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Abstract: As part of the biomimetic enzyme field, nanomaterial-based artificial enzymes, or nanozymes,
have been recognized as highly stable and low-cost alternatives to their natural counterparts. The
discovery of enzyme-like activities in nanomaterials triggered a broad range of designs with various
composition, size, and shape. An overview of the properties of nanozymes is given, including some
examples of enzyme mimics for multiple biosensing approaches. The limitations of nanozymes regard-
ing lack of selectivity and low catalytic efficiency may be surpassed by their easy surface modification,
and it is possible to tune specific properties. From this perspective, molecularly imprinted polymers
have been successfully combined with nanozymes as biomimetic receptors conferring selectivity and
improving catalytic performance. Compelling works on constructing imprinted polymer layers on
nanozymes to achieve enhanced catalytic efficiency and selective recognition, requisites for broad
implementation in biosensing devices, are reviewed. Multimodal biomimetic enzyme-like biosensing
platforms can offer additional advantages concerning responsiveness to different microenvironments
and external stimuli. Ultimately, progress in biomimetic imprinted nanozymes may open new horizons
in a wide range of biosensing applications.

Keywords: molecular imprinting technology; nanozymes; enzyme-like activity; biosensing; biomimetics

1. Introduction

Enzymes are unique natural catalysts with outstanding efficiency and substrate speci-
ficity. Their use in bioanalytical methods, e.g., glucose oxidase (GOx) for glucose detection
and horseradish peroxidase (HRP) for enzyme-linked immunosorbent assay (ELISA), is ex-
tensive, as it has always attracted research due to their tremendous potential [1]. However,
natural enzymes have limiting features linked to easy denaturation, and limited tempera-
ture and pH ranges for optimal activity, hampering many of the foreseen applications [1,2].
The disadvantages related to poor stability and reusability, along with high costs for prepa-
ration and purification, have led to efforts in designing synthetic mimics [3]. The research
in this field spreads from semisynthetic approaches (e.g., genetic modification of natural en-
zymes) to artificial systems (e.g., cyclodextrins, metal complexes, porphyrins, dendrimers,
polymers) [2,4]. These biomimetic materials are characterized by unique features and have
several advantages compared with natural enzymes. The artificial enzymes are low-cost,
have easy mass production, high stability (especially at high temperature), and long-term
storage feasibility [4]. The progress in the field of nanomaterial-based artificial enzymes
or nanozymes has been fast since the first discovery of the unexpected peroxidase-like
activity of ferromagnetic nanoparticles [5]. Thus, nanozymes are considered alternatives
to natural enzymes and the prospective biomedical applications are vast, ranging from
disease diagnostic and imaging to therapeutics [6,7]. Considering biosensing devices and
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the current technological advances, synergistic effects are expected to achieve ultrasensitive
methods, such as colorimetric, fluorometric, chemiluminescent, surface-enhanced Raman
scattering, and electrochemical [7,8], with special emphasis on the electrochemical-based
devices, which offer great advantages in terms of portability and feasibility of point-of-care
use. Despite these enthusiastic perspectives, poor substrate selectivity, low efficiency and
limited catalytic types are challenges to be tackled. In a biomimetic convergence, molec-
ularly imprinted polymers (MIPs) are synthetic highly selective receptors, which have
been integrated with nanozymes to improve the desired features, with special outcomes
for sensor design. The current review starts by providing an overview on the composi-
tion, enzyme-like activities for signal production, and ability to tune the properties of
nanozymes. It is followed by addressing the bases of MIP technology, fabrication methods,
and function as synthetic catalysts. Finally, emphasis is given to the most recent progress
on creating MIPs on nanozymes along with detection systems, and the future perspectives
of this exciting field of research are summed up to conclude.

2. Design of nanozymes

As natural enzymes are efficient biocatalysts, there has always been great interest in
mimicking the proven high substrate specificity and superior catalytic activities. Moreover,
the development of synthetic approaches could overcome the disadvantages of natural
enzymes related to high-cost preparation and purification, low stability, and difficulties in
storage and reuse [1,3]. Thus, allied with advances in nano- and biotechnology, artificial
enzyme mimics have been extensively studied [7,9].

The term “nanozyme” appeared for the first time in a work by Scrimin, Pasquato, and
co-workers in 2004 to describe the excellent catalytic properties of a multivalent system
comprising ligand-functionalized thiols on Au nanoparticles (NPs) [10]. Since the notable
discovery of the intrinsic catalytic activity of magnetic Fe3O4 NPs as peroxidase in 2007,
nanozymes refer to nanomaterials with enzyme-like characteristics [5,9]. The field has been
expanding quickly and nanomaterials with enzyme-mimicking activities, like Au NPs,
Fe3O4 NPs, fullerene derivatives, among many others, have attracted great interest and led
to important benchmarks [9,11] (Figure 1).
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Figure 1. Timeline highlighting relevant historical benchmarks of nanozyme development. (Reproduced with permission [9],
Copyright 2019, The Royal Society of Chemistry).

