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Abstract: This paper presents an extended comparison study between 16 different linear and non-
linear regression methods to predict the sugar, pH, and anthocyanin contents of grapes through
hyperspectral imaging (HIS). Despite the numerous studies on this subject that can be found in the
literature, they often rely on the application of one or a very limited set of predictive methods. The
literature on multivariate regression methods is quite extensive, so the analytical domain explored is
too narrow to guarantee that the best solution has been found. Therefore, we developed an integrated
linear and non-linear predictive analytics comparison framework (L&NL-PAC), fully integrated with
five preprocessing techniques and five different classes of regression methods, for an effective and
robust comparison of all alternatives through a robust Monte Carlo double cross-validation stratified
data splitting scheme. L&NLPAC allowed for the identification of the most promising preprocessing
approaches, best regression methods, and wavelengths most contributing to explaining the variability
of each enological parameter for the target dataset, providing important insights for the development
of precision viticulture technology, based on the HSI of grape. Overall, the results suggest that the
combination of the Savitzky−Golay first derivative and ridge regression can be a good choice for the
prediction of the three enological parameters.

Keywords: wine grape berries; hyperspectral imaging; linear and non-linear regression methods;
penalized regression; variables importance

1. Introduction

Wine quality is intrinsically linked to the quality and geographical origin of the grapes
utilized as the raw material, along with the success of post-harvest winemaking techniques.
These factors need to be properly controlled to achieve the desired wine properties and
quality standards. In particular, the search for the optimal grape berries’ maturity stage
is a permanent concern of producers who need to make better decisions regarding the
best moment for harvesting, as well as to select grapes according to their quality features
to accomplish the desired wine consistency and quality. This can be attained through
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monitoring the enological parameters, such as the sugar content, pH, and anthocyanin
concentration. Usually, these enological parameters are assessed along with the grape
maturation stage by conventional physical and chemical techniques, which have the
disadvantage of being limited to a certain number of samples, as well as being destructive,
time-consuming, and expensive. In order to overcome these disadvantages, there have
been extensive research efforts for faster, non-destructive, and less expensive ways to assess
the enological parameters, with hyperspectral imaging (HSI) emerging as a very promising
alternative [1–4]. This technology has the benefit of merging the features of both imaging
and spectroscopy that, in the reflectance mode, allows for the collection of information
about the intensity of the light reflected by grapes as a function of their wavelengths [5,6].
However, the large amount of data generated by hyperspectral imaging poses significant
challenges for data-driven modelling, requiring the use of suitable data analytic tools to
properly deal with the complex spatial-wavelength structure and to extract the relevant
information and the underlying patterns.

In this context, supervised learning methods have been used to predict the value
of a variety of output variables from the available predictors. However, the number
of regression methods currently available is large, and selecting a suitable method is a
cumbersome task with practitioners often relying on their preferred method and ignoring
others that may present predictive advantages. In fact, most of the studies focusing on
grape ripeness assessment (see Table 1) are still based on partial least squares regression
(PLS) [7–11]. Nevertheless, some authors have also implemented support vector machines
(SVM) [12] and artificial neural networks (ANN) [13,14]. Thus, and given the plethora of
methods available, the selection of the most suitable methods requires conducting extensive
comparison studies, which represent an unbiased and effective approach to assess the
performance of different regression methods in predicting the response variable of interest.
As previously published works tend to focus on one, or a very limited set of predictive
methods, overlooking entire classes of approaches, there is currently a gap of studies in the
literature that compare, in a fair and unbiased way, a wide variety of methods over the same
dataset in order to find the most adequate ones, also extracting insights from their combined
analysis. Therefore, the present work reports the development and comparison of distinct
linear and non-linear regression methods using hyperspectral imaging data collected in
reflectance mode. The major novelty relies on putting together a rich variety of carefully
chosen regression methods, arising from different classes of machine learning, statistical,
and artificial intelligence domains, to predict sugar, pH, and anthocyanin contents in wine
grape berries for the target dataset. To drive the comparison, an integrated linear and
non-linear predictive analytics comparison framework (L&NL-PAC) was developed to
assess the prediction performance of different classes of regression methods, covering the
main classes of machine learning methods that are fully integrated with the most common
spectral preprocessing approaches. Thus, the broad goal of this study was to identify the
most suitable regression and preprocessing approaches, and also to extract insights into
the characteristics of the relationship between the hyperspectral imaging of grapes and
their enological parameters. ANNs are not included in this work because they have been
employed before on the same data set (see [7,13]), and the results obtained here will be
compared with those. Furthermore, the current comparison framework does not comprise
the deep learning class due to the large amount of data necessary to properly train deep
learning algorithms; however, they will be considered in future work when more data
are accumulated.
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Table 1. Summary of most published works for predicting enological parameters using spectroscopic measurements in
reflectance mode.

Ref. Methods Preprocessing
RMSE

Sugar (◦Brix) pH Anthocyanin

[7] a PLS
Normalization

0.940–1.340 - -
ANN 0.960–1.360

[8] MPLS 1
Raw 1.370 -

-MSC 1.610 0.180
SNV 1.890 -

[9] PLS

Raw

- -

0.015 mg·g−1

SG 0.013 mg·g−1

SNV 0.013 mg·g−1

MSC 0.022 mg·g−1

1st derivative 0.041 mg·g−1

2nd derivative 0.028 mg·g−1

PLS + SVM 2 SG - - 0.005 mg·g−1

[10]

PLS
MSC 1.150 - -
SNV 1.380 13.560 cg·kg−1

PCR 3 MSC 1.630 - -
SNV 1.410 13.660 cg·kg−1

MLR 4 SNV 1.530 - 17.980 cg·kg−1

[11] PLS

Raw 0.650 0.050 -
Normalization 0.870 0.050 74.670 mg·L−1

SG 0.650 0.050 -
SNV 1.830 0.080 -

[13] ANN Normalization 0.950 0.180 14.000 mg·L−1

[14] a ANN Normalization - 0.170–0.190 22.100–51.300 mg·L−1

[12] a SVM 2 Normalization 0.800–1.410 0.140–0.190 11.750–18.020 mg·L−1

[15] b PLS SG (1st and 2nd
derivative) 1.270–2.160 - -

[16]
MPLS

1st derivative - 0.170

-2nd derivative 1.690 -

LOCAL
1st derivative - 0.150
2nd derivative 1.320 -

[17]
PLS

SG - - 0.160 mg·g−1

PLS-ANN 0.18 mg·g−1

[18] b PLS - - - 1.510 mg·g−1

a Different vintages and/or varieties used to test the model. b Results for internal validation. 1 Modified partial least squares. 2 Support
vector regression. 3 Principal component regression. 4 Multiple linear regression.

