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Abstract: The signaling pathways involved in age-related inflammation are increasingly recognized
as targets for the development of preventive and therapeutic strategies. Our previous study elu-
cidated the structure–activity relationship of monoterpene compounds derived from p-menthane
as potential anti-inflammatory drugs and identified (S)-(+)-carvone as the most potent among the
compounds tested. This study aims at identifying the molecular mechanism underlying the anti-
inflammatory properties of (S)-(+)-carvone. The murine macrophage cell line, Raw 264.7, was
stimulated with bacterial lipopolysaccharide (LPS) to simulate inflammation. Western blot was
used to assess protein levels and post-translational modifications. The subcellular localization of
NF-κB/p65 was visualized by immunocytochemistry. An in vitro fluorometric assay was used to
measure Sirtuin-1 (SIRT1) activity. (S)-(+)-carvone inhibited LPS-induced JNK1 phosphorylation,
but not that of p38 and ERK1/2 and also did not affect the phosphorylation and degradation of the
NF-κB inhibitor, IκB-α. Accordingly, (S)-(+)-carvone did not affect LPS-induced phosphorylation of
NF-κB/p65 on Ser536 and its nuclear translocation, but it significantly decreased LPS-induced IκB-α
resynthesis, a NF-κB-dependent process, and NF-κB/p65 acetylation on lysine (Lys) 310. Deacety-
lation of that Lys residue is dependent on the activity of SIRT1, which was found to be increased
by (S)-(+)-carvone, while its protein levels were unaffected. Taken together, these results show
that (S)-(+)-carvone is a new SIRT1 activator with the potential to counteract the chronic low-grade
inflammation characteristic of age-related diseases.
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1. Introduction

Persistent low-grade inflammation represents a pathological mechanism associated
with age-related diseases, such as metabolic, cardiovascular, neurodegenerative and mus-
culoskeletal diseases and cancer [1]. A large range of stimuli, including inflammatory
cytokines (e.g., Interleukin (IL)-1β, Tumor Necrosis Factor-α (TNF-α) and IL6), micro-
bial products, cellular components released by dead or damaged cells (e.g., ATP and the
alarmins, HMGB1 and members of the S100 family) [2] and intermittent hypoxia, especially
in older people [3], activate multiple intracellular signaling cascades that bring about the
inflammatory response. Of those signaling cascades, members of the Mitogen-Activated
Protein Kinase (MAPK) family and the transcription factor, Nuclear Factor kappa-light-
chain-enhancer of activated B cells (NF-κB), are especially relevant. Numerous studies
have shown that their activation leads to the production of inflammatory mediators and
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effector enzymes that drive and perpetuate inflammation-associated tissue damage and
functional impairment, thus promoting disease development and/or progression [2,4].

Considering the role of MAPKs and NF-κB in chronic inflammation and the lack of
efficient therapeutic strategies for chronic inflammation-associated diseases, the signaling
pathways that lead to their activation are promising targets for drug development [5,6].

Our previous work screened various compounds of natural origin in standardized
conditions, to identify small molecules capable of interfering with those inflammatory
pathways and to establish the structural features required for activity. (S)-(+)-carvone
(Figure 1), a limonene-derived monoterpene especially abundant in mint species, was
identified as the lead compound of that series, decreasing inducible Nitric Oxide (NO)
Synthase (NOS2) and IL-1β expression, both in a mouse macrophage cell line and in
primary human chondrocytes, in response to LPS and IL-1β, respectively [7]. These
results are in line with other studies reporting anti-inflammatory [8], antioxidant [9], anti-
hiperglycemic and hyperlipidemic [10,11] properties of (S)-(+)-carvone or the racemic
mixture that also contains its (R)-(-) enantiomer. Nonetheless, the molecular mechanism(s)
underlying those effects of (S)-(+)-carvone are not fully understood.

Biomedicines 2021, 9, x FOR PEER REVIEW 2 of 16 
 

ous studies have shown that their activation leads to the production of inflammatory me-

diators and effector enzymes that drive and perpetuate inflammation-associated tissue 

damage and functional impairment, thus promoting disease development and/or progres-

sion [2,4]. 

Considering the role of MAPKs and NF-κB in chronic inflammation and the lack of 

efficient therapeutic strategies for chronic inflammation-associated diseases, the signaling 

pathways that lead to their activation are promising targets for drug development [5,6]. 

Our previous work screened various compounds of natural origin in standardized 

conditions, to identify small molecules capable of interfering with those inflammatory 

pathways and to establish the structural features required for activity. (S)-(+)-carvone 

(Figure 1), a limonene-derived monoterpene especially abundant in mint species, was 

identified as the lead compound of that series, decreasing inducible Nitric Oxide (NO) 

Synthase (NOS2) and IL-1β expression, both in a mouse macrophage cell line and in pri-

mary human chondrocytes, in response to LPS and IL-1β, respectively [7]. These results 

are in line with other studies reporting anti-inflammatory [8], antioxidant [9], anti-hiper-

glycemic and hyperlipidemic [10,11] properties of (S)-(+)-carvone or the racemic mixture 

that also contains its (R)-(-) enantiomer. Nonetheless, the molecular mechanism(s) under-

lying those effects of (S)-(+)-carvone are not fully understood. 

