
applied  
sciences

Article

A Regularized Mixture of Linear Experts for Quality Prediction
in Multimode and Multiphase Industrial Processes

Francisco Souza 1,2,*, Jérôme Mendes 1 and Rui Araújo 1

����������
�������

Citation: Souza, F.; Mendes, J.;

Araújo, R. A Regularized Mixture of

Linear Experts for Quality Prediction

in Multimode and Multiphase

Industrial Processes. Appl. Sci. 2021,

11, 2040. https://doi.org/10.3390/

app11052040

Academic Editor: Maria Gabriella

Xibilia

Received: 17 January 2021

Accepted: 20 February 2021

Published: 25 February 2021

Corrected: 7 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical and Computer Engineering, Institute of Systems and Robotics,
University of Coimbra, Pólo II, PT-3030-290 Coimbra, Portugal; jermendes@isr.uc.pt (J.M.);
rui@isr.uc.pt (R.A.)

2 Department of Analytical Chemistry & Chemometrics, Radboud University,
6525 AJ Nijmegen, The Netherlands

* Correspondence: f.souza@science.ru.nl

Abstract: This paper proposes the use of a regularized mixture of linear experts (MoLE) for predictive
modeling in multimode-multiphase industrial processes. For this purpose, different regularized
MoLE were evaluated, namely, through the elastic net (EN), Lasso, and ridge regression (RR) penal-
ties. Their performances were compared when trained with different numbers of samples, and
in comparison to other nonlinear predictive models. The models were evaluated on real multi-
phase polymerization process data. The Lasso penalty provided the best performance among all
regularizers for MoLE, even when trained with a small number of samples.
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1. Introduction

Soft sensors are inferential models used for online prediction of quality variables [1–3].
Often, the online measurement of such variables is difficult due to high costs or lack of a
physical sensor. In such cases, the quality variables are measured by means of laboratory
analysis. An operator collects a sample during production and sends it away for laboratory
analysis. Meanwhile, the operator cannot act on the process in response to the most recent
measurement, whose response is not yet known, leading to possible production loss, or at
least quality loss. After the analysis result returns back, the operator can then make a deci-
sion, but it might be late. The goal of soft sensor technology is to solve this issue. It builds
a data-driven model that relates the operational process variables to the quality variable.
By doing so, it allows the online inference of the quality variables, allowing operators to
get earlier information about the quality of the process and take corrective actions on time.
The common steps to deploy a soft sensor are: data cleaning/synchronization [4], feature se-
lection [5], model learning/validation [2], and model maintenance [6]. During the learning
phase, it is beneficial to take, as much as possible, the process properties into consideration.
For example, in case of multimode or multiphase processes, such information can be used
in the modeling efforts. Multimode process operational characteristics exist due to external
factors, such as changes in feedstock, production, operation conditions, or the external
environment. Multiphase process characteristics are commonly found in batch processes.
A series of phases comprise a batch cycle of production, with its own characteristics [7].
Several authors appeal to using these multiple operating properties into the modeling
phase. From now on, we will also refer to each mode/phase of multimode-multiphase
processes as the operating mode.

Two main steps follow the modeling of multimode-multiphase processes for quality
prediction. The first step is the characterization of the operating modes, which can be
done manually [8] or be inferred from data [9]. The second step is the learning of the
models for each mode. In [10], the authors derived and proposed the use of a mixture
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of probabilistic principal component regression (MPPCR) for multimode data. In [11],
the use of a two phase partial least squares (PLS) modeling approach was proposed.
In the first phase, a separated intra-phase-PLS model is learned for each phase, and in the
second phase a series of inter-phase-PLS are learned to model the relationships among
different phases. In [12], in a case study for Mooney viscosity prediction in a rubber-
mixing process, the authors employed a fuzzy C-means clustering algorithm to cluster
the samples in different subclasses, and then taught single Gaussian process regression
(GPR) models for each subclass. In [7], the main idea was to learn individual partial least
squares (PLS) models for each phase and each mode. The distinction between modes and
phases was made manually by the experts. Following this, in [13] the authors successfully
implemented a Gaussian mixture regression (GMR) model to handle the multimode data
in a penicillin process. In [14], the authors incorporated the PLS model into the GMM
framework for quality prediction and fault detection in an industrial hot strip mill process.
In [15], the authors expanded the Gaussian mixture models (GMM) framework to its
semi-supervised form for dealing with incomplete data and multimode processes. Other
approaches model multimode processes using just in time learning (JITL) [16,17]. In [18],
the authors proposed a robust GMR based on the Student’s-t distribution for dealing with
noise and outliers in data.

