
Multiple Impacts of Energy Efficiency 
Technologies in Portugal 

Marcos Tenente, Carla Henriques, Álvaro Gomes, Patrícia Pereira da Silva, 
and António Trigo 

Abstract Portuguese programs aimed at fostering Energy Efficiency (EE) measures 
often rely on cost–benefit approaches only considering the use phase and neglecting 
other potential impacts generated. Therefore, this work suggests a novel method-
ological framework by combining Hybrid Input–Output Lifecycle Analysis (HIO-
LCA) with the Portuguese seasonal method for computing the households’ energy 
needs. A holistic assessment of the energy, economic, environmental, and social 
impacts connected with the adoption of EE solutions is conducted aimed at supporting 
decision-makers (DMs) in the design of suitable funding policies. For this purpose, 
109,553 EE packages have been created by combining distinct thermal insulation 
options for roofs and façades, with the replacement of windows, also considering the 
use of space heating and cooling and domestic heating water systems. The findings 
indicate that it is possible to confirm that various energy efficiency packages can be 
used to achieve the best performance for most of the impacts considered. Specifically, 
savings-to-investment ratio (SIR), Greenhouse gases (GHG), and energy payback 
times (GPBT and EPBT) present the best performances for packages that exclusively 
employ extruded polystyrene (XPS) for roof insulation (packages 151 and 265). 
However, considering the remaining impacts created by the investment in energy
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efficiency measures, their best performances are obtained when roof and façades 
insulation is combined with the use of space heating and cooling and DHW systems 
to replace the existing equipment. If biomass is assumed to be carbon–neutral, solu-
tion 18,254 yields the greatest reduction in GHG emissions. Given these trade-offs, 
it is evident that multiobjective optimization methods employing the impacts and 
benefits assessed are crucial for helping DMs design future EE programs following 
their preferences. 

Keywords Energy efficiency · Hybrid input–output lifecycle analysis ·Multiple 
benefits 

1 Introduction 

Considering the current energy standards, 75% of the European Union (EU) buildings 
are inefficient and more than 85% of these will still be operating in 2050. Additionally, 
the building sector accounts for about 40% of energy consumption and 36% of GHG 
emissions in the EU. Therefore, in the scope of EU long-term strategy of carbon 
neutrality by 2050, was recognized the need of accelerating the renovation rate of the 
European buildings to reach a carbon–neutral competitive economy and promoting 
growth and job creation (European Commission, 2019; 2021). 

In Portugal, the residential building stock presents a similar behavior being respon-
sible for more than 30% of final energy consumption, which increased by 1.6% 
during the period 2014–2019 (Energy Observatory, DGEG & ADENE, 2021). Also, 
about 66% of the Portuguese buildings were built before 1990, the year when EE 
requirements were introduced for new buildings and approximately one-third of the 
building stock built before 2012, reveals repair needs on the roof and exterior façades, 
leading to low energy performance levels, thus contributing to energy poverty, energy 
consumption and emissions generation (INE, 2012). To address the urgency of accel-
erating the buildings’ renovation, Portugal has been deploying several programs 
aimed at promoting EE growth in this sector of which we can highlight the energy 
efficiency Fund, the support program for more sustainable buildings and the energy 
consumption efficiency promotion plan (in Portuguese—PPEC) (Presidency of the 
Council of Ministers, 2013, 2020, 2021). However, the evaluation of the EE measures 
to be funded is usually grounded on cost–benefit bases, mainly accounting for energy 
and emission savings during the operation phase, thus neglecting other potential bene-
fits and impacts connected with all lifecycle (LC) phases of the measures selected. 
An example is that almost all the measures dedicated to promoting the EE in the resi-
dential sector, that are part of the Portuguese long-term strategy for the renovation of 
buildings, rely only on the assessment of costs and calculation of energy and emission 
savings during their operation phase (Presidency of the Council of Ministers, 2021). 
Nevertheless, the right assessment of the energy, economic, environmental, and social 
improvements of investing in EE should allow DMs to make well-grounded decisions 
when it comes to the choice of which EE measures should be funded in the residential
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sector. According to Reuter et al. (2020), a broader understanding of the attainable 
EE multiple benefits is necessary to facilitate the promotion of EE policies. This idea 
is in line with the European Renovation Wave establishing the need of using a better 
definition of the best criteria to be considered in the assessment of the energy-related 
savings in the new funding instruments. In this manner, one the objectives of the 
Recovery and Resilience Plan (RRP) is to improve the EE in residential buildings 
aiming at achieving the reduction of energy consumption and GHG emissions, the 
reduction of energy poverty, the improvement of indoor comfort and air quality and 
the creation of employment (European Commission, 2020; Ministry of Planning, 
2021; Presidency of the Council of Ministers, 2021). In addition, the investment in 
EE measures may produce benefits other than energy savings and emissions reduc-
tions, like poverty alleviation, industrial productivity and competitiveness, energy 
security, job creation, energy prices moderation and health and well-being related 
benefits (Ryan and Campbell, 2012). 