Nanomaterials as enzyme mimics present many advantages in comparison with nat-
ural enzymes. Either as single or multi-components like composites or doped materials,
nanozymes have high surface-to-volume ratio, tunable catalytic activity, and plenty of
surface reactive species [4,12]. These features are combined with cheaper and simpler man-
ufacturing processes, long-term stability, and robustness to harsh environments. However,
some other traits are not so favorable, such as toxicity in biological systems and lack of
selectivity, and the catalytic activities of most nanozymes is still low, which may limit the
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range of applications. Thus, nanozymes as artificial catalysts are a likely choice, but the
field still faces many challenges (Figure 2).
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2.1. Classification and Enzyme-Like Activities

Regarding artificial enzyme mimics, several nanomaterials with inherent catalytic activity
have been studied as highly stable and low-cost approaches. These nanomaterials can be
categorized in main groups regarding their composition, namely into metal, metal oxide,
carbon-based materials, and their hybrids [13]. A variety of nanomaterials has been studied
as artificial enzyme mimics, including CeO2 NPs, Fe3O4 NPs, Pt nanomaterials, Au NPs,
bimetal and trimetal NPs, graphene oxide, carbon nanotubes, fullerene derivates, quantum
dots, metal organic frameworks (MOFs) as some common examples [3,7,14–16] (Figure 3).

The discovered nanozymes so far can broadly function as oxidoreductases, namely as
peroxidase, oxidase, superoxide dismutase (SOD), and catalase mimics [9]. Other enzyme-
like activities by carbon-based materials, Zr- and Cu-based MOFs and Au NPs modified
with catalytic monolayers have also been reported, namely, hydrolase activity, which
catalyzes chemical bond hydrolysis (e.g., nuclease, esterase, phosphatase, protease, and
silicatein) [7,9]. Laccase-like activity has been demonstrated in Cu-based MOFs based on
guanosine monophosphate coordinated copper [17]. Multi-nanozymes where two or more
types of enzymes are mimicked can also be observed in some nanomaterials like Au, Pt,
and CeO2 [9,18,19]. These capabilities can be expanded by using bimetallic NPs that can
achieve not only single- but also multiple-enzyme mimicking, or nanocomposites to benefit
from their synergistic effects and enhanced catalytic performance [20,21] (Figure 3).
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Peroxidases, such as HRP, are widely used in biosensor devices and they catalyze the
oxidation of substrates by a peroxide, such as H2O2. After finding the novel properties
of Fe3O4 magnetic NPs, their peroxidase-like activity was used in the detection of H2O2
and glucose [22]. The nanozyme catalyzed the oxidation of the substrate 2,2′-azino-bis(3-
ethylbenzothiazoline-6-sulfonic acid)-diammonium salt (ABTS) by H2O2 to the oxidized
colored product. Moreover, by combining this reaction with the catalytic oxidation of
glucose by using GOx, it was possible to develop a colorimetric assay for glucose detec-
tion [22]. Since then, the field has evolved rapidly and metals, metal oxides, MOFs and
carbon-based nanomaterials have been studied as peroxidase-like mimics [23,24]. In a
work by Cui et al., 2015, a simple colorimetric biosensing platform was proposed based
on growing Prussian blue (PB) on the microporous MOF MIL-101(Fe), forming uniform
octahedral nanostructures with highly efficient catalytic activity for H2O2 [23]. PB crys-
tals are made of iron ions coordinated by CN bridges, possess a high surface area, also
exhibiting intrinsic high peroxidase-like activity. Moreover, the outer surfaces of these
PB/MIL-101(Fe) nanostructures were successfully modified, rendering them biocompatible
while maintaining their activity [23] (Figure 4). Another interesting example was the appli-
cation of a peroxidase-like activity to successfully detect thrombin in plasma by preparing
a fibrinogen-modified bismuth-gold (Fib-Bi-Au) NPs [25]. The Fib-Bi-Au NPs catalyzed
the oxidation of Amplex Red in the presence of H2O2, and this simple fluorescence-based
assay enabled detecting thrombin with limit of detection of 2.5 pmol L−1 and revealing
a promising clinical application [25] (Figure 5A). The majority of nanozymes applied in
detection exhibit peroxidase-like activity; thus, numerous examples are found in the litera-
ture with a broad range of nanomaterials [7,26]. Recently, a covalent organic framework
(COF) nanozyme has been developed by incorporating an iron porphyrin unit in the COF
backbone as the active center and L-histidine as the substrate binding site for selective
chiral recognition. The peroxidase-like activity was shown to be enantioselective and with
higher activity than the natural HRP, while both the activity and selectivity can be easily
modulated by changing the doped amino acids and their content [27].
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Figure 4. Characterization by TEM (a,b) and SEM (c,d) of microporous MOF MIL-101(Fe) as-prepared
(a,c) and after introducing Prussian blue, PB/MIL-101(Fe) (b,d), as highly efficient peroxidase-like
mimics, and scheme illustrating the synthesis of PB/MIL-101(Fe) (e) (Reproduced with permis-
sion [23] Copyright 2015, The Royal Society of Chemistry).