 

Figure 1. Structural formula of (S)-(+)-carvone. 

Therefore, the purpose of this work was to elucidate the molecular mechanism(s) by 

which (S)-(+)-carvone interferes with the expression of pro-inflammatory mediators. Con-

sidering the crucial role of MAPKs and NF-κB activation on pro-inflammatory gene ex-

pression, we hypothesized that these signaling pathways may be targeted by (S)-(+)-car-

vone. The results obtained confirm this hypothesis and allow for further insight into the 

molecular mechanism of action of (S)-(+)-carvone, showing that it directly activates 

Sirtuin-1 (SIRT1), a NAD+-dependent deacetylase known to target the p65 component of 

NF-κB, decreasing its transcriptional activity [12]. 

2. Materials and Methods 

2.1. Cell Culture and Treatments 

The mouse macrophage cell line, Raw 264.7 (ATCC No. TIB-71, Manassas, VA, USA), 

was cultured in DMEM (ThermoFisher Scientific, Walthman, MA, USA) supplemented 

with 10% non-inactivated fetal bovine serum (FBS; ThermoFisher Scientific), 100 U/mL 

penicillin (Sigma-Aldrich Co., St Louis, MO, USA) and 100 µg/mL streptomycin (Sigma-

Aldrich Co.). Raw 264.7 cells were plated at a density of 3 × 105 cells/mL and left to stabilize 

for up to 24 h. The cells were used between passages 25 and 40, as we verified that the 

usual responses to LPS are maintained in this range. 

For cell treatments, (S)-(+)-carvone (#435759, purity 96%, Sigma-Aldrich Co.), 

resveratrol (Res; Extrasynthese, Genay Cedex, France), Bay 11-7082 (Calbiochem, San Di-

ego, CA, USA) and MG-132 (Z-Leu-Leu-Leu-CHO, Boston Biochem, Cambridge, MA, 

USA) were dissolved in dimethyl sulfoxide (DMSO; Sigma-Aldrich Co.). LPS from Esch-

erichia coli 026:B6 (Sigma-Aldrich Co.) was dissolved in phosphate-buffered saline (PBS). 

The concentrations of each compound and the experimental treatment periods are indi-

cated in figures and/or figure legends. Concentrations of (S)-(+)-carvone were selected 
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Therefore, the purpose of this work was to elucidate the molecular mechanism(s)
by which (S)-(+)-carvone interferes with the expression of pro-inflammatory mediators.
Considering the crucial role of MAPKs and NF-κB activation on pro-inflammatory gene
expression, we hypothesized that these signaling pathways may be targeted by (S)-(+)-
carvone. The results obtained confirm this hypothesis and allow for further insight into
the molecular mechanism of action of (S)-(+)-carvone, showing that it directly activates
Sirtuin-1 (SIRT1), a NAD+-dependent deacetylase known to target the p65 component of
NF-κB, decreasing its transcriptional activity [12].

2. Materials and Methods
2.1. Cell Culture and Treatments

The mouse macrophage cell line, Raw 264.7 (ATCC No. TIB-71, Manassas, VA, USA),
was cultured in DMEM (ThermoFisher Scientific, Walthman, MA, USA) supplemented
with 10% non-inactivated fetal bovine serum (FBS; ThermoFisher Scientific), 100 U/mL
penicillin (Sigma-Aldrich Co., St Louis, MO, USA) and 100 µg/mL streptomycin (Sigma-
Aldrich Co.). Raw 264.7 cells were plated at a density of 3 × 105 cells/mL and left to
stabilize for up to 24 h. The cells were used between passages 25 and 40, as we verified
that the usual responses to LPS are maintained in this range.

For cell treatments, (S)-(+)-carvone (#435759, purity 96%, Sigma-Aldrich Co.), resver-
atrol (Res; Extrasynthese, Genay Cedex, France), Bay 11-7082 (Calbiochem, San Diego,
CA, USA) and MG-132 (Z-Leu-Leu-Leu-CHO, Boston Biochem, Cambridge, MA, USA)
were dissolved in dimethyl sulfoxide (DMSO; Sigma-Aldrich Co.). LPS from Escherichia
coli 026:B6 (Sigma-Aldrich Co.) was dissolved in phosphate-buffered saline (PBS). The
concentrations of each compound and the experimental treatment periods are indicated in
figures and/or figure legends. Concentrations of (S)-(+)-carvone were selected based on
our previous work [6]. DMSO was used as vehicle and added to control and LPS-treated
cell cultures to match the same concentration as in cells treated with the chemicals indicated
above. In any case, the final concentration of DMSO was 0.1% (v/v). The chemicals used or
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the vehicle were added to murine macrophage cultures 1 h before the pro-inflammatory
stimulus, 1 µg/mL LPS, and maintained for the rest of the experimental period.