With the foregoing in mind, this work proposes a novel holistic approach that 
integrates a Hybrid Input–Output Lifecycle Analysis (HIO-LCA) framework with 
methods for calculating the energy performance of buildings (a seasonal method 
employed by the Portuguese building energy certification system), to evaluate the 
energy, economic, environmental, and social impacts and benefits of investing in 
EE solutions in the Portuguese residential sector generated throughout their LC 
assessment, thus helping DMs in the design of suitable EE funding policies. 

2 Literature Review 

As mentioned before, generally the operation is the only LC phase that is usually 
accounted for in the design of EE funding programs. However, when the nearly 
zero-energy buildings strategy is considered, the assessment of other lifecycle phases 
becomes even more important. Hence, other avenues of research addressing a broader 
range of impacts are required to support DMs in the design of suitable EE policies. In 
this context, the economic input–output LCA (EIO-LCA) makes it possible to assess 
the direct and indirect impacts of the entire economy connected to the production 
of a product or the provision of a service, avoiding the time-consuming and trunca-
tion problems inherent to the LCA approach. However, the EIO-LCA methodology 
is not free of limitations, as it can suffer from aggregation problems (Hendrickson 
et al., 1997; Suh, 2006; Crawford, 2009; Säynäjoki et al., 2017). In this context, 
an HIO-LCA framework should thus be used. This top-down approach pursues the 
simplification of LCA, extending conventional Input–Output (IO) matrices with envi-
ronmental, energy, social or economic impacts, accounting for the transactions of 
all activity sectors/ industries, implying that the boundary of the analysis becomes 
very broad and inclusive, and the circularity effects are also included (Hendrickson 
et al., 1998, 2006; Bilec et al., 2006; Strømman et al., 2009; De Carvalho et al. 2016; 
Singh et al., 2018a, b). Hybrid methodologies have been used in distinct contexts. 
For example, to assess the employment impacts of renewable energy technologies
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(Oliveira et al., 2014; Henriques et al., 2017), to assess the energy consumption and 
carbon emissions of a residential building during its lifetime (Zhan et al., 2018), 
or to compute of the embodied and operational energy of residential buildings in 
Lebanon (Stephan & Stephan, 2014). Nevertheless, the application of this sort of 
approach in the context of EE actions is not abundant, with only a few studies found 
in the literature. In this context can be mentioned the application of an energy and 
environmental extended EIO-LCA model to assess the benefits arising from the tax 
deduction for energy retrofit actions in the Italian building stock by Cellura et al. 
(2013), the assessment of the energy, economic, environmental, and social impacts 
of fostering the investment in electric energy-efficient appliances in India made by 
Singh et al. (2018a, b), which were later on combined with multiobjective interval 
portfolio theory in Singh et al. (2019) to support public DMs on the design of EE 
investment programs regarding different investment strategies. In the field of EE in 
the Portuguese residential sector, different types of studies have been conducted over 
the past few years by Asadi et al. (2012), Oliveira et al. (2014), Tadeu et al. (2018) 
and Henriques et al. (2020), although the impacts, the technologies and/or LC phases 
considered present some gaps that are intended to be fulfilled with this work. 

This paper is organized as follows: in the next section, we describe the method-
ological framework proposed. Subsequently, some illustrative results are discussed. 
Finally, some conclusions are drawn, and future work developments are suggested. 