Oxidase-like nanozymes are those that catalyze the oxidation of substrates with
molecular oxygen. Natural enzymes are usually selective for a given substrate, hence their
names such as GOx. Nanomaterials such as Au NPs, MnO2, or CeO2 exhibit oxidase-like
activity, but they lack selectivity to a given substrate [9,28,29]. Still, oxidase-like nanozymes
are integrated in sensors with proper coupling to biomolecules pertaining to the target.
For instance, a colorimetric sensor for mercury ions and DNA molecules relied on the
oxidase-like activity of bovine serum albumin-protected silver clusters (BSA-Ag NCs).
This activity was stimulated by mercury showing high catalytic activity towards 3,3′,5,5′-
tetramethylbenzidine (TMB), in a “switched-on” state [30]. Moreover, as mercury ions are
known to bind with two DNA thymine bases, forming base pairs, the sensor could detect
DNA molecules. A hairpin structure containing mercury ions was disrupted in the presence
of the target DNA, releasing the ions that switched on the oxidase mimicking activity of
BSA-Ag NCs. The target DNA could be detected as low as 10 nmol L−1, with a linear
range from 30 to 225 nmol L−1 [30] (Figure 5B). In a recent work, the oxidase-like activity
of Cu/Co bimetallic MOF functionalized with an aptamer was used to detect a protein
on the surface of exosomes [31]. The prepared CuCo2O4 nanorods were surface-modified
with CD63 aptamers resulting in catalysis inhibition. The aptamers disassembled upon
exosome recognition originating a recovery of the oxidase-like activity. This colorimetric
method enabled the detection of exosomes in a range of 5.6 × 104 to 8.9 × 105 particles
µL−1, with a detection limit of 4.5 × 103 particles µL−1 [31] (Figure 6).
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Figure 5. Nanozyme bioconjugates for sensing applications: (A) Scheme of bismuth-gold nanoparti-
cles preparation and peroxidase-like catalyzing mechanism for reaction with Amplex Red (AR) (a),
and further modification with fibrinogen as probe for detection of thrombin (b). (Reproduced with
permission [25] Copyright 2012, The Royal Society of Chemistry); (B) Colorimetric biosensor based
on oxidase-like activity of bovine serum albumin-protected silver clusters, which is switched on
selectively by mercury ions and applied to detect DNA. (Reproduced with permission [30], Copyright
2015, Elsevier B.V.)
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Both SOD and catalase enzymes are involved in protecting cells from oxidative dam-
age, and likewise to other enzyme mimics, CeO2, Au NPs, among other nanozymes, are
artificial alternatives with many potential therapeutic applications [13,32]. Because of
their antioxidant properties, many works study the potential benefits of nanozymes with
catalase and SOD activities for cell and tissue protection against oxidative stress, in cancer
therapy, and as anti-inflammatory and antibacterial agents [33,34].

2.2. Tuning Nanozymes Properties

The catalytic activity of nanozymes is related to the physicochemical properties of the
nanomaterials, mainly by their atomic composition, i.e., by atoms present both in the inside
core and on the surface [34]. Other factors that affect the enzymatic activity include size,
morphology, surface coating and modification, pH, and temperature [35,36]. As a result
of their large surface area that is easily modified by bioconjugation, it is possible to tune
some properties like size, shape, and composition, leading to final materials with improved
(or distinct) catalytic activities, robustness to changes in the microenvironment, and high
stability [8,37]. The fact that some nanomaterials also possess innate magnetic and optical
properties, like Fe3O4 and Au NPs, is seen as an additional gain to obtain multiple func-
tionalities that are highly valuable for bioaffinity separation or biosensing applications [38].

One of the major drawbacks of nanozymes is the lack of selective recognition of the
substrate in contrast to the corresponding natural enzymes. Thus, various methods have
been pursued to improve the selectivity of nanozymes. One approach has been to couple
peroxidase-like nanozymes with oxidases, producing H2O2 only in the presence of specific
substrates [39]. Surface modification with proper ligands or bioreceptors as antibodies,
aptamers, and oligonucleotides, through bioconjugation or physisorption, has also been
attempted [1] (Figure 3). In this context, the combination of nanozymes with MIPs has
opened a new avenue to overcome this technological challenge [36]. The area of biomimetic
catalysis is vast, and readers are referred to comprehensive literature reviews focusing on
types of nanomaterials, classification, catalytic mechanisms, activity, and applications of
nanozymes [6,7,9,11,33].

3. Molecular Imprinting Technology

Over the past decades, MIPs have proven excellent features in mimicking natural
recognition events for a myriad of applications. The most compelling examples concern
the replacement of natural antibodies in diagnostic-based immunoassays [40,41]. The
molecular imprinting technology has matured to the point of reaching similar or even
surpassing the required characteristics in terms of selectivity, robustness, and cost-effective
production without involving animal research [42]. Thus, the combination of “plastic”
molecular recognition with advances in sensor fabrication has been offering selective and
sensitive methods. These devices are promising for low-cost and rapid detection and
monitoring of biomarkers of disease (e.g., protein, nucleic acids, metabolites, virus) and
compounds of interest in environmental and food analysis [43]. Besides sensors [44],
MIPs have several applications, e.g., in drug delivery, tissue engineering, biocatalysis,
bioimaging, extraction, among others [45–47]. Given the known advantages of these
synthetic materials, research on building catalytic activity into MIPs has for long been
considered an exciting area [40].