2.2. Preparation of Cell Extracts

For the preparation of total cell extracts, cell cultures were washed with ice-cold PBS
and lysed with ice-cold RIPA buffer [150 mM sodium chloride (ThermoFisher Scientific),
50 mM Tris (ThermoFisher Scientific, pH 7.5), 5 mM ethylene glycol-bis(2-aminoethylether)-
N,N,N′,N′-tetraacetic acid (EGTA; Sigma-Aldrich Co.), 0.5% sodium deoxycholate (Sigma-
Aldrich Co.), 0.1% sodium dodecyl sulfate (SDS; Sigma-Aldrich Co.), 1% Triton X-100
(Merck Millipore Ltd., Darmstadt, Germany) ] supplemented with protease (Complete,
Mini, Roche Diagnostics, Mannheim, Germany) and phosphatase (PhosSTOP, Roche Diag-
nostics, Mannheim, Germany) inhibitor cocktails, for 30 min. The lysates were centrifuged
at 14,000 rpm for 10 min at 4 ◦C and the supernatants were stored at −20 ◦C until use.

For the preparation of cytoplasmic and nuclear extracts, the Nuclear Extract Kit (Active
Motif, La Hulpe, Belgium) was used, following the manufacturer’s instructions.

Protein concentration in the extracts was determined with the bicinchoninic acid kit
(Sigma-Aldrich Co.).

2.3. Western Blotting

Western blot was performed as described previously [13]. Briefly, total (25 µg), cyto-
plasmic (25 µg) or nuclear (30 µg) proteins were separated by SDS-PAGE under reducing
conditions. A commercial mixture of 12 purified pre-stained proteins (NZYColour Protein
Marker II, NZYTech, Lisbon, Portugal) was run in each gel to allow for confirmation of
the apparent molecular weight of the proteins of interest. The proteins were then electro-
transferred onto PVDF membranes (Immobilon®—P, Merck Millipore Ltd.) which were
probed overnight at 4 ◦C or for 2 h at room temperature with the primary antibodies
indicated in Table 1 and then with anti-rabbit (dilution 1:20,000; NIF1317, lot9465473, GE
Healthcare, Chalfont St. Giles, UK) or anti-mouse (dilution 1:20,000; NIF1316, lot6963606,
GE Healthcare, Chalfont St. Giles, UK) alkaline phosphatase-conjugated secondary an-
tibodies. Mouse monoclonal anti-β-Tubulin I and rabbit polyclonal anti-Lamin B1 were
used as a loading controls of total and cytoplasmic extracts and of nuclear extracts, respec-
tively. Immune complexes were detected with Enhanced ChemiFluorescence reagent (GE
Healthcare) in the imaging system ThyphoonTM FLA 9000 (GE Healthcare). Image analysis
was performed with TotalLab TL120 software (Nonlinear Dynamics Ltd., Newcastle upon
Tyne, UK).

Table 1. List of primary antibodies used in Western blot assays.

Protein Source Clonality Dilution Supplier Catalogue/Lot Number

IκB-α rabbit polyclonal 1:1000 Cell Signaling Technology, Inc.,
Danvers, MA, USA #9242/9

phospho-p44/42 MAPK (ERK1/2)
(Thr202/Tyr204) rabbit polyclonal 1:1000 Cell Signaling Technology, Inc. #9101/27

p44/42 MAPK (ERK1/2) rabbit polyclonal 1:1000 Cell Signaling Technology, Inc. #9102/26

phospho-p38 MAPK
(Thr180/Tyr182) rabbit polyclonal 1:1000 Cell Signaling Technology, Inc. #9211/21

p38 MAPK rabbit polyclonal 1:1000 Cell Signaling Technology, Inc. #9212/17

SAPK/JNK rabbit polyclonal 1:1000 Cell Signaling Technology, Inc. #9252/17

acetyl-NF-κB p65
(Lys310) rabbit polyclonal 1:750 Cell Signaling Technology, Inc. #3045/2

Sirtuin-1 rabbit polyclonal 1:1000 Sigma-Aldrich Co. 07-131/2736563

Lamin B1 rabbit polyclonal 1:1000 Abcam, Cambridge, UK ab16048/GR48958-1
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Table 1. Cont.

Protein Source Clonality Dilution Supplier Catalogue/Lot Number

phospho-SAPK/JNK
(Thr183/Tyr185) rabbit monoclonal 1:1000 Cell Signaling Technology, Inc. #4668/11

NF-κB p65 (D14E12) XP® rabbit monoclonal 1:1000 Cell Signaling Technology, Inc. #8242/4

phospho-
NF-κB p65 (Ser536) rabbit monoclonal 1:1000 Cell Signaling Technology, Inc. #3033/14

phospho-IκB-α (Ser32/36) mouse monoclonal 1:1000 Cell Signaling Technology, Inc. #9246/14