3 Methodology 

The analysis starts with the identification of retrofit technologies generally employed 
in the Portuguese residential sector—also known as “business as usual”. Subse-
quently, the corresponding best EE available technologies were chosen by analyzing 
several existing funding schemes (i.e., PPEC and LTRS PT). The manufacture, pack-
aging, installation, and maintenance (MPIM) phases of the selected measures are then 
evaluated through the HIO-LCA approach, which combines Portuguese Supply and 
Use Tables (SUT) for the year 2017 at basic prices with impact data (INE, 2017, 
2019; OECD, 2017; Oliveira et al., 2014). To calculate the multiplier effects of 
each activity or component (the matrices of direct and indirect coefficients) for the 
chosen energy, economic, environmental, and social indicators, the total output of 
each relevant activity or component of the technologies under analysis is linked to 
the corresponding product using the adjusted rectangular IO table. The retrofitting 
strategies considered in this case study involve the application of six types of insu-
lation systems to the roofs and façades, with five different thicknesses, the replace-
ment of the single-glazed aluminum frame windows with double-glazed aluminum 
or PVC frame windows combined with ten types of space heating and cooling and 
DHW appliances (see Table 1). The thickness of the insulation measures consid-
ered in this study did not exceed 120 mm, since there is a lack of available data 
for higher thicknesses and because this value meets and even exceeds the minimum 
energy requirements set out by the Energy Performance Regulation of Residential 
Buildings (Ministry of Economy & Employment, 2013).
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Then, using the seasonal method employed by the Portuguese building energy 
certification system (Decree-Law 101-D/2020), the annual households’ energy 
requirements for space heating and cooling and DHW are calculated, before and 
after the interventions on the building envelope. Those needs will be later used 
to assess the impacts linked to the operation phase of the building. The impacts 
obtained with this approach were the total primary energy savings (TPES) and the 
energy payback time (EPBT)—as energy-related impacts; employment and gross 
value added (GVA) produced during the MPIM phases, savings to investment ratio 
(SIR) and net present value (NPV)—a proxy of the economic impacts; greenhouse 
gases (GHG) savings and GHG Payback Time (GPBT)—as environmental impacts 
and impact on the household budget and reduction of premature deaths—as social 
impacts. The schematic representation of the methodological approach’s implemen-
tation proposed is presented in Fig. 1. To simulate the impacts of the EE measures 
adopted, a single dwelling T2, located in Coimbra, built between 1961 and 1991, was 
chosen as a reference scenario. Regarding the characterization of the constructive 
solutions, this building does not have insulation on the roof and façades and single-
glazed aluminum frame windows are applied in its envelopment, also uses electric 
heaters for space heating and gas-fired water heater for DHW, while space cooling 
is guaranteed by natural ventilation. 

The remaining characteristics of the building can be found in Pinto and Fragoso 
(2018) and Tenente et al. (2021). 

In this work, the combined implementation of EE efficiency measures is preferred 
over the application of single ones, for the sake of the maximization of the energy 
savings of a building as well as the minimization of the costs linked to the installation 
phase. For example, if insulation is applied to the roofs and façades the energy savings 
are not the same as the sum of both individual measures and the operational costs 
would be significantly reduced, since the work could be done sequentially using just 
a part of the resources. With the foregoing in mind, the construction of different 
EE packages raises the problem of finding a common lifespan for each technology 
considered to compute the NPV, SIR, GPBT, and EPBT, for the reason that the

Fig. 1 Schematic representation of the methodological approach. Source Authors’ own elaboration 
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lifespan of the insulation measures (50 years) and that of the space heating and cooling 
and DHW systems (12 to 25 years) do not match, thus being impractical to extend the 
analysis period to the full life of the efficiency resources being analyzed. On the other 
hand, if the lifespan of the building was considered, some of the technologies would 
have to be replaced before, leading to bias in the study. Therefore, the alternative to 
computing the NPV and SIR is to depreciate the costs of the technologies over their 
lifespan and to compute the GPBT and EPBT by annualizing the embodied energy 
(Woolf et al., 2017). It is important to note that the combination of individual EE 
measures considered led to the construction of new 109,553 packages which will be 
later compared with our reference scenario in the results section. 

Rectangular Input–Output model 

Originally developed by Wassily Leontief, IO analysis allows to compute the embodi-
ments of production factors (e.g. labor and energy) and pollutants (e.g. CO2 emissions 
and waste), per unit of final consumption of commodities, by obtaining the total factor 
multipliers using IO tables that can be obtainable in diverse structures, according to 
three main criteria (Miller & Blair, 2009; Sargento et al., 2011): (1) symmetric or 
rectangular format; (2) total or domestic-use flows; (3) valuation prices (basic prices 
or purchasers’ prices). Rectangular tables at purchaser’s prices (in particular, the SUT 
framework) were firstly introduced by the European System of Accounts (ESA) in 
1995, having the ability to consider both the primary and secondary commodities 
of each industrial sector (Horowitz & Planting, 2006). The Supply/Make matrix is 
of industry-by-commodity type, giving information on the industrial production of 
commodities. On the other hand, the Use matrix is of commodity-by-industry type, 
providing information on the commodities consumed by industries and final users. 
This format is called rectangular, because the number of commodities included in 
the model may be higher than the number of industries (Miller & Blair, 2009). Since 
the SUT framework requires either the consideration of industry or product tech-
nology assumption, this work used the industry technology assumption due to the 
input structure of an industry that remains unchanged regardless of its product mix, 
meaning that the technology assigned to the production of secondary products of an 
industry depends on the industry where it is produced (Miller & Blair, 2009; Raa  &  
Rueda-Cantuche, 2007). 