3.1. MIPs Design

The general concept behind the molecular imprinting technology is to build a synthetic
polymer receptor via template-guided synthesis. In general, the typical steps for the
synthesis of MIP materials can be described as schematically represented in Figure 7. This
includes the following steps: (1) the template or print molecule is mixed with functional
monomers that get positioned spatially around the template and guide the assembly; (2) the
polymerization reaction creates a crosslinked matrix around the template; (3) the template
is removed from the polymer network leaving a complementary cavity that retains the
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spatial features, i.e., size and shape, and bonding preferences of the template; (4) the
imprinted polymer selectively rebinds the template from complex samples [48]. Different
interactions can be established between the template and functional monomers, namely,
noncovalent (e.g., hydrogen bonds, ionic interactions, and hydrophobic effects), covalent,
and semi-covalent bonding [42,48,49]. Owing to its versatility, the noncovalent approach
is the most widely applied method. The best conditions for MIP synthesis can be studied
by computational modelling and combinatorial methods [50,51]. Several parameters are
relevant to verify the recognition properties of the MIP and its successful application,
namely in sensors. Those include the adsorption capacity, imprinting factor, selectivity
factor, and response time [52,53].

Biosensors 2021, 11, x FOR PEER REVIEW 8 of 19 
 

 
Figure 7. Scheme of the principle of molecular imprinting recognition. 

Concerning the polymerization methods, different synthetic routes can be used for 
MIP preparation. The most widespread are free radical polymerization [54] and sol–gel 
process [55]. In free radical polymerization, it is possible to select among bulk polymeri-
zation (that includes mechanical grinding and sieving) and more complex techniques, for 
example, to originate particles (e.g., suspension, precipitation, emulsion, and seed 
polymerizations), which are also commonly used [56]. When MIPs are combined with 
electrochemical detection, electropolymerization is the preferred approach [44], with main 
advantages relating to direct formation of the polymer film on the surface of the trans-
ducer in a wide range of substrates [57–59] allowing the production of both conductive 
and nonconductive polymers [60]. Besides the mentioned methods for MIP synthesis, it is 
also possible to use other strategies for its production, such as surface imprinting, living 
polymerization, solid-phase MIP nanoparticles, and various novel technologies that have 
emerged [49,61]. The methods chosen for MIP production with desirable properties and 
the final configurations clearly depend on the target molecule (e.g., the whole target or a 
small fragment as an epitope, small, or large macromolecules) and application, also con-
sidering the costs and simplicity of the processes. MIPs is a thriving research subject and 
comprehensive reviews can be found in the literature covering methods of polymer fab-
rication and imprinting strategies, range of applications, and integration in biosensing de-
vices [43,46,56,62,63]. 

3.2. MIPs as Biomimetic Catalysts 
The first examples of imprinted polymers as artificial enzymes were reported in the 

late 1980s [2,41]. The ability to tailor the imprinted sites with functional groups, allied with 
the robustness and stability of polymer materials, led to considerable research efforts to 
expand the catalytic applications of MIPs. Many different approaches have been explored 
(e.g., (non)covalent imprinting, chemical reactions) and catalytic MIPs have been pre-
pared using analogues of substrates, transition states, or products as templates [64–68]. 
Since the first important developments, considerable advances in the field have allowed 
to prepare more flexible and adaptative structures [2,40]. 

Imprinted polymers have been combined with amino acids, peptides, metals, among 
others, in synergic strategies to realize the potential of artificial enzymes [69–71]. For ex-
ample, peroxidase mimics are useful in the detection of the relevant biomarker for tumor 
diagnostic 5-hydroxyindole-3-acetic acid (5-HIAA), which is an indoleamine metabolite 
and is simultaneously a substrate for peroxidase activity [72]. To this end, a multifunc-
tional MIP material was prepared as an artificial peroxidase enzyme. The MIP with hemin 
as catalytic center and 5-HIAA as template was obtained by fabricating a core-shell mag-
netic MIP and demonstrated selective oxidation of 5-HIAA. Then, the products of this 
oxidation were separated and detected by high-performance liquid chromatography 
(HPLC) to obtain a quantitative detection of 5-HIAA [72].  

In biomimetic catalysis, peptide-based enzyme mimicking is also of interest. Major 
advantages are related to the fact that the building blocks of peptides are amino acids that 
work as catalytic groups, assemble, and form supramolecular structures through non-

Figure 7. Scheme of the principle of molecular imprinting recognition.

Concerning the polymerization methods, different synthetic routes can be used for
MIP preparation. The most widespread are free radical polymerization [54] and sol–gel
process [55]. In free radical polymerization, it is possible to select among bulk polymer-
ization (that includes mechanical grinding and sieving) and more complex techniques,
for example, to originate particles (e.g., suspension, precipitation, emulsion, and seed
polymerizations), which are also commonly used [56]. When MIPs are combined with
electrochemical detection, electropolymerization is the preferred approach [44], with main
advantages relating to direct formation of the polymer film on the surface of the transducer
in a wide range of substrates [57–59] allowing the production of both conductive and
nonconductive polymers [60]. Besides the mentioned methods for MIP synthesis, it is
also possible to use other strategies for its production, such as surface imprinting, living
polymerization, solid-phase MIP nanoparticles, and various novel technologies that have
emerged [49,61]. The methods chosen for MIP production with desirable properties and
the final configurations clearly depend on the target molecule (e.g., the whole target or
a small fragment as an epitope, small, or large macromolecules) and application, also
considering the costs and simplicity of the processes. MIPs is a thriving research subject
and comprehensive reviews can be found in the literature covering methods of polymer
fabrication and imprinting strategies, range of applications, and integration in biosensing
devices [43,46,56,62,63].