β-Tubulin I mouse monoclonal 1:20,000 Sigma-Aldrich Co. T7816/052M4835

2.4. Immunocytochemistry

Macrophages were seeded onto µ-Slide 8 Well chamber plates (ibiTreat, Ibidi, Mar-
tinsried, Germany) suitable for cell culture and microscopy, followed by immunostaining.
After treatment, the cells were washed with ice-cold PBS pH = 7.4 and then fixed in 4%
paraformaldehyde (Sigma-Aldrich Co.) at room temperature, for 15 min. After fixing, cells
were washed three times with PBS pH = 7.4 with 0.1 M glycine (ThermoFisher Scientific)
for 5 min each and blocked with 5% Goat Serum (Sigma-Aldrich Co.), 0.3% Triton X-100
in PBS, pH = 7.4 for 1 h at room temperature. Then, the slides were incubated with a
rabbit monoclonal anti-NF-κB p65 (D14E12) XP® antibody (dilution 1:400; #8242, Lot 4, Cell
Signaling Technology, Inc., Danvers, MA, USA) in 1% Bovine Serum Albumin (Merck Milli-
pore Ltd.) in PBS (pH = 7.4), overnight at 4 ◦C. The cells were washed three times with PBS
(pH = 7.4) for 5 min each at room temperature and incubated for 1 h at room temperature
with anti-rabbit IgG (H + L) CF™488A antibody (dilution 1:400; SAB4600165, Lot 10C0615
Biothium, Inc., Fremont, CA, USA). Following three washes with PBS (pH = 7.4), the cells
were counterstained with DAPI (0.2 ng/mL; Molecular Probes, Invitrogen, Eugene, OR,
USA) to allow for nucleus visualization, and after another washing step, the slides were
mounted with Ibidi Mounting Medium (Ibidi, Martinsried, Germany). Specificity was eval-
uated in negative controls set up by omitting the primary antibody. Fluorescence images
were obtained in an Axio Observer ZI fluorescence microscope (Carl Zeiss, Germany).

2.5. SIRT1 Activity Assay

Interaction of (S)-(+)-carvone with human SIRT1 was evaluated using the SIRT1 Direct
Fluorescent Screening Assay Kit (Cayman Chemical Company, Ann Arbor, MI, USA)
following the manufacturer’s instructions. Briefly, the assay uses a specific substrate, in
this case, a peptide derived from the p53 sequence, coupled to a fluorophore (Arg-His-
Lys-Lys(e-acetyl)-AMC), which is incubated with recombinant human SIRT1 along with
its co-substrate, NAD+. Deacetylation sensitizes the substrate such that treatment with a
developer reagent releases a fluorescent product. The activity of the enzyme is proportional
to the fluorescence intensity. The ability of resveratrol to activate the enzyme was evaluated
in parallel assays as a positive control. The results are presented as mean fluorescence
intensity (arbitrary units) ± SEM.

2.6. Statistical Analysis

The results are presented as mean ± SEM. Statistical analysis was performed using
GraphPad Prism version 6.0 (GraphPad Software, San Diego, CA, USA). Statistical signifi-
cance was evaluated with the t-test to compare each condition with its respective control or
with one-way ANOVA with the Dunnett post-test for comparison of multiple conditions to
a control group. A non-parametric test (Mann–Whitney test to compare each condition to
the basal SIRT1 activity) was used to assess the statistical significance of the differences
observed in Figure 7c, as those results did not follow a normal distribution. The results
were considered statistically significant at p < 0.05.
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3. Results
3.1. (S)-(+)-Carvone Decreases JNK1 Phosphorylation Induced by LPS in Macrophages

The effects of (S)-(+)-carvone on activation of the three MAPK subfamilies, namely,
Extracellular-signal Regulated Kinase (ERK) 1/2, p38 and Jun N-terminal Kinase (JNK),
were evaluated by measuring their phosphorylated levels in response to macrophage
stimulation with LPS.

The results obtained show that LPS induced the phosphorylation of p38 (Figure 2a)
and JNK (Figure 2b) very rapidly, being detectable as early as five minutes after the ad-
dition of LPS. Pre-treatment with (S)-(+)-carvone had no effect on p38 phosphorylation
(Figure 2a), while significantly decreasing JNK1 phosphorylation to, approximately, 38% of
the levels found in cells treated with LPS alone (Figure 2b). Furthermore, a tendency for
reduced JNK2 and 3 phosphorylation was also observed, but in no case did it reach statistical
significance (Figure 2b).
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Figure 2. Effect of (S)-(+)-carvone on p38 (a), JNK (b) and ERK1/2 (d) activation. Raw 264.7 macrophage
cultures were pre-treated with 665 µM (S)-(+)-carvone [(S)-carv.] for 1 h before addition of 1 µg/mL
LPS for 5 min (a) and (b), the time periods indicated in (c) or 1 h (d). Control cells (Ctrl) were treated
with the vehicle alone (0.1% DMSO) for the same time periods, except in c, where control cells were
untreated. Each column represents the mean ± SEM of four (a) and (b) or three (d) independent
experiments. Representative images are shown. * p < 0.05, *** p < 0.001 and **** p < 0.0001 relative to
LPS-treated cells. MW: molecular weight marker.
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ERK1/2 phosphorylation, however, was undetectable at the same time point (5 min).
Thus, we performed a time course experiment to determine the best condition. As shown
in Figure 2c, maximal phosphorylation occurred between 45 and 60 min after the addition
of LPS to the cell cultures and was sustained for up to 120 min, starting to slowly decrease
thereafter. Thus, to ensure that maximal ERK1/2 phosphorylation was achieved in all
experiments, we chose the 60 min treatment period for subsequent experiments. The
results obtained (Figure 2d) show that (S)-(+)-carvone was unable to decrease LPS-induced
ERK1/2 phosphorylation.