To start this approach each element of the use table (ui j  ) is divided by the total 
output of industry j (gi ) and each element of the supply table (mi j ) is divided by the 
total demand of product i (qi ), to obtain the partitioned matrix D: 

D =
[
0 Q 
S 0

]
, where each element of Q is given by ui j  

g j 
and each element of S is 

obtained by mi j  

q j 
. 

From D, considering the final demand aggregated into a single vector and then 
employing the general formulas for computing the inverse matrix it is possible to 
obtain the expression (1) (for further details see Miller & Blair, 2009).
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[
I −Q 
−S I

]−1 

=
[
(I − QS)−1 (I − QS)−1 Q 
S(I − QS)−1 I + S(I − QS)−1 Q

]
(1) 

From the rectangular IO model, it is possible to derive the expression (3) which 
is analogous to the Leontief inverse matrix, delivering an industry-by-commodity 
total requirements table, representing the total (direct and indirect) variation of each 
impact considered from industry j caused by the variation of one unit of final demand 
of commodity i (Miller & Blair, 2009; Locker et al. 2009). First, it is necessary to 
calculate the direct impact coefficients R, where each element,rk j  , is the amount 
of impact k produced per monetary unit of industry j’s output (Hendrickson et al., 
1998, 2006; Marques et al., 2006). Hence, the level of impacts associated with a 
given vector of total outputs is expressed in the expression (2) where r is the vector 
of impact levels: 

r = Rx (2) 

Consequently, when parameter xi in Eq. (2) is replaced by the equation presented 
on the inferior left side of (1) it is obtained: 

r = R[
S(I − QS)−1] y (3) 

In the assessment of the domestic impacts directly linked to each LC phase, the 
SUT format at basic prices was used, removing the imports. 

4 Results 

In this section, the main results found are presented in Tables 2 and 3 and discussed 
hereafter.

In this section, the main results found are presented in Tables 2 and 3 and discussed 
hereafter. 

Starting with the performance of our reference building, its annual total primary 
energy consumption (TPEC) can go up to 0.15 TJ, the GHG emissions can achieve 
5.24 tonnes of CO2eq, the costs related to energy supply and environmental impacts, 
exempted of taxes can reach 1937e, the household energy bill can attain 3722e, and 
the potential number of premature deaths caused by particulate matter emissions can 
achieve about 6.48E-09. Regarding GVA and employment impacts created during 
the MPIM phases, since none of the business as usual (BAU) technologies in place 
will be produced again to be part of the energy efficiency packages, their value is 
null. 

According to our analysis, results show that the solutions which exclusively 
employ extruded polystyrene (XPS) for roof insulation present the highest SIR and 
the lowest GPBT and EPBT. Package nº 151, which only adds 40 mm of thickness’
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XPS, allows the annual savings to exceed the annualized investment 23.83 times, 
while package 265, which only adds XPS with 60 mm of thickness, minimizes the 
time needed to recover the embodied energy and GHG emissions in the MPIM phases, 
up to 0.185 days and 0.327 days, respectively. Regarding packages that combine roof 
and façades insulation with space heating and cooling and DHW systems, package 
10,965 composed of XPS with 80 mm of thickness for roof and façades insulation 
and a heat pump for replacing the electric heater for space heating is the solution 
with the highest annualized NPV that can go up to 1301.00e. Solution 18,150 allows 
reducing up to 65.23% of the potential number of premature deaths and consists in 
adding XPS with 120 mm and 100 mm of thickness to the façades and roof, respec-
tively, by a heat pump to replace the electric heater and by an electric water heater 
to substitute the gas-fired water heater. The solution that maximizes the household 
budget is package 18,331 composed of XPS with 120 mm of thickness for insulation 
of roof and façades, double-glazed PVC frame windows to replace the single-glazed 
aluminum windows in use, and a biomass boiler for space heating and DHW. This 
solution allows for increasing the budget of a family in the poverty risk threshold 
by up to 31%. Package 18,335 made of XPS with 120 mm of thickness for insula-
tion of roof and façades, double-glazed PVC frame windows, and a heat pump for 
space heating and cooling and DHW, is the solution that reaches the highest energy 
savings of about 0.1350 TJ. Package 91,257, which includes adding insulation cork 
board (ICB) with a thickness of 120 mm for roof and façade insulation and a heat 
pump for space heating and cooling as well as DHW, is the greatest way to increase 
economic and labor benefits. With this method, 0.00997 annualized full-time equiv-
alent employment can be produced in the MPIM stages, and the GVA can increase to 
402.00e. Finally, the package that maximizes the GHG savings (4.64 tons of CO2eq) 
is the 18,339 composed of XPS with 120 mm of thickness for insulation of roof and 
façades, double-glazed PVC frame windows, and a heat pump for space heating and 
cooling and a DHW heat pump for DHW. 

