due to issues of permeability and
extensive metabolization along the gastrointestinal tract, which, in turn, enhances their
absorption [67,68]. In accordance with the mentioned, several studies based on in vitro
and in vivo assays already demonstrated that phenolics present higher bioavailability than
expected, including those present in sweet cherries; for example, the bioavailability of
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phenolic acids varies between 8 and 72%, while that of flavonols from 12 to 41%, 2 to 8%
for flavan-3-ols, and between 20 and 55% for anthocyanins [69–71].

Table 1. Lipinski’s rule of five (RO5) of i-NOS ligands and molecular docking analysis of its against human self-inducible
nitric oxide synthase (2NSI).

Compound LogP (<5)
H Bond
Donor

(<5)

H Bond
Acceptor

(<10)
Violations Meet Ro5

Criteria

Binding
Energy

Value ∆G
(−kcal/mol)

Estimated
Ki (uM)

Ligand
Efficiency

3-O-Caffeoylquinic
acid −0.83 6 9 1 Yes −9.1 0.215 −0.36

Caffeic acid 0.25 3 4 0 Yes −6.8 10.800 −0.52

Cyanidin
3-O-glucoside −2.28 8 11 2 No −10.1 0.038 −0.32

Cyanidin
3-O-rutinoside −3.24 10 15 3 No −11.4 0.005 −0.27

Kaempferol
3-O-rutinoside −0.79 9 15 3 No −10.8 0.012 −0.26

p-Coumaric acid 1.02 2 3 0 Yes −7.1 0.006 −0.59

Quercetin 0.72 5 7 0 Yes −9.4 0.128 −0.43

Quercetin
3-O-glucoside −2.30 8 12 2 No −9.4 0.128 −0.28

3.6. Docking Results

The results obtained by computing docking using AMDocking [35] with AV [36]
show that some of the compounds used have binding energies highly compatible with
inhibition by competition with the active site of the i-NOS enzyme, namely cyanidin 3-O-
rutinoside (−11.4 kcal/mol), kaempferol 3-O-rutinoside (−10.8 kcal / mol) and cyanidin
3-O-glucoside (−10.1 kcal/mol) (Table 1). Likewise, these compounds are those that present
greater interaction surfaces with the active site (Figure 9). Even so, other compounds also
appear to have outstanding potentials, such as quercetin, that displayed a remarkable
interaction surface with computational values of binding energy ∆G of −9.4 kcal/mol
and concentrations inhibitory score of 0.128 nM. However, the three compounds that
had shown the best binding energy were those with the lowest inhibitory concentration
(estimated Ki): cyanidin 3-O-rutinoside (0.005 nM), kaempferol 3-O-rutinoside (0.012 nM),
cyanidin 3-O-glucoside (0.038 nM) and p-coumaric acid (0.006 nM). This last compound
also exhibited the highest ligand efficiency (−0.59), which was not surprising since this
parameter was higher in smaller size molecules.

In this regard and taking into account the depending on the nature of the molecule,
we observe all compounds present a similar interaction surface with the active site, with
similar morphology and variations in the potential of hydrogen bonds established with
the receptor (Figure 9A–H). Even so, according to the 2D receptor-ligand interaction
diagrams (Figure 9I–P), the residues PHE:369 and TRP:194 are those that have a more
determining role in the interaction with these compounds. Although other authors have
already highlighted that molecules with cis-fused rings have more notorious activity
against the active group, allowing them to internalize the active site [72]. In this study, the
compounds that exhibited the most complex 3D structures, given their rings arrangement
and substituents, were the ones that presented more complex interaction structures in the
active site with lower binding energies. This fact is closely related to the complexity of
the established surfaces. Additionally, it should be noted that some phenolic compounds
extracted from Polygonum orientale L., showed similar interaction values to those obtained
in this work, as was the case of quercetin (−9.41 vs. −9.40) [73].
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Given the obtained results, it was possible to conclude that the decrease of cellular NO
levels was due to a combination between the interaction of phenolics and iNOS together
with their ability to capture NO.