3.2. (S)-(+)-Carvone Does Not Interfere with the Canonical NF-κB Activation Pathway

NF-κB-inducing signals, like LPS upon binding to TLR4, trigger the activation of the
IκB kinase complex (IKK) which phosphorylates IκB-α, the natural inhibitor of NF-κB.
Once phosphorylated, IκB-α is ubiquitinated and, subsequently, undergoes proteasomal
degradation, releasing the NF-κB dimers, composed of p65 and p50 proteins, which con-
stitutes the canonical NF-κB activation pathway. Upon release from IκB-α, the NF-κB
dimers translocate to the nucleus and undergo several modifications that modulate their
transcriptional activity on target genes [14].

Since the phosphorylation and degradation of IκB-α are essential for NF-κB activation,
the ability of (S)-(+)-carvone to interfere with these steps was evaluated. Figure 3a,b show
that LPS (1 µg/mL) induced IκB-α phosphorylation and degradation, but (S)-(+)-carvone
was unable to block or even decrease those LPS-induced responses at a concentration previ-
ously observed to be sufficient to significantly decrease inflammatory gene expression [7].
On the contrary, Bay 11-7082 (5 µM), a selective NF-κB inhibitor, decreased LPS-induced
IκB-α phosphorylation and degradation (Figure 3a,b), although the difference relative
to cells treated with LPS alone did not reach statistical significance. Moreover, MG-132
(10 µM), a synthetic proteasome inhibitor peptide, increased the levels of phosphorylated
IκB-α induced by LPS (Figure 3a), showing that its proteasomal degradation was inhibited
relative to LPS-treated cells (Figure 3b). These results confirm that LPS effectively activated
the canonical NF-κB activation pathway, inducing IκB-α phosphorylation and degradation,
which were not affected by (S)-(+)-carvone (Figure 3a,b).

Another target of IKK is NF-κB/p65, which is phosphorylated by this kinase on the
Ser536 residue located in its transactivation domain [15,16]. Therefore, and to further
confirm the results obtained for IκB-α, the ability of (S)-(+)-carvone to interfere with LPS-
induced NF-κB/p65 phosphorylation at Ser536 was explored. The results in Figure 3c
show that the test compound was unable to decrease LPS-induced NF-κB/p65 phospho-
rylation on Ser536, further supporting that it does not interfere with the canonical NF-κB
activation pathway.

3.3. NF-κB/p65 Nuclear Translocation Is Not Affected by (S)-(+)-Carvone

Since (S)-(+)-carvone was unable to prevent IκB-α phosphorylation and degradation,
we hypothesized that this compound could be interfering with NF-κB nuclear transloca-
tion. To explore this possibility, immunocytochemistry was performed to detect NF-κB/p65
translocation to the nucleus. Figure 4a shows that in vehicle-treated cells (Ctrl), NF-κB/p65 im-
munoreactivity is clearly visible in the cytoplasm, while upon treatment with LPS (1 µg/mL),
immunoreactivity is mainly located in the nucleus. Pre-treatment with 10 µM of the protea-
some inhibitor, MG-132, fully inhibited NF-κB/p65 nuclear translocation, as immunoreactivity
is mainly visible in the cytoplasm. Contrastingly, (S)-(+)-carvone was unable to prevent LPS-
induced NF-κB/p65 nuclear translocation, as immunoreactivity is localized in the nucleus
with no differences relative to cells treated with LPS alone (Figure 4a).
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Ctrl), 665 µM (S)-(+)-carvone [(S)-carv.], 5 µM of the selective IKK inhibitor, Bay 11-7082, or 10 µM of the proteasome
inhibitor, MG-132, for 1 h. Each column represents the mean ± SEM of five (a) or four (b) and (c) independent experiments.
Representative images are shown. * p < 0.05 and **** p < 0.0001 relative to LPS-treated cells. ## p < 0.01, ### p < 0.001 and
#### p < 0.0001 relative to the Ctrl. MW: molecular weight marker.

Confirming these results, Western blot analysis shows that treatment with LPS de-
creased the cytoplasmic levels of NF-κB/p65 (Figure 4b, left side), while its nuclear levels
were concomitantly increased (Figure 4b, right side), but they were not affected by treatment
with (S)-(+)-carvone. Thus, these results corroborate those found in the immunofluores-
cence assay, collectively showing that (S)-(+)-carvone does not interfere with LPS-induced
NF-κB/p65 release from complexes with IκB-α and nuclear translocation.