2. Dataset Description

The wine grape berries considered in the present work are from a Portuguese native
variety, Touriga Franca (Vitis vinifera L.), which is widely used to produce Port wine in
one of the oldest appellation regions of the world, the Portuguese Douro region. This
variety was chosen due to its high importance for our industrial partner, Symington
Family Estates (www.symington.com), which is one of the world’s largest producers of
Port wine. A total of 240 bunches, 24 per day, were harvested from Quinta do Bomfim,
Pinhão-Portugal, between the beginning of veraison (end of July) and maturity (end of
September). The 24 bunches were collected at three different locations inside the vineyard
with small, medium, and large vigor and at two different sun exposition levels. Then,
line-scan hyperspectral image acquisition was performed in our laboratory-based imaging
system using the fresh grape samples. Each sample measured by hyperspectral imaging
was composed of six grape berries randomly collected from a single bunch with their

www.symington.com
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pedicel attached, resulting in a total of 240 samples. After imaging and before conventional
analysis, the samples were frozen at −18 ◦C.

2.1. VIS-NIR Spectral Data Acquisition

The experimental setup used to acquire the spectral data (line-scan hyperspectral
imaging), as well as the procedure to compute the reflectance previously described by the
authors in [7,12,13]. Thus, the reader is directed to additional references for a more detailed
description. In summary, the system consisted of a hyperspectral camera, composed of a
black and white camera and spectrograph, and a lighting source comprising a lamp holder
to hold four 20 W, 12 V halogen lamps and two 40 W, 220 V blue reflector lamps. The
acquired line-scan hyperspectral images had 1040 × 1392 pixels, in which the 1040 pixels
were related to the measured wavelength channels that had a width of approximately
0.6 nm (ranging from 380 to 1028 nm), and the 1392 pixels denoted the spatial dimension
(one line over the sample) with a width of approximately 110 nm [7,12,13]. After imaging, a
threshold-based segmentation method was applied to identify and extract the grape berries
from the complete image. Figure 1 displays an example of a line-scan hyperspectral image
acquired by the described setup and for three berries measured simultaneously.
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Figure 1. Example of a line-scan hyperspectral image acquired before segmentation, considering
three grape berries simultaneously imaged.

For a certain wavelength range, λ, and position, x, the reflectance values were obtained
according to the following:

R(x, λ) =
GI(x, λ)− DI(x, λ)

SI(x, λ)− DI(x, λ)
, (1)

where GI is the intensity of light reflected by the grapes; SI is the intensity of light coming
from a white reflectance target (Spectralon) that reflects almost all the light reaching its sur-
face in the ultraviolet, visible, and infra-red wavelengths; and DI is the dark current signal
(electronic noise) measured by keeping the camera shutter closed. This electronic noise is
independent of the object being imaged, and must be subtracted from the grape berries and
the Spectralon in order to avoid tampering in the determination of the reflectance values.

Each hyperspectral image was acquired over the berry’s equator, considering the pedi-
cel as the pole, and for three different positions of the berries, corresponding approximately
to 120◦ rotation between positions [7,12–14]. In order to minimize the measurement noise,
32 hyperspectral images were acquired. The final hyperspectral images were obtained by
averaging the 32 images and, after identifying the grape berries, the reflectance measure-
ments were computed. Finally, to create a unique reflectance spectrum for each sample, all
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berries’ points were averaged over the spatial dimension and across all positions. All of
the reflectance spectra gathered for the Touriga Franca variety are illustrated in Figure 2.
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collected data).

2.2. Analytical Determination

In order to obtain the reference responses for establishing the training set required to
derive the predictive models, the contents of the sugar, anthocyanin, and pH were quanti-
fied by conventional chemical analysis, as previously described in [13]. Briefly, each set of
six grapes was defrosted at room temperature and then crushed. The juice released was
analyzed for ◦Brix and pH according to validated standard methods [19]. The total antho-
cyanin concentration was determined photometrically by the SO2 bleaching method [20]
using a UV/Vis spectrophotometer (Shimadzu) and 1 cm path length disposable cells for
spectral measurements at 520 nm. Pigment content, expressed in mg·L−1, was calculated
from a calibration curve of malvidin-3-glucoside and all determinations were performed
in duplicate.

After the analytical determination of the enological parameters, each reflectance
spectrum was paired with the sugar, pH, and anthocyanin reference values to assemble the
final dataset.

3. Linear and Non-Linear Predictive Analytics Comparison Framework: L&NL-PAC

The methodology employed in this work encompasses the simultaneous and inte-
grated consideration of a variety of preprocessing approaches and regression methods,
which were submitted to a systematic comparison scheme, whose outcomes were sum-
marized by a results reporting engine. All of these components were assembled and
combined in an integrated framework, called L&NL-PAC, which facilitates the identifica-
tion of the most promising preprocessing approaches and best regression methods for the
target dataset. The regression methods included cover both linear and non-linear classes
of approaches. Linear methods were grouped into three subclasses: variable selection
methods, latent variables methods, and penalized regression methods. Non-linear models
were grouped into tree-based ensembles and kernel methods. Each regression method
presents different a priori assumptions regarding the nature of the relationships between
the predictors and the response variable(s), which may lead to different levels of prediction
accuracy for the case study under analysis. A brief description of the designated prepro-
cessing and regression methods is presented in Sections 3.1 and 3.2, respectively. Finally,
the comparison framework procedure is detailed in Section 3.3.



Appl. Sci. 2021, 11, 10319 6 of 25

3.1. Preprocessing Approaches

Preprocessing of the spectral data is an integral part of the development of parsimo-
nious and stable predictive models. The purpose of this task is to mitigate/remove physical
phenomena in the spectra unrelated to the target responses, including, in this work, the
size and curvature of the grape berry [7,13,14]. The methods adopted in the preprocessing
step belong to the reference-independent class of preprocessing methods, as they strictly
involve the spectra data. The literature on preprocessing methods is extensive and vari-
ous techniques have been applied for spectroscopic data in food/fruit analyses [21–25].
Thus, representatives of the most well-known spectra reference-independent preprocessing
techniques were considered, which can be allocated into two categories: scatter correction
methods and spectral derivatives. For the current purpose, multiplicative scatter correction
(MSC), standard normal variate (SNV), and normalization techniques (auto-scaling) were
selected from the first category, while Savitzky−Golay (SG) with first and second deriva-
tives were chosen from the second group. SG employs a second order polynomial with
a window size of fifteen points. The rationale for choosing these preprocessing methods
was based on the fact that, according to the scientific literature, these have been the most
commonly applied approaches for predicting the enological parameters of grape berries
from spectroscopic data (see Table 1), as well as for the treatment of spectroscopic data to
assess the quality of various fruits [21–25]. In addition, normalization (auto-scaling) of the
spectra was selected due to the similarity with SNV. Mathematically, auto-scaling performs
a column-wise normalization with the column mean and standard deviation, whereas SNV
performs the same operation row-wise. Details on the spectra preprocessing techniques
are available in the literature [26–34].