This paper proposes a mixture of experts (MoE) methodology with the following two
characteristics: (1) the characterization of different modes, and (2) the learning of models
in a single unified manner. MoE consists of a set of experts and gates, applied for modeling
heterogeneous or multi-mode data. The experts are assigned for each mode, while the gate
defines the boundaries for the experts. Figure 1 illustrates the MoE.
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Figure 1. Mixture of experts (MoE) architecture with P experts.

MoE was introduced in [19,20], where the experts were neural network models and
the gates were modeled by a softmax function. Since then, several extensions and variants
of the MoE model have been proposed (see the review paper [21]). A variant of MoE is
the mixture of linear experts (MoLE), wherein the experts are multivariate linear models.
MoLE has the property of universal approximation, works for nonlinear modeling, is
interpretable, and can automatically infer the different modes. All these characteristics
make MoLE suitable for modeling multimode industrial data. However, the estimation
of MoLE is unfeasible in the presence of collinearity or a small number of samples. More-
over, MoLE cannot handle irrelevant variables or perform feature selection. However,
all these, are usual requirements to deal with industrial data. To solve the collinearity
issue, in [9], the authors have proposed the use partial least squares (PLS) for modeling
the gate and experts, defining the Mixture of Partial Least Squares Experts (Mix-PLS). It
has been successfully applied to two industrial multimode-multiphase processes. In a
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short paper, Ref. [22] modeled the results of MoLE with elastic net penalty for modeling a
polymerization multiphase process.

Beyond the industrial context, authors have appealed to regularization to MoLE
models [23–26] to perform of feature selection and allow the learning with small number of
samples. The regularized MoLE methods reported in the literature use the l1 penalty, also
known as least absolute shrinkage and selection operator (Lasso) [27]; the l2 penalty, also
known as ridge regression (RR) or Tikonohov regularization [28]; a compromise between l1
and l2 norm [29], also known as elastic net (EN); and the smooth clipped absolute deviation
(Scad) [30]. In [23], the authors have used a RR penalty for the gates and a Lasso and Scad
penalties to experts in MoLE. They reported successful results, in both, performance and
in finding parsimonious models. They compared the results with a RR regularized linear
model. Similarly, Ref. [24] applied Lasso penalty on gates and experts for classification
problems. Their regularized MoLE performed better than ordinary MoLE, and state of art
classifiers. In [26], the authors employed Lasso penalty for experts, and EN penalty for the
gates, and reported better results than ordinary MoLE. In [31] the authors have employed
a proximal-Newton expectation maximization (EM) to avoid instability while learning the
gates. In [32], the authors discuss the theoretical aspects of the use of Lasso in MoLE. All
results report regularization as a viable approach to improve the performance of MoLE
when dealing with irrelevant variables and small number of samples.