The obtained findings agree with previous studies [12,61,62]. In fact, enriched-
phenolic fractions already displayed the capacity to relieve oxidative stress [12]. These
abilities are due to their chemical structure, standing out their multiple hydroxyl groups,
which are responsible for neutralizing free radical species and chelate metals [74]. However,
sometimes, several substitutions by hydroxyl groups, namely in the B ring, can significantly
increase the pro-oxidant behaviour of flavonoids, which enhance cellular reactive species
concentrations and also intensify their cytotoxic levels, killing cancer cells [63,64,74]. Of
course, this pro-oxidant behaviour is also dependent on the concentration used [75]. There-
fore, the mentioned evidence explains the fact that the coloured fraction and total extract
slightly reduce their antioxidant potential in some induced-oxidative stress conditions at
the highest tested concentrations.
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3.7. Protective Effects of Sweet Cherry Fractions against Lipid Peroxidation and Ferric Species

Additionally, the capacity of phenolic-enriched fractions from sweet cherries to protect
homogenates of the porcine liver was also evaluated. As far as we know, this is the first
time that both assays were performed using liver tissues and phenolics extracted from
cherry fruits.

Therefore, lipid peroxidation was indirectly measured based on the capacity of the
extracts to inhibit the formation of thiobarbituric acid-reactive substances (TBARS). In
a general way, both fractions and total extract showed capacity to protect the porcine
liver against this damage (Figure 10A–C). Among fractions, the non-coloured was the
most effective, showing capacity to inhibit TBARS formation in a dose-dependent manner,
with inhibitory values ranging from 35.40 (6.25 µg/mL) to 58.87% (100 µg/mL). On the
other hand, the total extract diminished its antioxidant effects in the highest concentration
tested, i.e., 100 µg/mL, while the coloured fraction showed slight pro-oxidant effects
as the concentration increased. Once again, the pro-oxidant behaviour was predictable,
being mainly attributed to the presence of various hydroxyl groups on anthocyanins B
ring [61,63].
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performed in triplicate (# p < 0.0001 compared to the respective control).

Concerning the capacity of the phenolic-enriched fractions to capture ferric species,
the obtained results revealed that all fractions and total extract were able to scavenge ferric
species in a dose-dependent manner (Figure 10D–F). Contrary to lipid peroxidation, in this
assay, the coloured fraction was the one that showed the most notable capacity, with values
varying from 48.21 (6.25 µg/mL) to 63.82% (100 µg/mL), followed by the total extract
(53.06–59.38% reduction) and non-coloured fraction (52.47–61.38% reduction), respectively.

The obtained results were expectable, another evidence for the antioxidant potential
of phenolics, which is, in part, attributed to their chemical structure, standing out the
presence of hydroxyl and methoxy groups, and catechol residue, that easily donate neu-
tralise free radicals and oxidative species, and chelate metals [76]. In fact, both capacities
are not surprising, being in accordance with other studies [12,34,38,61]. For example,
Bastos et al. [38] already reported the capacity of hydromethanolic extracts of cherry fruits
to protect brain tissues from lipid peroxidation (IC50 value of 1.46 µg/mL). Furthermore,
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hydroethanolic extracts from vegetal parts, i.e., stems, leaves and flowers, of Prunus avium
also showed ability to protect human erythrocytes against TBARS, revealing IC50 values
of 26.20, 70.91 and 292.40 µg/mL, respectively [34]. As far as we know, and although
the capacity of several phenolics present in the fractions to capture ferric species was
already well-documented [64,77,78]. This is the first study regarding the ability of enriched
fractions from cherries to protect the liver from ferric species.

4. Conclusions

The present data bring a significant advantage and provides new insights regarding
the capacity of phenolic-enriched fractions from sweet cherries to defeat carcinogenesis
and metastasis of liver cancer cells and also to improve their redox state, diminishing
reactive and nitrogen species generation. This work is further evidence that sweet cherries
consumption should be encouraged and sustains their incorporation on dietary supple-
ments and pharmaceutical drugs. However, and considering the pro-oxidant effects of
anthocyanins, it is important to highlight that, in some situations of oxidative stress, the
use of extracts with a poor concentration of these compounds can be an added value.
Notwithstanding, in order to prevent the risk of toxic effects, animal and clinical trials
must be conducted to explore the full anti-cancer potential of sweet cherries and their
safe dosage.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/foods10112623/s1, Figure S1: Viability of HepG2 cells assessed by 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. Cells were pre-treated for 24 h with
each extract and then incubated with 0.5, 1, 1.5 and 2 mM of sodium nitroprusside dihydrate (SNP)
for 24 h. Values show mean ± SEM of six independent assays performed in triplicate (# p < 0.0001
compared to the respective control without SNP, Figure S2: Ability of phenolic-enriched fractions
from sweet cherries to scavenge nitric oxide radicals (NO) in cell-free assay. Data represent the mean
± SEM of three independent experiments performed in triplicate. ** p < 0.01, # p < 0.001 compared to
the respective control.
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