After describing the best performances in each impact attained by the packages 
considered is important for the DMs to understand that trade-offs are always needed 
for selecting the best EE solutions to be funded. Therefore, taking into account the 
annualized SIR of the remaining packages this value varies from 1.15 to 20.68. 
In terms of TPES and GHG savings, the variation of these impacts can range 
from 0.0537 TJ to 0.1348 TJ, and from 1.81 tonnes of CO2eq to 4.62 tonnes of 
CO2eq, respectively. This results in an EPBT that can range from 0.190 to 7.32 days 
and a GPBT that can range from 0.335 to 17.21 days. The annualized NPV can 
change between 226.45e and 1196.60e. During the MPIM phases, the employment 
and GVA creation values per year of the technologies’ lifespan can range between 
0.000198 and 0.00696, or 5.76e and 244.00e, respectively. By using packages 151, 
265, and 10,965, the potential number of premature deaths can be decreased by 
32.61, 35.58, and 23.41%, whereas packages 18,331, 18,335, 91,257, 18,339, and 
18,254 will result in an increase of up to 4119.57%, 63.20%, 96.75%, 16.38%, and 
5773.64%, respectively. Finally, using packages 18,335, 91,257, 18,339, and 18,254, 
the household budget can increase by up to 30%.
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If carbon-neutrality of biomass is considered the solution that allows achieving the 
highest GHG savings, changes from package 18,339 to package 18,254 composed of 
XPS with 120 mm of thickness for insulation of roof and façades, double-glazed PVC 
frame windows, and a biomass boiler for space heating and DHW. This solution can 
maximize the GHG savings by up to 5.08 tons of CO2eq. Additionally, in package 
18,331 GHG emissions and the annualized GPBT decrease by 2.17 tons of CO2eq 
and about 9 days, respectively, while SIR can increase up to 0.14 and NPV reach 
91.20e. 

The findings show that the methodology outlined in this study should be supported 
in the decision-making process for the funding of EE measures because it allows for 
the development of a comprehensive evaluation of the impacts of investing in the tech-
nologies being examined, integrating the manufacturing, packaging, installation, and 
maintenance phases with the operation phase. Another benefit of this methodology 
is its ability to interact with different methodologies for assessing the energy needs 
of buildings, such as the seasonal approach employed in this study or the dynamic 
simulation method. In addition to energy savings and GHG emissions, the use of IO 
methodologies also enables the examination of several other impacts and benefits 
that are crucial for decision-making when designing new programs to finance EE. 

5 Conclusions and Further Research 

This paper presents a novel methodological approach that integrates an HIO-LCA 
framework with the Portuguese seasonal method employed by the Portuguese 
building energy certification system for calculating the energy performance of build-
ings, to evaluate the energy, economic, environmental, and social benefits/impacts of 
investing in distinct EE packages in the Portuguese residential sector. These packages 
have been created through the combination of thermal insulation options for roofs 
and façades, with the replacement of windows, also considering the use of space 
heating and cooling and DHW systems using a solar collector as a backup. Through 
this methodology different lifecycle phases are considered, in addition to operation, 
the SUT structure is employed instead of the symmetric format for reasons of more 
comprehensiveness, and DMs are supported to design suitable EE funding policies. 
This methodology was tested using the characteristics of a T2 single dwelling built 
between 1961 and 1991, located in Coimbra. 

Our findings suggest that package 151 presents the highest SIR; package 265 
minimizes the EPBT and GPBT; package 91,257 is the best solution to increase the 
economic and labor benefits; package 18,339 is the “cleanest” one; package 10,965 
has the highest annualized NPV; package 18,331 maximizes the household budget 
of a family under poverty risk; package 18,150 has the highest potential to reduce 
premature deaths, and solution 18,335 reaches the highest energy savings. If carbon-
neutrality is assumed for biomass, the minimization of GHG savings is obtained with 
solution 18,254.
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Given these trade-offs, it is evident that multiobjective optimization methods that 
incorporate the impacts and benefits assessed by the methodology described in this 
study are essential for assisting DMs in modeling different investment strategies and 
designing future EE programs that reflect their preferences. Further research is also 
expected to cover the assessment of other Portuguese locations, other sorts of impacts 
(i.e., on public budget and energy poverty), and the consideration of the end-of-life 
phase. 
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