3.2. Predictive Methods

The literature on predictive regression methods is extensive, and to take advantage of
the many developments in the field, a careful selection of the potentially effective meth-
ods was conducted in this work. The selected methods include linear and non-linear
approaches, and cover a wide range of classes of regression methods (see Figure 3). These
classes contain different a priori assumptions regarding the distribution of predictors,
response variables, and their relationship. Thus, they provide a suitable pool of methods to
infer, from the data, which class/method leads to a superior prediction performance. Over-
all, 16 regression methods were included in this study and compared using L&NL-PAC.
This set contains the most popular methods that have found more success in spectroscopic
applications, as well as other relevant methods from the general field of regression mod-
eling that have different assumptions regarding the underlying data structure (namely
regarding the presence of effect sparsity, collinearity, non-linearity, etc.). Although addi-
tional methods could always be considered, the current pool of methodologies provides a
comprehensive modeling basis to support the use of hyperspectral imaging for predicting
the enological properties of interest. A summary of the regression methods within each
class is provided in the following subsections. However, the reader is directed to addi-
tional references for a detailed description of the linear- and tree-based ensemble methods
adopted [35], as well as for the kernel methods [36–38].
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3.2.1. Variable Selection Methods

The methods belonging to the class of variable selection have the implicit assumption
that, although many predictors are measured, some are expected to be irrelevant or too
noisy. Thus, various strategies are employed to select the important predictors and remove
the noisy or irrelevant ones. In this class, forward stepwise regression (FSR) was selected
as a representative method. FSR sequentially builds a model by including and excluding
predictors based on the p-values of the partial-F test. The process starts by including the
predictor with the lowest p-value (more significant contribution to explain the Y-variability).
Then, the importance of all other variables is assessed (given that one predictor is already
included), and the one with the smallest p-value is added to the model, as long as the
p-value is below a threshold (pin). After this inclusion step, the predictors are assessed, and
the one with the highest p-value is excluded from the model (provided that the p-value is
above a threshold (pout)). This iterative process continues until no predictor can be added
or removed from the model. The regression coefficients are then obtained by multiple
linear regression, considering only the variables that were selected in the iterative process.

3.2.2. Penalized Regression Methods

The class of penalized regression methods is characterized by the fact that a penalty
term is employed for the magnitude of the regression coefficients, constraining their
magnitude to be small. The penalty serves as a model regularization term and helps to
mitigate the effects of collinearity and overfitting, and to improve model robustness. In
this class, three methods were considered: ridge regression (RR), least absolute shrinkage
and selector operator (LASSO), and the elastic net (EN). EN is a more general method and
contains RR and LASSO as particular cases. Equation (2) presents the objective function
used to obtain the EN model:

^
bEN = argmin

b=[b0 ...bp ]
T

{
n

∑
i=1

(y(i)− ŷ(i))2 + γ

(
α

p

∑
j=1

∣∣bj
∣∣+ 1− α

2

p

∑
j=1

b2
j

)}
, (2)

where α (α ∈ [0, 1]) is a hyperparameter that weights the relative contributions of the
different types of penalization to the magnitude of the coefficients (the L1-norm and
the L2-norm penalization), and γ controls the bias−variance trade-off, by weighting the
contribution of the classical least-squares term with the penalization term for the regression
coefficients size.
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3.2.3. Latent Variable Methods

The latent variable methods estimate an underlying latent structure where the in-
fluence of the unobserved sources of variability are estimated. Although hundreds or
thousands of predictors can be collected, many predictors are correlated and constitute
manifestations of a few unmeasured sources of variability. Thus, these methods estimate
the underlying sources of variability and, in turn, compress the dimensionality of the
dataset. Three methods were considered from this class: principal component regression
(PCR), partial least squares (PLS), and interval PLS (iPLS).

3.2.4. Tree-Based Ensembles

The class of tree-based ensembles contains non-linear methods whose basic building
blocks are regression trees. A regression tree is a particular model that approximates the
relationship between predictors and response variables by a piece-wise constant function.
Furthermore, regression trees are very flexible, which often lead to a high variance in their
predictions (i.e., small changes in the training set could lead to significant differences in the
predicted values). A common solution is then to use ensembles of regression trees, in order
to decrease the variance by aggregating the pools of models.

In the class of tree-based ensembles, two approaches were selected: random forests
(RF) and boosting of regression trees (BoRT). In RF, for each regression tree in the ensemble,
only a small percentage of randomly chosen predictors are selected for the model instead of
utilizing all the predictors available. On the other hand, BoRT is based on the boosting idea,
where models are fit to residuals from previous models in order to improve the prediction
ability. Both RF and BoRT have several tunable parameters (also called hyperparameters,
such as the number of trees in the ensemble and the minimum number of samples in
each leaf). For RF, the number of trees in the ensemble (TRF) is often the most important
hyperparameter for controlling overfitting, thus, it is optimized by k-fold cross-validation.
The other parameters are left at their default values. For BoRT, two parameters are often
more relevant: the number of trees (TRF) and the learning rate (u). As they are inversely
related (lower learning rates require more trees and vice-versa), we opted to set a low value
for the learning rate (u = 0.02) and to optimize the number of trees in the ensemble.

3.2.5. Kernel Methods

The last class of regression methods included in this work are kernel methods. Kernel
methods are non-linear approaches that implicitly project samples to a high-dimensional
space (also called a feature space) where the model is developed. Thus, they are suitable for
identifying and approximating non-linear relationships between predictors and response
variable(s). In this work, two commonly used kernels were included: the polynomial
kernel and the radial basis function (rbf). The former is more suitable for scenarios where
the nonlinearity follows a polynomial relationship (quadratic, cubic, etc.), while the latter
addresses other more general types of non-linearities. Kernel versions of PCR and PLS were
included in the model comparison framework (L&NL-PAC) to enable modelling different
types of non-linearities besides those described by tree-based methods (tree ensembles
are more suitable when a step-wise relationship exists between the predictors and the
response variable).

Kernel PCR starts by constructing a kernel matrix K (with dimensions n× n) between
all pairs of samples in the training set. The kernel matrix represents the projection of the
samples in a non-linear space, where the traditional linear PCA algorithm can be applied.
This implies that the relationship modelled in the original data space is non-linear. The
application of PCA provides a low-dimensional scores matrix that can be regressed to the
response variable. Details for kernel PCR model building and for data scaling are readily
available in the literature [36].

Kernel PLS is a natural extension of PLS that uses the kernel trick to model non-linear
relationships. The starting point is the construction of a kernel matrix K, containing all the
similarity/dissimilarity measures between all pairs of samples. The model is then built



Appl. Sci. 2021, 11, 10319 9 of 25

by applying the PLS algorithm to the matrix K and the response y. Details for kernel PLS
model building and preprocessing the kernel matrices are available in the literature [36].

Additionally, two alternatives based on PCA and kernel SVR were included in this
work. Initially, PCA was applied and the first principal components were extracted. These
principal components constitute the predictor set that is used in kernel SVR, with the
polynomial or rbf kernels. The motivation for combining PCA and SVR stems from the fact
that the original data are high-dimensional, which negatively impacts the performance of
SVR. Using a compression stage first (this is often called feature extraction) allows more
stable and effective models to be developed.