3.2. MIPs as Biomimetic Catalysts

The first examples of imprinted polymers as artificial enzymes were reported in the
late 1980s [2,41]. The ability to tailor the imprinted sites with functional groups, allied with
the robustness and stability of polymer materials, led to considerable research efforts to
expand the catalytic applications of MIPs. Many different approaches have been explored
(e.g., (non)covalent imprinting, chemical reactions) and catalytic MIPs have been prepared
using analogues of substrates, transition states, or products as templates [64–68]. Since the
first important developments, considerable advances in the field have allowed to prepare
more flexible and adaptative structures [2,40].

Imprinted polymers have been combined with amino acids, peptides, metals, among
others, in synergic strategies to realize the potential of artificial enzymes [69–71]. For
example, peroxidase mimics are useful in the detection of the relevant biomarker for tumor
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diagnostic 5-hydroxyindole-3-acetic acid (5-HIAA), which is an indoleamine metabolite
and is simultaneously a substrate for peroxidase activity [72]. To this end, a multifunctional
MIP material was prepared as an artificial peroxidase enzyme. The MIP with hemin as
catalytic center and 5-HIAA as template was obtained by fabricating a core-shell magnetic
MIP and demonstrated selective oxidation of 5-HIAA. Then, the products of this oxidation
were separated and detected by high-performance liquid chromatography (HPLC) to
obtain a quantitative detection of 5-HIAA [72].

In biomimetic catalysis, peptide-based enzyme mimicking is also of interest. Major
advantages are related to the fact that the building blocks of peptides are amino acids
that work as catalytic groups, assemble, and form supramolecular structures through
noncovalent interactions, all traits of natural enzymes [73]. Based on this approach, many
artificial enzymes have been constructed, such as hydrolases, aldolase, oxidoreductase,
among others [73–75]. As for other synthetic alternatives, lower catalytic activity and
substrate specificity are still challenging, and molecular imprinting can contribute to
improving those features. By combining MIPs with peptide assemblies, interesting peptide-
based artificial enzymes have been developed. The peptide Fmoc-Phe-Phe-His (Fmoc-FFH)
forms stable nanofibers through self-assembly and has the catalytic activity of histidine [75].
Thus, when an MIP for the substrate p-nitrophenyl acetate is prepared on the surface of the
catalytic nanofibers, specific binding sites are provided for enhanced artificial hydrolase
activity. In addition, the catalytic ability was improved in a wider reaction temperature and
pH, and the catalyst was more easily recyclable owing to the introduction of the polymer
layer [75]. Another example is the work of Li et al., 2020, who developed a peroxidase-
like enzyme by the co-assembly of Hemin and Fmoc-FFH, combined with an imprinted
polymer of the substrate ABTS. Since the polymer components can be easily adjusted,
the addition of a cationic monomer further enhanced the catalytic activity because the
electrostatic interaction created a synergistic effect [73].

DNA oligonucleotides can also have functional properties, such as in molecular
recognition and catalysis, the latter known as DNAzymes [76]. Many peroxidase mimics are
DNA-based catalysts and oxidize common substrates like TMB and ABTS in the presence of
H2O2, which is of interest because colorimetric products enable the development of optical
sensors [77]. To improve the selectivity of a peroxidase-mimicking DNAzyme based on a
guanine-quadruplex (G4) DNA with a hemin cofactor, an MIP layer for proper substrates
was prepared. The DNAzyme incorporated into the MIP exhibited expected selectivity, as
well as enhanced stability (DNA degradation was reduced) and activity (higher than that
of free DNAzyme) [77,78]. A very promising application of these imprinted DNAzyme
nanogels is for biocatalysis inside cells and intracellular therapeutic applications. This
material was efficiently internalized, and the MIP was more effective inside cells than the
nonimprinted control, leading to the conclusion that the imprinted matrix was effective
when located intracellularly [78].

Molecular imprinting technology is extremely versatile as demonstrated by the possi-
bility of imprinting within the nanospace of doubly cross-linked micelles [79,80] (Figure 8).
In this method, the imprinting is confined within the boundary of surfactant micelles. The
obtained MIP NPs have a hydrophobic/hydrophilic core-shell morphology and are water-
soluble, making this micellar imprinting very useful for a variety of template molecules [79].
Such imprinted NPs can also be post-functionalized to present catalytic properties. In
addition, the catalysis can be fine-tuned owing to the facile modification of size, shape, and
depth of the binding pockets. The technology was demonstrated to deploy very efficient
artificial phosphodiesterase and esterase-like activities [79,80].
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4. Nanozymes@MIPs

Recent advances on tailored MIPs on nanozymes represent a novel avenue for addi-
tional advances in the field. The synergistic catalysis arising from integrating two different
artificial enzymes was first advanced as a strategy for the formation of disulfide bonds
in peptides [81]. In this study, imprinted polymeric microzymes and inorganic (Fe3O4)
nanozymes were integrated in one process resulting in high product yields and excellent
selectivity [81].