3.4. NF-κB Transcriptional Activity Is Inhibited by (S)-(+)-Carvone

Although (S)-(+)-carvone did not inhibit the canonical NF-κB activation pathway, our
previous work demonstrated that this compound is capable of decreasing the expression
of two NF-κB target genes and major inflammatory mediators, NOS2 and IL-1β [7]. Thus,
and to further elucidate these findings, the protein product of another NF-κB target gene,
the IκB-α gene [17], was also evaluated. For this, we performed a time course of stim-
ulation with LPS to determine the time points where IκB-α degradation ended and its
resynthesis started. IκB-α degradation was complete within 10 to 15 min after addition of
LPS, whereas its resynthesis started at 20 min and reached its maximal level within 60 min
(Figure 5a). Thus, using this time point, we determined that (S)-(+)-carvone is effective in
preventing LPS-induced IκB-α resynthesis (Figure 5b), supporting the hypothesis that the
anti-inflammatory effects of this compound involve the modulation of NF-κB activity.
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Figure 4. (S)-(+)-carvone does not inhibit NF-κB nuclear translocation. (a) Raw 264.7 macrophages were treated with 1 µg/mL LPS for
20 min, following pre-treatment with the vehicle (0.1% DMSO), 665 µM (S)-(+)-carvone [(S)-carv.] or 10 µM MG-132, for 1 h. Control
cells (Ctrl) were treated with the vehicle alone. Immunofluorescence staining of NF-κB/p65 (green) and fluorescence staining of the
nuclei (blue) were performed as described in Materials and Methods. Scale bar 20 µm. Representative images of each condition are
shown. (b) Macrophages were treated with 1 µg/mL LPS for 1 h, following pre-treatment with the vehicle (0.1% DMSO) or 665 µM
(S)-(+)-carvone [(S)-carv.] for 1 h. Cytoplasmic (left side) and nuclear (right side) levels of RelA/p65 were evaluated by Western blot.
Control cells (Ctrl) were treated with the vehicle alone. Each column represents the mean ± SEM of three (cytoplasmic levels) and six
(nuclear levels) independent experiments. Representative images are shown. *** p < 0.001 relative to LPS-treated cells. ### p < 0.001 and
#### p < 0.0001 relative to the Ctrl. MW: molecular weight marker.

3.5. (S)-(+)-Carvone Promotes NF-κB/p65 Deacetylation at Lys310

Besides release from IκB-α and nuclear translocation, NF-κB full transcriptional activ-
ity requires several modifications of NF-κB/p65 which impact on DNA binding affinity,
interaction with coactivators and corepressors and termination of the NF-κB response [18].
Thus, we hypothesized that (S)-(+)-carvone may interfere with one or more of those
modifications. Among those, NF-κB/p65 acetylation, particularly at Lys310, has been
reported as essential for full NF-κB transcriptional activity [18]. Thus, we evaluated the
levels of NF-κB/p65 acetylated on Lys 310 induced by LPS, in the presence and absence
of (S)-(+)-carvone or resveratrol (Res), a natural polyphenolic compound known to pro-
mote NF-κB/p65 deacetylation [12] and used here as a positive pharmacological control.
Figure 6 shows that treatment with LPS induced NF-κB/p65 acetylation on Lys310. Pre-
treatment with Res slightly decreased the levels of acetylated Lys310 on NF-κB/p65 without
reaching statistical significance, likely because Res also inhibits the canonical NF-κB ac-
tivation pathway, decreasing the nuclear levels of total NF-κB/p65 [19,20], which causes
the size of the effect of Res to be very small and prone to large variability. On the contrary,
(S)-(+)-carvone significantly decreased those levels, suggesting that this effect can be the
mechanism by which the compound inhibits NF-κB activity.
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Figure 5. Effect of (S)-(+)-carvone on LPS-induced IκB-α resynthesis in Raw 264.7 macrophages.
(a) Time course of LPS-induced IkB-α degradation and resynthesis. The cells were treated with
1 µg/mL LPS for the time periods indicated. (b) The cells were treated with the vehicle (0.1% DMSO)
or 665 µM (S)-(+)-carvone [(S)-carv.] for 1 h, followed by stimulation with 1 µg/mL LPS for 1 h.
Control cells (Ctrl) were treated with the vehicle alone. Each column represents the mean ± SEM of
seven independent experiments. Representative images are shown. * p < 0.05 relative to LPS-treated
cells. ## p < 0.01 and #### p < 0.0001 relative to the Ctrl. MW: molecular weight marker.
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Figure 6. Effect of (S)-(+)-carvone on Lys310-acetylated NF-κB/p65 levels. Raw 264.7 macrophages
were pre-treated with the vehicle (0.1% DMSO), 665 µM (S)-(+)-carvone [(S)-carv.] or 5.5 µM
Resveratrol (Res) for 1 h, before treatment with 1 µg/mL LPS, for 1 h. Each column represents
the mean ± SEM of the ratio between Ac-p65 (Lys310) and total NF-κB/p65 levels, after subtraction
of the volume of the corresponding bands obtained in control cells. The results were then normalized
to the ratio obtained in LPS-treated cells. The images shown are representative of four independent
experiments. * p < 0.05 relative to LPS-treated cells. MW: molecular weight marker.

3.6. (S)-(+)-Carvone Activates SIRT1 without Affecting Its Protein Levels

Deacetylation of Lys310 on NF-κB/p65 is specifically mediated by Sirtuin-1 (SIRT1),
a NAD+-dependent class III histone/protein deacetylase, leading to inhibition of NF-κB
transcriptional activity [12]. Increased deacetylation of SIRT1 target proteins can occur in
response to stimuli that increase the protein levels of the enzyme, with or without affecting
its activity [21,22]. Thus, to further elucidate the mechanism underlying the ability of
(S)-(+)-carvone to deacetylate NF-κB/p65, we evaluated the protein levels of SIRT1 upon
treatment of macrophage cultures with LPS for 1 h, in the presence and absence of the
test compound. Figure 7a shows that SIRT1 protein levels remained constant upon LPS
treatment either in the presence or absence of (S)-(+)-carvone.