3.3. Model Comparison Methodology

A double cross-validation scheme was employed in this work to compare the different
methods. The root mean squared error, RMSE, was the metric used to assess and compare
the predictive performance. Furthermore, multiple runs of Monte Carlo double cross-
validation were conducted to characterize the variability of the predicted RMSE for each
regression method, resulting in a more robust analysis of their relative performances. In
each run of Monte Carlo double cross-validation, the input spectral dataset was split into
training and external validation sets, using a stratified scheme based on the percentiles. To
perform this step, the reference response measurements (analytical determinations) were
grouped into five intervals according to the percentiles (20th, 40th, 60th, and 80th), and
80% of the samples in each group of percentile intervals were used for model training,
while the remaining 20% were reserved for the external validation set. During model
training, another stratified k-fold cross-validation based on the response percentiles was
used to select suitable hyperparameters (Table 2) for each regression method. This was
done using seven-fold cross-validation wherein the data were partitioned into seven folds,
six used for calibration and one for validation, with the procedure being repeated seven
times using a different validation fold each time. Then, each final model was built using
the seven folds and the respective best hyperparameter(s) and was applied to predict the
external validation set (or independent test set), based on which the corresponding RMSEs
were obtained and stored. This process was repeated 30 times and the RMSEs for each
run of Monte Carlo double cross-validation were saved for analysis. It is important to
note that, in each run, all regression methods made use of the same training dataset for
model building, and their performance was assessed in the same validation set (i.e., their
RMSEs were correlated). The distribution of RMSEs over all runs of the Monte Carlo
double cross-validation characterized the performance of each regression method, and
methods with lower RMSE values were preferred.

Table 2. Hyperparameters settings.

Method Hyperparameter Range Values

FSR
penter 0.05
prem 0.1

RR
α 0
γ 0.002; 0.02; 0.2; 2; 20

LASSO
α 1
γ 0.001; 0.01; 0.1; 1; 10

EN
α 0.001; 0.01; 0.1; 1
γ 0.002; 0.02; 0.2; 2; 20

SVR Linear
aPCR [1:min(20, n, p)]

ε 0.005; 0.01; 0.05; 0.1
PCR aPCR [1:min(20, n, p)]
PLS aPLS [1:min(20, n, p)]
iPLS aiPLS [1:min(20, n, p)]
RF TRF 50; 100; 500; 1000; 5000

BoRT TBT 50; 100; 500; 1000; 5000
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Table 2. Cont.

Method Hyperparameter Range Values

KPCR
aPCR [1:30]

Polynomial: p [2:10]
Rbf: σ 0.1; 1; 10; 50; 100; 300; 1000

KPLS
aPCR [1:30]

Polynomial: p [2:10]
Rbf: σ 0.1; 1; 10; 50; 100; 300; 1000

KSVR

aPCR [1:20]
ε 0.005; 0.01; 0.05; 0.1

Polynomial: p [2:6]
Rbf: σ 0.1; 1; 10; 50; 100; 300; 1000

The distribution of the RMSE from the double cross-validation constitutes an informa-
tive source to compare the performance of different regression methods. However, visually
comparing the RMSE distributions can be cumbersome due to the high number of methods
included in this study (16 in total). Thus, besides RMSE, an additional key performance
indicator (KPI) was devised to facilitate the ranking of the methods. As an additional
advantage, this KPI was based on a rigorous statistical approach of hypothesis testing,
allowing for detecting whether differences in performance were statistically significant
or not. The KPI included in L&NL-PAC is similar to the one utilized in the PAC frame-
work, and more details can be obtained in the original paper [35]. To compute this KPI,
every pair of regression methods was considered, and their average RMSE was compared
using a statistical hypothesis test, namely a paired t-test. This allows for the assessment
of whether the average RMSE is statistically different across each pair of methods or not.
If the differences were found not to be statistically significant, we considered this to be a
“tie”, and both methods under comparison received 1 point. When a statistically significant
difference was observed, a “win” was attributed to the method with the lowest RMSE and
it received 2 points. The method with a higher RMSE was attributed a “loss” and it received
0 points. The KPI for each method was defined as the sum of all the points received from
all of the pairwise comparisons. Thus, if a method was statistically superior to all of the
others, it obtained the maximum number of points: 2 × (nmethods − 1), where nmethods is
the number of methods under comparison (the winning method receives 2 points from all
the other nmethods − 1 methods). On the other hand, a method that presented statistically
inferior results compared with of the all others received no points. This scheme provides
an immediate ranking, allowing for the identification of the best regression methods and
the best classes. Due to the complementary information provided by the RMSE of Monte
Carlo double cross-validation and the KPI, both will be presented in the results section to
provide a thorough analysis of the methods’ performance.

All computations were conducted in the MATLAB R2019b environment (MathWorks,
Inc., Natick, MA, USA).

4. Results and Discussion

This section presents the results obtained for the prediction of sugar, pH, and antho-
cyanin contents. Both classes of linear and non-linear regression methods (described in
Section 4.2) were considered for each property, and a detailed discussion of the top models
is presented for each parameter, highlighting important spectral regions that most con-
tribute to predicting the response variable. However, the spectral preprocessing was first
considered in order to select a suitable preprocessing approach. As additional information,
a summary of the descriptive statistics for the sugar, pH, and anthocyanin parameters
determined by the conventional physic and chemical techniques is presented in Table A1
in Appendix A. These enological measurements were used as reference values to develop
and test the proposed models in the following subsections.
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4.1. Preprocessing Evaluation

As a significant number of regression methods were developed for L&NL-PAC
(16 regression methods in total), testing all the combinations of preprocessing alterna-
tives and regression methods would be a time-consuming task. Therefore, an alternative
strategy was devised to select a suitable preprocessing technique, in which representative
regression methods from each class were considered and their prediction performance was
assessed under different preprocessing techniques. The preprocessing technique that more
often led to better and more stable predictions (i.e., lower prediction errors) was selected as
the most effective.

The prediction performances of the selected regression methods (RR and LASSO in
the penalized regression class, PCR and PLS from the latent variable class; RF and BoRT
from the tree-based ensembles, and kernel PCR and kernel PLS from the kernel-based
methods), regarding the three enological parameters (sugar content, pH, and anthocyanin
concentration), are presented in Figure 4. The prediction errors, given by the RMSE,
indicate which combination of regression methods and preprocessing techniques had the
better performance.
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each preprocessing technique over the selected regression methods: (a) results for sugar contents,
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represent the first and third quartiles (25th and 75th percentiles), and the internal horizontal lines
represent the median (50th percentile). The whiskers represent the maximum and minimum data
within the 1.5 interquartile range (IQR) and the circles represent outliers outside 3 IQR.
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One can notice from Figure 4 that the SG second derivative was the worst preprocess-
ing technique for this dataset as it often led to very high prediction errors. This was more
clearly observed for the penalized regression methods. Excluding the second derivative,
the alternative preprocessing techniques showed fewer differences and there was typically
a significant overlap between different preprocessing methods for the same regression
method. This suggests that the effect of the different preprocessing technique is not the
most critical step and the SNV, MSC, or SG first derivative are expected to perform simi-
larly; summary statistics (mean and standard deviation) for the distribution of the RMSE
obtained for each preprocessing technique are presented in Table A1 (Appendix A). More-
over, Figure 4 displays a few outliers corresponding to instances where some combinations
of models and preprocessing methods showed an abnormally high/low performance.
This was expected as some peculiar training and test data splits can occur, leading to an
abnormal model performance that is not representative. By observing the Tuckey’s boxplot,
the distribution of the RMSE can be better assessed in terms of percentiles, and the few
outliers can be ignored.