Further works expanded the concept based on coating the nanozymes with the MIP
layer containing binding pockets to improve the selectivity and the catalytic performance
of nanozymes [82]. Generally, the nanozymes do not present selective recognition, and a
specific bioligand (e.g., antibody, aptamer) is conjugated on the nanozyme. The use of such
ligands may compromise the high stability and low cost of nanozymes. Furthermore, the
natural ligands available may not cover the range of emerging analytes [82,83]. These draw-
backs can be addressed by growing artificial substrate recognition sites on the nanozymes
by molecular imprinting technology. The MIP layer provides the selectivity, but it has been
reported that the catalytic activity of various nanozymes is also enhanced. Considering
nanozymes as heterogenous catalysts, the substrate must diffuse to the catalyst surface, and
after the reaction, the product desorbs, enabling enzyme regeneration [84]. Interestingly,
if the MIP is grown on the nanozyme, the several steps of catalysis could be enhanced or
inhibited by the polymer layer. Thus, a surface science approach supported the study of
the three reaction steps to explain the enhanced catalytic activity in the presence of the
MIP. This work suggested that the substrate concentration near the nanozyme surface
was enriched by the imprinted polymer with faster transportation kinetics. Moreover,
the activation energy was lower, and the MIP did not retain the products, facilitating
enzyme turnover [84].
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For most nanozymes@MIPs, the imprinted polymer is grown to entrap the nanozyme.
An example of such strategy has been presented by creating substrate binding cavities on
three classic nanozymes with peroxidase- and oxidase-like activities [82] (Figure 9). The
imprinted nanogels, prepared by aqueous precipitation polymerization, were synthesized
on Fe3O4 nanoparticles with peroxidase-like activity, but also on CeO2 mimicking oxidase
activity and Au NPs mimicking peroxidases [82]. The substrate binding pockets enabled
achieving remarkable specificity and the enhancement of the activity of nanozymes. In
the case of Fe3O4 and CeO2, two substrates were imprinted, namely, TMB and ABTS, that
when oxidized show a blue and a green color, respectively. The imprinted substrates for
Au NPs were TMB and dopamine [82]. The prepared MIP appeared to be porous, allowing
an efficient substrate diffusion. Interestingly, and in accordance with some reports in the
literature, surface modification of nanozymes can enhance their activity [82]. The MIPs,
which were properly engineered with functional charged monomers, highly enhanced the
selective substrate recognition and the catalytic activity. The improvement caused by the
MIP was consistent among the various nanozymes and substrates analyzed, suggesting that
nanozyme@MIP may be a general method to obtain desired selectivity and activity [82].
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nanozyme (A), with an anionic MIP layer (T-MIPneg) (B) and with a cationic MIP layer (A-MIPpos)
(C) for oxidizing two substrates (TMB and ABTS), as well as scheme of imprinting the nanogel (D).
(Reproduced with permission [82], Copyright 2017, American Chemical Society).

Other examples in the literature can be found, such as growing a polypyrrole (PPy)
based MIP on Fe3O4 nanozymes using methylene blue (MB) as substrate [85]. In this
study, the Fe3O4@PPy composite presented superior catalytic properties for MB in the
presence of sodium persulfate, a sulfate radical-based oxidant, in comparison with bare
Fe3O4 nanozymes. Interestingly, Fe3O4@PPy could still degrade more than 80% of MB
after five recycling cycles [85].

The versatility of imprinted nanozymes was tested when trying to develop a universal
sensor for multiplex detection. This study used peroxidase-like metal (Pt, Ru, and Ir)
nanozymes to fabricate cross-reactive sensor arrays to detect a variety of analytes [83]. The
sensor arrays allowed to discriminate several small biothiol molecules, proteins, and cells.
Other successful traits were related to the ability of identifying unknown samples, as well
as discriminating biothiols in serum and proteins in human urine [83].
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The use of Au NPs in the construction of imprinted nanozymes, as a novel method for
enhanced selective detection of glucose, was conceived by employing aminophenylboronic
acid (APBA) in the MIP shell [86]. The affinity to glucose is assured by the boronic
group in APBA, which can bind to adjacent hydroxyls of saccharides under alkaline
conditions. Moreover, to improve the catalytic activity, heptadecafluoro-n-octyl bromide
nanoemulsion was introduced to provide oxygen, which resulted in efficiency gain of
about 270-fold [86]. These Au NP-based GOx mimics are very promising considering the
importance of glucose monitoring.

The oxidase-like activities of other metal nanoparticles have been explored, such as the
case of Au–Pt alloy [87]. This alloy was coupled to magnetic microspheres to enhance the
stability and ensure their magnetic separation. The affinity to substrate was accomplished
by preparing a MIP containing APBA as polymer shells with imprinted sites for glucose.
Having a GOx-like activity, the imprinted nanozymes had about 200-fold higher catalytic
efficiency than Au NPs [87].