Biomedicines 2021, 9, 777 11 of 15

Biomedicines 2021, 9, x FOR PEER REVIEW 12 of 16 
 

Figure 6. Effect of (S)-(+)-carvone on Lys310-acetylated NF-κB/p65 levels. Raw 264.7 macrophages 

were pre-treated with the vehicle (0.1% DMSO), 665 µM (S)-(+)-carvone [(S)-carv.] or 5.5 µM 

Resveratrol (Res) for 1 h, before treatment with 1 µg/mL LPS, for 1 h. Each column represents the 

mean ± SEM of the ratio between Ac-p65 (Lys310) and total NF-κB/p65 levels, after subtraction of 

the volume of the corresponding bands obtained in control cells. The results were then normalized 

to the ratio obtained in LPS-treated cells. The images shown are representative of four independent 

experiments. * p < 0.05 relative to LPS-treated cells. MW: molecular weight marker. 

3.6.(. S)-(+)-Carvone Activates SIRT1 without Affecting Its Protein Levels 

Deacetylation of Lys310 on NF-κB/p65 is specifically mediated by Sirtuin-1 (SIRT1), 

a NAD+-dependent class III histone/protein deacetylase, leading to inhibition of NF-κB 

transcriptional activity [12]. Increased deacetylation of SIRT1 target proteins can occur in 

response to stimuli that increase the protein levels of the enzyme, with or without affect-

ing its activity [21,22]. Thus, to further elucidate the mechanism underlying the ability of 

(S)-(+)-carvone to deacetylate NF-κB/p65, we evaluated the protein levels of SIRT1 upon 

treatment of macrophage cultures with LPS for 1 h, in the presence and absence of the test 

compound. Figure 7a shows that SIRT1 protein levels remained constant upon LPS treat-

ment either in the presence or absence of (S)-(+)-carvone. 

 

Figure 7. Effect of (S)-(+)-carvone on SIRT1 protein levels and activity. (a) and (b) Raw 264.7 cells 

were treated with 1 µg/mL LPS for 1 h (a) or 18 h (b), following pre-treatment with the vehicle (0.1% 

DMSO), 665 µM (a) or the indicated concentrations (b) of (S)-(+)-carvone [(S)-carv.] for 1 h. Control 

cells (Ctrl) were treated with the vehicle (0.1% DMSO) alone. Each column represents the mean ± 

Figure 7. Effect of (S)-(+)-carvone on SIRT1 protein levels and activity. (a) and (b) Raw 264.7 cells
were treated with 1 µg/mL LPS for 1 h (a) or 18 h (b), following pre-treatment with the vehicle
(0.1% DMSO), 665 µM (a) or the indicated concentrations (b) of (S)-(+)-carvone [(S)-carv.] for 1 h.
Control cells (Ctrl) were treated with the vehicle (0.1% DMSO) alone. Each column represents the
mean ± SEM of three (a) and six (b) independent experiments. Representative images are shown.
MW: molecular weight marker. (c) The activity of human recombinant SIRT1 was measured as the
amount of fluorescent product released by deacetylation of a specific fluorogenic peptide substrate, in
the presence or absence (basal activity, B) of the indicated concentrations of (S)-(+)-carvone [(S)-carv.]
or Resveratrol (Res), used as a pharmacological control of SIRT1 activation. Fluorescence intensity
is directly proportional to SIRT1 activity. Results are presented as mean fluorescence intensity in
arbitrary units ± SEM. Each concentration of (S)-(+)-carvone [(S)-carv.] and Res was tested at least
6 times. * p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001 relative to the basal SIRT1 activity.
B: basal SIRT1 activity.

To further determine whether (S)-(+)-carvone can modulate SIRT1 protein levels
independently of its effects on NF-κB activity, we tested a time point sufficiently distal to
be independent of the effects on NF-κB. Figure 7b shows that even after treatment for 18 h,
SIRT1 protein levels remained identical in cells treated with LPS alone and in the presence
of (S)-(+)-carvone.

Then, we investigated the ability of (S)-(+)-carvone to directly enhance the activity of
SIRT1. For this, we used an in vitro fluorometric assay based on the ability of recombinant
human SIRT1 to deacetylate a synthetic peptide derived from p53, a prototypical SIRT1
substrate [23]. Figure 7c shows that the basal enzyme activity increased in the presence
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of different concentrations of (S)-(+)-carvone, reaching a maximum increase of 84% at a
concentration of 265 µM. As expected, Res, a known SIRT1 activator, was also effective in
increasing basal SIRT1 activity.

Taken together, the results show that (S)-(+)-carvone promoted NF-κB/p65 deacety-
lation, likely by directly activating SIRT1, and this mechanism probably underlies the
inhibitory effect of (S)-(+)-carvone on NF-κB-dependent gene transcription.