Concerning the literature mentioned in the introductory section (Table 1), the authors
of [9] employed SNV, MSC, SG, and the second derivative to predict the anthocyanin
concentration, denoting a better performance with SG and SNV techniques, and without
differences between them. However, there are some works where preprocessing does not
lead to an improvement in the results [8,11]. In addition, the authors of [10] compared MSC
with SNV preprocessing, concluding that the performance is case dependent. In this work,
we selected the SG first derivative preprocessing as a suitable approach, as it often came up
with smaller median prediction errors (this was observed for RR, PCR, PLS, kernel PCR,
and kernel PLS) and presented an error variability that was similar to the other alternatives.
Thus, the SG first derivative was used in the remainder of this paper to preprocess the
spectra before the development of the regression models.

4.2. Sugar Content Analysis

The sugar content is one of the main quality characteristics to evaluate the maturity of
grapes and was the first property considered for developing the regression models. The
Savitzky−Golay first derivative was applied to the spectra as a preprocessing technique
and the RMSEs obtained from the Monte Carlo double cross-validation are presented
in Figure 5 for all the regression methods included in this study. This figure clearly
demonstrates the need to test a wide range of regression methods from different classes, as
the performance of certain methods can be significantly different, even within the same
class of methods. Only by testing and comparing their performance can one choose the
most suitable regression model for each case. In addition, in order to characterize the
overall method’s performance, Figure 6 summarizes the KPI (described in Section 3.3)
obtained by each regression method.
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From the analysis of Figures 5 and 6, it is possible to identify that RR was the best
regression method for predicting the sugar content, obtaining the lowest RMSE (Figure 5)
and the best overall performance with the highest KPI (Figure 6). More precisely, the
difference between RR and the other regression methods was statistically significant (two
points were always attributed to RR method, see Section 3.3). One can also notice that the
class of tree-based ensembles is not suitable for predicting the sugar content, which can
probably be attributed to the regression tree’s stepwise approximation. The underlying
relationship between the spectral signals and contents often follows the Beer−Lambert
law, which is a continuous function instead of a stepwise relationship. The class of latent
variable methods contains the worst method, which is the combination of PCA and a linear
kernel SVR. Nevertheless, the other methods in this class presented a good and consistent
performance (Figure 5). The newly tested alternatives based on non-linear kernels had
rather different performances, namely kernel PLS and PCR (both rbf), which achieved the
lowest RMSE (Figure 5), reaching a good position (third and fourth, respectively), among
the top performances (Figure 6). Despite this result, the performance of the class of kernel
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methods suggests that the use of non-linear methods is not particularly advantageous for
predicting the sugar content. Nevertheless, other types of non-linear approaches may be
more effective, e.g., using neural networks, as in our previously published works [7,13],
which presented RMSE values between 0.95 and 0.96 ◦Brix for the same set of data. More-
over, in [7], a comparison between PLSR and NN was done, where the results showed a
similar performance between the two methods. Comparing the results reported in [7,13]
to those obtained in this study (Figure 5), one can notice that the results here are more
conservative because a double cross-validation procedure was employed in multiple runs,
which allowed for a more comprehensive incorporation of all variation and uncertainty
sources present in the raw data as well as during model development. Thus, there were
testing scenarios where the RMSE was below 0.95 ◦Brix, but there were others where
the observed performance was worse, depending on the particular random data split in
training and validation sets. This demonstrates that the data split plays an important role
when determining the methods’ performance, and therefore the reported results should
have an increased focus on assessing all sources of variability and uncertainty. Regarding
the KSVR method, the authors of [12] reported RMSE values of 0.80 ◦Brix, using SVR with
a radial basis function approach for the same dataset acquisition. However, the authors
used a genetic algorithm followed by random search to determine the hyperparameters
range and the best combination that led to the lowest RMSE. Furthermore, they employed
a different splitting strategy where three samples were selected from each grape’s harvest
day and reserved for validation (by contrast, we randomly select 20% in each percentile).
This might justify the difference in the obtained results and indicates that the data splitting
step may have a significant impact on the results. Naturally, the splitting strategy employed
should take into account the goals of the research being conducted. Nevertheless, in this
work, the focus was on understanding how regression models perform under more strict
conditions, where samples in the validation set do not require a counterpart sample in the
training set collected on the same day. Furthermore, and as complementary information
to the strategy designed for the proposed comparison framework (RMSE and KPI), the
ratio of performance deviation (RPD) and range error rate (RER) values are provided in
Table 3, in terms of the mean and respective 95% confidence intervals. Both RPD and
RER normalize the RMSE values obtained by each model for the external validation sets
against the standard deviation and range of their reference data, respectively. The best RPD
and RER values were achieved for the RR method, with mean values of 3.32 and 13.83,
respectively, indicating a good overall prediction ability of the RR model (following the
guideline scale suggested by [39]).

Table 3. RPD and RER results in the sugar content for the external validation sets—Mean and associated 95% confidence
intervals obtained for each regression method.

Method
RPD RER

Mean 95% CI Mean 95% CI

FSR 2.916 (2.781; 3.051) 12.130 (11.590; 12.671)
RR 3.321 (3.161; 3.482) 13.828 (13.144; 14.512)

LASSO 2.940 (2.808; 3.073) 12.248 (11.660; 12.836)
EN 2.936 (2.809; 3.063) 12.230 (11.662; 12.798)

PCR 3.038 (2.891; 3.185) 12.660 (11.999; 13.321)
KSVR linear 2.008 (1.943; 2.074) 8.3706 (8.049; 8.692)

PLS 3.160 (2.978; 3.342) 13.167 (12.374; 13.959)
iPLS 2.946 (2.799; 3.093) 12.251 (11.678; 12.823)
RF 2.511 (2.409; 2.613) 10.464 (9.989; 10.939)

BoTR 2.451 (2.357; 2.546) 10.214 (9.778; 10.651)
KPCR polynomial 2.698 (2.574; 2.823) 11.231 (10.716; 11.746)

KPCR rbf 3.083 (2.943; 3.222) 12.840 (12.231; 13.449)
KPLS polynomial 2.728 (2.608; 2.849) 11.356 (10.858; 11.854)

KPLS rbf 3.139 (2.970; 3.307) 13.076 (12.341; 13.811)
KSVR polynomial 2.756 (2.644; 2.869) 11.480 (10.987; 11.972)

KSVR rbf 2.521 (2.417; 2.624) 10.502 (10.029; 10.975)
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Taking into account the RR and PLSR approaches, with PLSR being the most em-
ployed in the literature for spectroscopic measurements in reflectance mode (Table 1), the
RMSE results obtained forthe sugar content in the present work were better than those
from [7,8,10,15,16]. On the other hand, the authors of [11] revealed results better than ours,
but these authors used a significantly larger number of berries per sample compared with
the six berries per sample used in this work. The use of a large number of berries reduces
the sample variability, which have an impact on the RMSE. In terms of RPD and/or RER,
the authors of [7,8] did not show the values; however, in [15], the authors reported RPD
values of 1.88 and 1.54 for Chardonnay and Viura varieties, respectively. Furthermore,
the authors of [10] reported RPD and RER values of 4.06 and 13.89, respectively, for a
Syrah variety and of 5.83 and 19.68 for a Cabernet Sauvignon variety, respectively; in [16],
the RPD was 4.12, and the authors of [11] only mentioned that the RPD was acceptable
(the authors did not disclose the value). Nevertheless, the authors of [8,10,16] also used a
larger number of berries per sample in their studies, which might justify the better results
obtained in terms of RPD and RER. In this work, the decision to use a small number of
berries per sample (six) was due to the desire of some wineries to select the best berries
from each bunch to produce specific high-quality wines, as stated in [7,12,13].