Recently, PtPd nanoflowers (NFs) exhibiting peroxidase-like activity were synthesized
by a surfactant-directing method and further surface-modified with a MIP layer [88]. The
MIP was prepared by aqueous precipitation polymerization and contained imprinted pock-
ets for TMB (Figure 10). The final composite (T-MIP-PtPd NFs) had better catalytic proper-
ties, achieving a linear range of 0.01–5000 µmol L−1 and a detection limit of 0.005 µmol L−1

for colorimetric detection of H2O2. A sensitive colorimetric detection of glucose was also
possible through a cascade reaction employing GOx [88].
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Figure 10. Characterization of molecular imprinting on PtPd NFs showing spherical nanostructure
with flower-like morphology and mesoporous on the surface: SEM images of PtPdNFs (A) and
T-MIP-PtPd NFs (B); TEM imagens of PtPd NFs (C) and T-MIP-PtPd NFs (D). (Reproduced under
the terms and conditions of the Creative Commons Attribution Non-Commercial Unported 3.0
License [88], Copyright 2019, published by The Royal Society of Chemistry).

The research on nanocomposites to gain from a synergistic effect has been investigated
using a combination of PtCu bimetallic NPs and poly(styrene sulfonate) (PSS) function-
alized graphene (Gr). Moreover, the surface of PtCu/PSS-Gr was covered by a MIP for
detection of the flavonoid puerarin. The peroxidase-like activity of the MIP@PtCu/PSS-
Gr was applied in the colorimetric detection of puerarin reaching a limit of detection
of 1 × 10−5 mol L−1 and with a linear range of 2 × 10−5 to 6 × 10−4 mol L−1 [89]. As
proposed by this study, the PSS-Gr had good dispersity, stability, and a large surface area,
which supported the dispersion of PtCu NPs, i.e., preventing any possible agglomeration
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that could lead to reduced enzymatic activity. Additionally, as the PtCu/PSS-Gr nanocom-
posite was covered by the MIP, without the target analyte puerarin, the small H2O2 passes
through the polymer and reaches the peroxidase-like enzyme, generating hydroxyl radicals
that trigger the oxidation of TMB. However, when puerarin is present and specifically binds
the imprinted sites, it acts as barrier to H2O2, leading to decreased catalytic reaction [89].

Photooxidase mimics are activated by light for the oxidation of the substrate in
the presence of dissolved oxygen [90]. Among the variety of nanomaterials that have
been used as photooxidase mimics, the graphite carbon nitride (g-C3N4) is an emerging
visible-light-active organic semiconductor with intrinsic fluorescence properties. Hence,
applications of g-C3N4 in photocatalysis and photoluminescence-based biosensing are
growing [90]. A recent study demonstrated the interesting properties of surface molecular
imprinting on g-C3N4 nanozymes for improved detection of L-cysteine in serum [90]. The
enzymatic activity was first probed upon blue LED irradiation, leading to oxidation of the
chromogenic substrate like TMB without destructive H2O2. Most interestingly, the MIP-
g-C3N4 nanozyme, i.e., having TMB imprinted sites on the surface of g-C3N4, showed to
suppress the matrix interference from serum samples, enhancing both substrate selectivity
and enzyme activity in comparison to bare g-C3N4. Superior properties in terms of enzyme
affinity to TMB, in comparison to other inorganic nanozymes, were also suggested in
this study [90].

Electrochemiluminescence (ECL) detection has been highly investigated in sensor
development. Nonetheless, common ECL reagents have a few disadvantages (e.g., high tox-
icity, low stability, and environment-sensitive luminescence efficiencies) and aggregation-
induced emission (AIE) materials can overcome these limitations in some practical ap-
plications [91]. Additionally, nanozyme amplification has been proposed to offer unique
advantages to ECL, and an aggregation-induced (AI)-ECL assay combined with Co3O4
nanozymes has been developed for the detection of antibiotic residues, namely, chloram-
phenicol [91]. In this sensor, the strong and stable signal relied on COF materials with
AI-ECL groups (COF-AI-ECL), while the Co3O4 nanozymes worked as the amplification
element. The synthesized COF-AI-ECL and Co3O4 were cross-linked to the surface of a
gold electrode, followed by the construction of a MIP for selective recognition of chloram-
phenicol. The sensor showed a detection limit of 1.18 × 10−13 mol L−1, and a linear range
of 5 × 10−13 to 4 × 10−10 mol L−1. Each sensor component offered improved sensitivity
and selectivity features even when using complex matrix samples, essential to tracing
antibiotic residues in food safety control [91].

The possibility of having a sensitive fluorescence system for selective detection of the
mycotoxin patulin motivated the development of a system based on Ag NP/flake-like Zn-
based MOF nanocomposite (AgNPs@ZnMOF) as an efficient support for MIP [92]. The Ag
NPs were created inside the nano-pores of flake-like Zn MOF and the peroxidase-like activity
of Ag NPs was greatly improved by the high surface area of MOF while the MIP for patulin
ensured the selectivity. The fluorescence intensity, resulting from the product of catalyzed
H2O2-terephthalic acid reaction, decreased linearly with increasing concentrations of patulin
in a range of 0.1–10 µmol L−1 and a detection limit of 0.06 µmol L−1 [92].