4. Discussion

Inhibition of MAPK and/or NF-κB signaling pathways are mechanisms relevant to
dampen chronic low-grade inflammation that are targeted by many compounds of natural
origin [24,25], from polyphenols, such as Res [26], to monoterpenes, such as myrcene,
limonene [27] and α-pinene [28]. Thus, to elucidate the molecular mechanism of the anti-
inflammatory effects of (S)-(+)-carvone that we observed in murine macrophages and
human chondrocytes [7], we started by evaluating its ability to inhibit those signaling
pathways. Interestingly, the results demonstrate that only JNK1 is significantly inhibited by
(S)-(+)-carvone (Figure 2b), while it does not prevent LPS-induced activation of any of the
other MAPK family members to a significant extent (Figure 2a,d). Nonetheless, inhibition
of JNK1 may contribute to the anti-inflammatory effects that we and others previously
observed with (S)-(+)-carvone. In fact, activation of this MAPK enhances the activity of
pro-inflammatory transcription factors, namely, NF-κB [29] and Activator Protein-1 [30,31],
which are crucial to the expression of inflammatory mediators, such as NOS2 [32,33] and
matrix metalloproteases [34,35], in response to various stimuli, in different cells.

On the other hand, (S)-(+)-carvone did not prevent any of the steps involved in the
canonical NF-κB activation pathway, that is, IκB-α phosphorylation and degradation and NF-
κB/p65 nuclear translocation and phosphorylation on Ser536 (Figures 3 and 4). Nonetheless,
we further confirmed that this compound is effective in inhibiting the expression of IκB-α,
another NF-κB target gene (Figure 5).

Since several post-translational modifications of NF-κB/p65 play a critical role in
modulating its DNA-binding affinity and transcriptional activity [18], we hypothesized that
(S)-(+)-carvone may exert its anti-inflammatory effects by modulating such modifications.
Among those post-translational modifications, acetylation of Lys310 by the co-activator
and histone/protein acetyltransferase, CBP/p300, is required for the full transcriptional
activity of NF-κB, without interfering with DNA binding [18]. Deacetylation of that Lys
residue prevents and contributes to cease NF-κB transcriptional activity because it allows
for the subsequent ubiquitination and degradation of promoter-associated NF-κB/p65 [18].
As shown in Figure 6, (S)-(+)-carvone significantly decreased the levels of NF-κB/p65
acetylated on Lys310 induced by LPS in mouse macrophages, suggesting that this can be
the mechanism underlying the inhibition of NF-κB-dependent gene expression.

Decreased levels of acetylated NF-κB/p65 can occur due to the inhibition of acetyl-
transferase (HAT) enzymes or the activation of histone/protein deacetylases (HDAC).
Among HDACs, SIRT1 has a major role in modulating NF-κB transcriptional activity by
directly interacting with and deacetylating NF-κB/p65 on Lys310 [12]. Thus, we hypothe-
sized that (S)-(+)-carvone could target SIRT1. The results presented in Figure 7 confirmed
this hypothesis, showing that (S)-(+)-carvone significantly increases the basal activity of
human recombinant SIRT1 without affecting its protein levels.

To our knowledge, this is the first study identifying a monoterpene compound as a
direct activator of SIRT1. Although studies using (S)-(+)-carvone are scarce, previous studies
using the racemic mixture containing both carvone enantiomers, (S)-(+)- and (R)-(-)-carvone,
reported some pharmacological activities, including antioxidant [9], anti-inflammatory [7,8],
anti-carcinogenic [36], anti-hyperglycemic and anti-hyperlipidemic [10,11] properties. Interest-
ingly, SIRT1 activation has been shown to have a role in all these processes [37,38], suggesting
that, at least in part, this can be the mechanism underlying the pharmacological activities
previously reported for carvone.
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Remarkably, NF-κB and SIRT1 are involved in an antagonistic crosstalk whereby
SIRT1 inhibits NF-κB activity by deacetylating NF-κB/p65 while this transcription factor
inhibits SIRT1 expression [39]. Decreased SIRT1 expression and increased NF-κB activity
are found in many metabolic and age-related diseases, so that SIRT1 activation and NF-κB
inhibition are envisaged as promising therapeutic strategies for those diseases, as well as
to delay the consequences of aging [38,40,41]. Interestingly, recent studies showed that
inhibitors of the sodium-glucose cotransporter-2, used in the therapy of type 2 diabetes,
have cardioprotective effects in heart failure related to the systemic activation of SIRT1 and
probably to the induction of SIRT1 expression in the heart [42]. Therefore, the ability of
(S)-(+)-carvone to directly increase the activity of SIRT1 has huge therapeutic potential.
Additional studies addressed at pharmacokinetic and further pharmacodynamic eluci-
dation, namely, in terms of selectivity, efficacy and safety, in cell and animal models of
disease are required to fully ascertain the therapeutic potential of (S)-(+)-carvone. On
the other hand, the identification of a non-polyphenolic compound, (S)-(+)-carvone, as a
SIRT1 activator opens up the possibility that other monoterpene compounds, in particular
those that share structural features, like the p-menthane backbone, may also present the
same property, presenting new perspectives and opportunities for the pharmacological
modulation of SIRT1.

5. Conclusions

In summary, the results presented show that (S)-(+)-carvone, a p-menthane-derived
monoterpene, is able to directly activate SIRT1, enhancing NF-κB/p65 deacetylation and
decreasing its transcriptional activity and the consequent inflammatory response. (S)-(+)-
carvone is the first non-polyphenolic compound found to directly activate SIRT1, opening
up new perspectives and opportunities for the development of novel drugs to target
numerous diseases in which SIRT1 plays a protective role.
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