As RR was shown to be the best method, we analyzed the most important spectral
regions for this model. Figure 7 presents the regression coefficients for the RR model, and
important regions are characterized by higher magnitudes of the regression coefficients.
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Figure 7. Sugar regression coefficients obtained during the ridge regression model training.

One can notice by Figure 7 that the region near 900–1000 nm is rather important, as is
the region near 750–800 nm. The spectral regions (400–500 nm) also had some important
predictors, but they tended to be noisier. The 770, 920, 960, and 980 nm peaks might be
related to the sugar absorption, but we should point out that the regions above 960 nm
were closer to the end of the sensing spectral range, and, for that reason, they also tended
to be noisier. Nevertheless, these results are in line with those previously reported in [7,10],
further confirming the effectiveness of these models.

4.3. pH Analysis

The analysis of this second enological parameter followed the same methodology as
the previous one (Savitzky−Golay preprocessing plus development of models). Figure 8
shows the RMSE obtained with the external validation dataset for each run and regression
method. Through the analysis of this figure, one may see no major practical differences
between the classes included. In fact, except for the combination of PCA and a linear kernel
SVR, which presented the worst performance, all other methods seemed to have a similar
behavior. In contrast with the sugar content, here, it was not possible to clearly understand
which method might be the most suitable to create the predictions. However, through the
analysis of Figure 9, which presents the KPI obtained by each regression method, one can
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observe that RR obtained the best performance (reaching 27 points in a total of 30). Further
analysis of the KPI results showed that the difference in the RMSE distribution between the
RR and KPCR polynomial function was not statistically significant, and that the difference
between RR and KPLS radial basis function was statistically significant, with two points
attributed to KPLS rbf.
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In addition to the RMSE and KPI metrics, Table 4 present the results obtained for RPD
and RER. Here, the RPD values showed low levels for the predictions, but RER was above
5.0, which indicates acceptable predictions [39]. Concerning the existing scientific literature
on the same subjects (see Table 1), it was possible to verify that the RMSE values obtained
here for the pH were in accordance with the results of [8,12,13,16], but they were worse
than those reported in [11], for the same reason already justified in Section 4.2. For RPD
and RER, the authors of [8,12,13,16] did not report values and [11] only stated that the
models were moderately successful, with average R2 but with low RPD values. In fact, the
lower results obtained for the pH might be related to the small distribution in the range of
the reference measurements (Table A1, Appendix A), which may increase the difficulty of
the models to provide suitable prediction performances.
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Table 4. RPD and RER results in pH for the external validation sets—mean and associated 95% confidence intervals obtained
for each regression method.

Method
RPD RER

Mean 95% CI Mean 95% CI

FSR 2.012 (1.942; 2.082) 7.407 (7.117; 7.696)
RR 2.085 (2.015; 2.155) 7.670 (7.397; 7.944)

LASSO 1.766 (1.697; 1.835) 6.501 (6.223; 6.779)
EN 1.916 (1.847; 1.985) 7.051 (6.775; 7.327)

PCR 2.029 (1.965; 2.094) 7.463 (7.216; 7.711)
KSVR linear 1.654 (1.587; 1.720) 6.088 (5.819; 6.355)

PLS 2.052 (1.981; 2.124) 7.548 (7.274; 7.822)
iPLS 2.055 (1.975; 2.134) 7.563 (7.248; 7.878)
RF 1.958 (1.890; 2.027) 7.206 (6.935; 7.476)

BoTR 1.898 (1.836; 1.960) 6.982 (6.737; 7.228)
KPCR polynomial 2.047 (1.984; 2.110) 7.529 (7.279; 7.779)

KPCR rbf 1.999 (1.934; 2.059) 7.352 (7.116; 7.588)
KPLS polynomial 2.037 (1.968; 2.106) 7.493 (7.226; 7.760)

KPLS rbf 2.054 (1.986; 2.123) 7.556 (7.292; 7.819)
KSVR polynomial 2.012 (1.945; 2.078) 7.399 (7.145; 7.653)

KSVR rbf 1.952 (1.896; 2.008) 7.186 (6.941; 7.432)

Following the same procedure as for the sugar content, the ridge regression model was
selected to identify the most important spectral regions (Figure 10). Analyzing Figure 10,
it is possible to detect some noise between the 400 and 500 nm regions. Additionally,
the region near 750–950 nm, with much less noise, seemed to be the most important,
presenting relevant peaks at 790, 840, and 930 nm, which could be related with the pH.
Regarding the scientific literature, the authors of [40] identified, for table grapes, peaks
of 695, 870, and 950 nm sing the highest regression coefficients of PLS, while the authors
of [41] implemented a genetic algorithm with the least-squares support vector machine
approach to identify the effective wavelengths at 446, 489, 504, and 561 nm. As acidity
seems to be a sensitive case, we believe that the most spectral regions depend on the
regression method and on the characteristics of the grapes under study.
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4.4. Anthocyanin Concentration Analysis

Anthocyanins are the pigments responsible for red wine color and were the last
enological parameter considered for the proposed comparison. The procedure adopted
was identical to the previous enological parameters, and the results achieved in terms of
root mean square error for each class of methods are presented in Figure 11.
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From the analysis of this figure, one can identify the class of penalized regression
as the most suitable and promising class to predict the anthocyanins concentration. The
same can also be confirmed by Figure 12, wherein this class reached the best scores. Within
the latent variable’s class, PCR was the best method, with a similar overall performance
to the penalized regression class, namely to RR. However, the other regression methods
of the latent variables class presented quite different performances. Such differences can
also be observed for the kernel methods class. The class of tree-based ensemble showed
the worst overall performance for estimating the anthocyanin concentration. Overall, EN
presented the best performance (27 points in 30), losing 2 points for PCR (the difference
was statistically significant) and 1 point for the LASSO method (not statistically significant).
RR, PCR, and LASSO were the next methods with the best KPI, obtaining values between
24 and 26 (in a maximum of 30 points).
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Regarding the results from the literature, some of the works listed in Table 1 are not
comparable with ours due to differences in the anthocyanin quantification procedures.
The RMSE values presented in our work outperformed those obtained [11]. However, the
authors of [13] obtained better RMSEs than those obtained here, indicating that the use
of neural networks might be more effective for predicting the anthocyanin concentration.
The results of [12] also showed a better performance for the SVR approach, indicating that
the use of a genetic algorithm can be a good alternative for predicting the anthocyanin
concentration. In addition, Table 5 displays the results for RPD and RER, and from which it
is possible to conclude that, overall, moderately successful predictions were achieved, with
RDP and RER obtaining values larger than 2.5 and 10, respectively [39]. Comparing these
values with those reported in the literature, the authors of [10] reported RPD and RER
values of 3.89 and 10.49, respectively, for a Syrah variety and of 5.38 and 12.78, respectively,
for a Cabernet Sauvignon variety, but the authors used a large number of berries per
sample, while [11] only stated that the models were moderately successful with average R2

but low RPD values. The remaining works from Table 1 did not report values for RPD or
RER for the anthocyanin parameter.