In bioanalytical chemistry, the use of immunoassays is widespread, and the ELISA is
considered the gold standard in many applications, owing to the highly sensitive detec-
tion [93]. Nonetheless, the research on biomimetic alternatives is very attractive, namely,
for reducing production costs and enhancing the reagent stability. Innovation at this
level can occur both by using MIPs, also known as synthetic antibodies, and by em-
ploying nanozymes as catalytic labels. This biomimetic approach has been proposed for
detecting an organophosphate pesticide [93]. In this work, the 96-well array format was
accomplished with the synthesis of MIP microspheres by precipitation polymerization,
followed by immobilization on the plate by “grafting to” method, assisted by ionic liquid
as binder [93]. The nanozyme label relied on the peroxidase-like activity of Pt NPs and
was prepared in two steps. First, BSA-hapten conjugates were synthesized and the final
Pt@BSA-hapten probe was obtained by mixing with a colloidal solution of Pt NPs. Colori-
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metric and surface-enhanced Raman scattering were used for signal detection because the
substrate TMB was oxidized to a blue TMB2+, which also possesses a Raman signal. The
proposed method showed a limit of detection of 1 ng mL−1 for triazophos [93]. Various
biomimetic alternatives to common ELISA assays have been proposed. The detection of
sulfadiazine, an antibacterial compound whose residues in food and environment from
misuse are of health concern, was studied using Au@SiO2 and Au@Pt@SiO2 NPs [94,95].
The nanocomposites as labelling markers had the intrinsic peroxidase-like activity of Au
NPs or Au@Pt bimetallic materials, and the SiO2 NPs offered large surface area and ease of
surface functionalization. This ideal combination was further improved by preparing MIP
films for selective recognition and reusability, allowing to develop assays whose results
were comparable to those obtained by HPLC [94,95]. Other configurations have been
proposed, such as the use of Pt@SiO2 NPs and a MIP for highly sensitive and selective
detection of histamine with a limit of detection of 0.128 mg L−1 [96].

The multiplicity of sensor design has been expanded by the report of a three-component
functional cell-mimicking structure bearing a nuclear Fe3O4 peroxidase-like activity, a shell
layer of a stimuli-responsive molecularly imprinted hydrogel representing the cytoplasm,
and a lipid bilayer membrane [97] (Figure 11). Each component of the tripartite system had
unique functions to deploy an interesting switch-like colorimetric system. The core Fe3O4
ensures the oxidation of the chromogenic substrate TMB (and similar, like ABTS) in the
presence of H2O2. In turn, the MIP layer selectively recognizes TMB and is simultaneously
sensitive to salt concentration by swelling or shrinking [97]. Finally, the elasticity of the
lipid membrane keeps up with the swelling of the anionic MIP gel when lowering the salt
concentration, until there is no more tolerance to volume change and the lipid layer bursts.
Thus, the gradual “analog” gel volume change was reflected in a “digital” colorimetric
output because the burst of the membrane allows access to TMB that is oxidized to produce
color. Interestingly, controlled access to TMB can also be achieved by using melittin, a
membrane-perturbing amphipathic peptide, which introduces channels in the membrane.
The selectivity is ensured by the imprinted gel, while this approach enlarges the potential
applications of the system [97].
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5. Conclusions and Future Perspectives

In the quest for cost-effective and robust mimics of natural enzymes, intense research
efforts have achieved progress in improving the selectivity and catalytic efficiency of
artificial enzymes, by gathering a wide range of materials and approaches (Figure 12).
Nanozymes have emerged as the next generation of enzyme mimics to overcome the exist-
ing challenges and broaden the application of synthetic catalysts. Despite the demonstrated
advantages, the lack of specificity has always been a problem that hindered a faster and
broader application of nanozymes. The synergy gained by using molecular imprinting
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technology to create selective substrate binding sites on nanozymes has been reasoned
as a solution to solve the obstacle of missing specificity. Simultaneously, MIPs are also
biomimetic, low-cost, and stable materials that can be produced on a large scale. The
intrinsic catalytic activity of nanozymes can be improved by designing nanomaterial cores
and proper surface functional groups, also benefiting from nanocomposites and doped
nanomaterials. Concurrently, this diversity in composition, sizes, shapes, and surface
properties calls for rigorous characterization and standardization of activity if practical
implementation is foreseen. MIP technology is also resourceful, contributing with the
possibility to obtain on-demand tailorable functional moieties and stimuli-responsive
nanostructures. This biomimetic convergence is a hot research topic and new insights into
functional engineered nanozymes@MIPs in the development of biosensing devices are
expected to find auspicious biosensing applications soon.
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Once they have surpassed the current limitations and achieved the enhanced catalytic
activity and specificity, imprinted nanozymes can be incorporated in portable, low-cost, and
time-saving assays for novel point-of-care applications. These point-of-care applications
linked to low-cost devices that rely on synthetic materials are a huge opportunity for
developing new tools that allow global efforts and alliances in combating the current and
future pandemics, as well as screening for chronic diseases, allowing earlier detection and
earlier medical action, to improve treatment outcomes.
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