The goal of this paper is to check the performance of regularized MoLE models for
quality prediction in multimode-multiphase processes. For this purpose, a regularized
version of MoLE based on EN penalty has been derived, which has a flexible regularization
form. Thereafter, this paper derives three regularized MoLE models, defined as MoLE-
Lasso, MoLE-RR, and MoLE-EN. Besides, a set of experiments was run and analyzed,
with all regularized MoLEs, and the Mix-PLS [9]. The experiments were run on real
multiphase polymerization data, for predicting two quality variables, with a total of 31
batches. The performances of MoLE models with respect to the number of batches for
training were checked. The results show that MoLE-Lasso gives the most stable results,
even in learning with only a few batches. On the other hand, the Mix-PLS has a tendency to
perform better when the number of batches increases. Finally, all regularized MoLE’s were
also compared to different state-of-the-art models. The results show that the regularized
MoLE is a valid choice for modeling multimode processes data.

The paper is divided up as follows. Section 2 presents the proposed regularized MoLE.
Section 3 presents the experimental results. Finally, Section 4 gives concluding remarks.

2. Regularized MoLE

In this section, the regularized MoLE is derived. First, an introduction of MoLE
is given. Afterwards, the derivation of regularized MoLE and its learning procedure
are presented.

2.1. Notation

In this paper, finite random variables are represented by capital letters and their values
by the corresponding lowercase letters, e.g., random variable A, and corresponding value
a. Matrices and vectors are represented by boldface capital letters, e.g., A = [aij]n×d and
boldface lowercase letters, e.g., a = [a1, . . . , ad]

T , respectively. The input and output/target
variables are defined as X = {X1, . . . , Xd} and Y, respectively. The variables X1, . . . , Xd
can take n different values as {xij ∈ Xj : j = 1, . . . , d and i = 1, . . . , n}, and similarly for
Y as {yi ∈ Y : i = 1, . . . , n}.

2.2. Definition

The MoLE follows the divide and conquer principle. In the learning phase, the input
space is divided into soft regions and a linear "expert" is learned for each region, while the
gates assign soft boundaries to the experts’ domains. The output for a new data sample is
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given by the weighted combination of the experts’ outputs, where the new data is assigned
to a specific or overlap of regions. The MoLE output is given by

ŷ(xi) =
P

∑
p=1

gp(xi) ŷp(xi), (1)

where xi is the vector of input variables, P is the total number of experts, ŷp(xi) is the output
of expert p, and gp(xi) is the gate output for expert p. The gates assign mixture proportions
to the experts, and have the following constraints ∑P

p=1 gp(xi) = 1 and 0 ≤ gp(xi) ≤ 1.
From now on, ŷ(xi), ŷp(xi), gp(xi), are denoted by their shortened versions ŷi, ŷpi, and gpi,
respectively. Expert p has the linear form ŷp(xi) = xT

i θp, where θp is the vector of regression
coefficients of linear expert p; the bias has been omitted to simplify the derivation. For the
gate, the following softmax function will be employed:

gpi =


1

1+∑P
l=2 exp(xT

i vl)
, p = 1,

exp(xT
i vp)

1+∑P
l=2 exp(xT

i vl)
, p = 2, . . . , P,

(2)

where vp is the gate parameter of expert p. This softmax function follows the required
gate constraints. The MoLE formulation fits perfectly for multimode-multiphase processes,
where each different mode can be modeled by an expert p, while the gates define the
boundaries of the different modes. MoLE can infer the number of modes, or can use
the expert information to define the number of modes. It has a very flexible format,
and established learning algorithms. However, MoLE models cannot deal with collinearity
or irrelevant variables. The next section will discuss how to apply regularization to
MoLE models.

2.3. Formulation

The MoLE approximates the true probability distribution function (PDF), defined as
p(yi|xi), by a superposition of PDF’s:

p(yi|xi, Ω) =
P

∑
p=1

gp(xi, G) p(yi|xi, Θp), (3)

where p(yi|xi, Θp) = N (yi|xT
i θp, σ2

p) is the conditional PDF of expert p, governed by the
parameters Θp = {θp, σ2

p}, where σ2
p is the error variance of expert p, assumed to be zero

mean. The collection of gates parameters is represented by G = {v1, . . . , vp}. The collection
of all parameters is defined as Ω = {θ1, . . . , θp, σ2

1 , . . . , σ2
p , v1, . . . , vp}.