Table 5. RPD and RER results in the anthocyanin parameter for the external validation sets—Mean and associated 95%
confidence intervals obtained for each regression method.

Method
RPD RER

Mean 95% CI Mean 95% CI

FSR 2.747 (2.617; 2.877) 10.950 (10.451; 11.450)
RR 2.921 (2.784; 3.059) 11.654 (11.108; 12.200)

LASSO 2.915 (2.780; 3.052) 11.635 (11.071; 12.199)
EN 2.947 (2.814; 3.081) 11.762 (11.214; 12.311)

PCR 2.939 (2.799; 3.079) 11.726 (11.163; 12.289)
KSVR linear 2.393 (2.278; 2.509) 9.536 (9.098; 9.974)

PLS 2.838 (2.698; 2.978) 11.321 (10.773; 11.869)
iPLS 2.701 (2.561; 2.840) 10.755 (10.259; 11.250)
RF 2.548 (2.417; 2.679) 10.146 (9.670; 10.621)

BoTR 2.501 (2.378; 2.624) 9.965 (9.491; 10.438)
KPCR polynomial 2.687 (2.555; 2.819) 10.724 (10.177; 11.272)

KPCR rbf 2.893 (2.753; 3.034) 11.546 (10.979; 12.114)
KPLS polynomial 2.640 (2.510; 2.770) 10.626 (10.022; 11.030)

KPLS rbf 2.835 (2.698; 2.970) 11.312 (10.759; 11.865)
KSVR polynomial 2.586 (2.467; 2.705) 10.310 (9.843; 10.777)

KSVR rbf 2.540 (2.420; 2.660) 10.129 (9.654; 10.604)

As EN was the best method for estimating the anthocyanin concentration and RR
appeared on the top of the best methods for the enological parameters considered in
this work, both were selected to identify the relevant spectral regions, regarding the
anthocyanin property. From the analysis of Figure 13, which presents the regression
coefficients obtained for the 30 runs of the Monte Carlo double cross-validation, it is
possible to observe an agreement regarding the relevant regions, covering 400–520 nm
and 700–900 nm ranges. Nevertheless, spectral regions between 400–480 and 900–1000 nm
tend to be noisier for the RR method, but presented much less noise for the EN method.
Thus, 420, 450, 490, 520, 730, and 850 nm peaks might be related to the anthocyanins.
Additionally, some coefficients were very important in some runs, but were very close to 0
in others (Figure 13b), confirming the instability due to the collinearity that is prevalent
in the spectral datasets. In some runs of Monte Carlo double cross-validation, a single
wavelength was selected and led to better results, whereas nearby regions were ignored
(their coefficients were set to zero, which is a property of the LASSO L1-norm penalty). On
other runs, the coefficients converged to a scenario where nearby spectral regions had a
similar contribution (a property of the RR L2-norm penalty). Again, this example shows the
benefits of Monte Carlo double cross-validation as it allows for a more comprehensive study
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of the variability that can be expected from different models built under slightly different
conditions. Concerning the scientific literature on this subject, most of the works from
Table 1 did not identify the important spectral regions for the anthocyanin concentration,
nevertheless, the results obtained here are in agreement with those previously reported
in [10].
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4.5. Miscellaneous Discussion

The previous sections demonstrate the effectiveness of developing regression methods
for estimating the enological parameters considered, namely sugar content, pH, and an-
thocyanin concentration, expanding the existing approaches on the same subject. The best
results obtained for each enological parameter are highlighted in Table A3 (Appendix A) for
an easier interpretation and comparison of the finding. The columns contain information’s
such as the ranking of the three best methods, the mean and standard deviation of the
RMSEs obtained for the external data set, the rather important spectral regions identified by
the regression coefficients of the best model, and the relevant peaks that might be related to
the enological parameter in the study and identified by the highest regression coefficients
of the best model.

Analyzing the overall results, it is possible to verify that sometimes one method was
more adequate for one parameter, and another method was more explanatory for another.
The reason for this can be justified by the fact that each method has its strengths and
weaknesses in terms of modelling the entire spectra vs. the narrow region, linear vs. non-
linear relationships, and sparse vs. correlated features. This means that the best method
depends on the underlying relationship between the hyperspectral image and a particular
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enological parameter, and in practice, the best method is never known a priori. This fact
supports conducting such extensive studies as the one that we have done here, in order
to identify the most suitable regression methods per the observed enological parameters.
Interestingly, our study found that the combination of the Savitzky−Golay preprocessing
and ridge regression methods led to the best or near best performance across all enological
parameters, and was more robust in comparison to other linear approaches, as well as more
complex non-linear methods. Therefore, researchers are incentivized to also consider this
particular combination when modeling such enological parameters. On the other hand,
the present results do not extend to enological parameters that were not considered in
this study. Instead, the application of the complete L&NL-PAC is suggested as a robust
framework to identify superior methods for modeling additional enological properties
of interest.

Another interesting feature of this work concerns the identification of important
spectral regions by screening the regression coefficients. In this regard, the complete spectra
of the samples (ranging from 380 to 1028 nm; Figure 2) were used to establish and validate
(with samples not employed during the training) the models, and the identification of the
best method allowed us to understand which spectral regions may be more relevant to
further design more specific equipment, reducing the dimensionality of data and providing
a faster and more cost-effective methodology (e.g., a smaller number of bands leads to
cheaper equipment). Notably, the most important spectral regions seemed to range between
700 and 960 nm for the three enological parameters, with some other important peaks
appearing between 400 and 520 nm for the anthocyanin parameter. The spectral regions
between 400 and 500 nm also had some important predictors for sugar content and pH,
but they tended to be noisier. It is important to denote that, due to differences in terroir,
the grape berries were at various ripening stages (even within the same bunch and day),
so it was already expected that for the 30 runs of Monte Carlo double cross-validation the
highest regression coefficients would present some scenarios of variation (as it is possible
to observe in Figures 7, 10 and 13). Furthermore, the measurements were done for samples
composed of a small number of berries, which increased the sample variability when
compared with a large number of berries per sample. Thus, we recognize the need to
expand this study with more varieties and even with more vintages in order to try to
capture most of the variations presented in the samples.

5. Conclusions

In this work, a robust framework was developed in order to compare different prepro-
cessing techniques and a wide variety of regression methods for predicting three important
enological parameters (related to grape’s maturity) through hyperspectral imaging. In
addition, the framework employed a Monte Carlo double cross-validation scheme to assess
the prediction performance of each regression method, using its RMSE distribution and a
preset key performance indicator (KPI) as comparison metrics. In terms of preprocessing,
we have shown that the effect of SNV, MSC, and Savitzky−Golay first derivative on the
regression performance was similar, whereas Savitzky−Golay second derivative provided
poor results. Thus, Savitzky−Golay first derivative was the select preprocessing approach
to make further comparisons between the regression methods. From all 16 regression
methods tested, the best results were obtained with ridge regression (that belongs to the
class of penalized regression methods), as it was the method that most often appeared
with the highest performance. This indicates that the combination Savitzky−Golay first
derivative and ridge regression can be a good choice to deal with the prediction of enologi-
cal parameters based on the use of hyperspectral imaging technology. The wavelengths
most contributing to explaining the variability of each enological parameter were also
investigated, providing important information for the development of precision viticulture
technology. However, future work should assess the performance of RR using a larger
dataset (composed by different varieties and vintages) and compare it with the most often
used methods from literature (e.g., PLS and ANN), as well as with recent deep learning
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approaches. The use of ensemble preprocessing methods should also be the subject of
future research.
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Appendix A

Table A1. Descriptive statistics for the reference measurements of sugar, pH, and anthocyanin
contents obtained by conventional analysis.

Enological Parameters Mean SD a Min b Max c Median

Sugar content (◦Brix) 16.925 3.342 9.060 24.720 17.060
pH 3.552 0.346 2.850 4.230 3.580

Anthocyanin concentration (mg·L−1) 160.278 56.860 3.894 257.819 173.841
a,b,c Standard deviation, and minimum and maximum values of each enological parameter, respectively.

Table A2. RMSE of the external validation set obtained by each preprocessing technique over the selected regression
methods: mean ± standard deviation for the 30 runs of Monte Carlo double cross-validation.

Enological
Parameter Methods Auto-Scaling SNV MSC SG 1D SG 2D

Sugar

RR 1.039 ± 0.109 1.047 ± 0.096 1.008 ± 0.092 1.004 ± 0.077 2.964 ± 0.254
LASSO 1.072 ± 0.117 1.146 ± 0.119 1.145 ± 0.105 1.138 ± 0.093 3.371 ± 0.270

PCR 1.058 ± 0.117 1.111 ± 0.096 1.071 ± 0.099 1.089 ± 0.093 1.655 ± 0.189
PLS 1.098 ± 0.117 1.117 ± 0.104 1.085 ± 0.106 1.061 ± 0.084 1.292 ± 0.135
RF 1.330 ± 0.161 1.315 ± 0.121 1.375 ± 0.149 1.338 ± 0.128 1.486 ± 0.154

BoTR 1.358 ± 0.149 1.366 ± 0.127 1.315 ± 0.148 1.370 ± 0.121 1.394 ± 0.144
KPCR rbf 1.072 ± 0.136 1.081 ± 0.098 1.058 ± 0.100 1.060 ± 0.098 1.431 ± 0.184

KPLS polynomial 1.897 ± 0.478 1.263 ± 0.131 1.201 ± 0.152 1.259 ± 0.083 1.302 ± 0.140
KPLS rbf 1.088 ± 0.137 1.114 ± 0.120 1.070 ± 0.106 1.040 ± 0.088 13.09 ± 0.148

pH

RR 0.170 ± 0.017 0.168 ± 0.019 0.165 ± 0.018 0.163 ± 0.018 0.306 ± 0.015
LASSO 0.172 ± 0.016 0.205 ± 0.018 0.197 ± 0.019 0.196 ± 0.014 0.346 ± 0.016

PCR 0.176 ± 0.019 0.171 ± 0.018 0.168 ± 0.019 0.168 ± 0.018 0.198 ± 0.017
PLS 0.178 ± 0.019 0.170 ± 0.018 0.168 ± 0.020 0.165 ± 0.019 0.195 ± 0.016
RF 0.180 ± 0.016 0.182 ± 0.019 0.182 ± 0.016 0.174 ± 0.013 0.184 ± 0.017

BoTR 0.189 ± 0.015 0.190 ± 0.020 0.186 ± 0.017 0.180 ± 0.014 0.194 ± 0.017
KPCR rbf 0.178 ± 0.018 0.172 ± 0.017 0.168 ± 0.018 0.168 ± 0.018 0.192 ± 0.016

KPLS polynomial 0.283 ± 0.071 0.174 ± 0.016 0.181 ± 0.020 0.168 ± 0.016 0.194 ± 0.015
KPLS rbf 0.186 ± 0.023 0.173 ± 0.017 0.170 ± 0.019 0.169 ± 0.017 0.194 ± 0.016
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Table 2. Cont.

Enological
Parameter Methods Auto-Scaling SNV MSC SG 1D SG 2D

Anthocyanins

RR 18.835 ± 1.925 19.090 ± 1.651 20.558 ± 2.016 18.952 ± 1.965 50.597 ± 3.967
LASSO 19.618 ± 1.807 19.249 ± 1.618 20.994 ± 2.296 19.394 ± 2.190 26.770 ± 2.401

PCR 19.871 ± 1.885 19.170 ± 1.893 20.745 ± 2.097 18.949 ± 1.673 26.528 ± 2.646
PLS 19.894 ± 1.804 19.759 ± 2.151 21.081 ± 1.960 19.232 ± 2.285 26.121 ± 2.686
RF 21.456 ± 1.951 22.010 ± 1.819 23.262 ± 1.911 22.078 ± 2.265 23.487 ± 2.151

BoTR 21.479 ± 1.837 22.010 ± 1.650 23.237 ± 1.873 22.444 ± 2.142 25.500 ± 2.165
KPCR rbf 19.514 ± 2.009 19.568 ± 1.961 21.245 ± 2.013 19.459 ± 2.086 26.637 ± 2.865

KPLS polynomial 49.425 ± 18.671 20.722 ± 1.820 22.061 ± 2.004 21.047 ± 2.260 26.048 ± 2.699
KPLS rbf 20.047 ± 0.116 20.065 ± 0.468 21.192 ± 1.920 19.445 ± 2.375 26.036 ± 2.677

SG 1D = Savitzky−Golay first derivative; SG 2D = Savitzky−Golay second derivative.

Table A3. Summary of the best results obtained in this work for each enological parameter.

Enological
Parameter

Ranking Three Best
Methods

(1st, 2nd and 3rd
Positions)

RMSEP
(Mean ± Sd Values)

Rather Important
Spectral

Regions for the Best
Model

Relevant Peaks for
the

Best Model

Sugar
content

RR 0.998 ± 0.102
750–800 nm and

900–1000 nm
770, 920, 960,
and 980 nm

PLS 1.055 ± 0.127
KPLS rbf 1.060 ± 0.128

pH
RR 0.168 ± 0.014

750–950 nm 790, 840 and 930 nmKPLS rbf 0.172 ± 0.015
PLS/

KPCR polynomial
0.172 ± 0.015/
0.175 ± 0.016

Anthocyanin
concentration

EN 19.773 ± 2.019
400–520 nm and

700–900 nm
420, 450, 490, 520,
730 and 850 nm

PCR 19.864 ± 2.231
RR 19.961 ± 2.061
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