The estimation of Ω by maximum likelihood is unfeasible. Instead, the expectation
maximization (EM) is commonly employed [33]. The EM uses a two-steps iterative proce-
dure to perform the likelihood maximization of MoLE. In the first, called the expectation
step (E-Step), the expectation of the log-likelihood (ELL) is evaluated, while in the second
step, called maximization step (M-Step), new parameters are determined by maximum
likelihood estimation from the ELL. Therefore, the maximization of likelihood in EM
is achieved trough successive improvements of ELL; see [33] for further details on the
application of the EM algorithm.
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Since the EM is an iterative procedure, the superscript t is used to indicate the t-th
iteration of the EM algorithm, e.g., Ωt is the vector of the estimated parameters of MoLE at
iteration t. The ELL at the t-th E-Step, Qt(Ω), is given by

Qt(Ω) = Qt
e(Θ) + Qt

g(G), (4)

Qt
e(Θ) =

n

∑
i=1

P

∑
p=1

γt
p(xi) logN (yi|xT

i θp, σ2
p),

Qt
g(G) =

n

∑
i=1

P

∑
p=1

γt
p(xi) log gp(xi, G),

γt
p(xi) =

gt
p(xi)N

(
yi|xT

i θt
p, σ2

p

)
∑P

l=1 gt
l (xi)N

(
yi|xT

i θt
l , σ2

l
) , (5)

where Qt
e( · ) and Qt

g( · ) account for the expert and gate contributions to the ELL, respec-
tively, and γt

p(xi) is the responsibility, which accounts for the probability of sample xi

belonging to the region covered by expert p; from now on γt
p(xi) will also be referred

as γt
pi. The convergence of the ELL, can be measured by computing the ELL difference

|Qt(Ωt)−Qt−1(Ωt−1)| at each iteration. The complete derivation of ELL, and its relation
to the log-likelihood of (3) can be found in ([9], Section 4).

In the M-Step, the objective is to estimate the new parameters Ωt+1 = {Θt+1, Gt+1},
that maximize Equation (4). This is stated as the following optimization problem:

Θt+1 = arg max
Θ∗

Qt
e(Θ

∗), (6)

Gt+1 = arg max
G∗

Qt
g(G

∗). (7)

The EM guarantees that the ELL, and consequently the log-likelihood of Equation (3),
increases monotonically. The EM algorithm runs until the convergence of the ELL, where
the convergence detection condition is defined as |Qt(Ωt)−Qt−1(Ωt−1)| ≤ ξQ, where ξQ
is a convergence threshold.

The algorithmic solution is shown in Algorithm 1.

Algorithm 1 Expectation maximization (EM) for mixture of linear experts (MoLE) learning.

1: procedure MOLE(ξQ)
2: Initialize Ω0, t← 0, Done← FALSE
3: while not Done do
4: E-Step: compute responsibilities, using Equation (5).
5: if t > 0 then
6: if |Qt(Ωt)−Qt−1(Ωt−1)| ≤ ξQ then . Check convergence.
7: Done←TRUE
8: end if
9: end if

10: M-Step: Ωt+1 ← arg maxΩ∗ Qt(Ω∗) . Find new parameters.
11: t← t + 1
12: end while
13: return Ω̂ ← Ωt

14: end procedure

As input, the MoLE receives the convergence threshold ξQ, and outputs the learned
parameters Ω̂.
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2.4. Regularization on Experts

The next step is to solve the maximization (6) for the experts. The experts’ contribution
to the ELL, Qt

e(Θ), can be further decomposed to account for the contribution of each
expert separately, as follows

Qt
e(Θ) =

P

∑
p=1

Qt
ep(Θ), (8)

Qt
ep(Θ) =

n

∑
i=1

γt
pi logN

(
yi|xT

i θp, σ2
p

)
, (9)

where Qt
ep( · ) is the individual contribution of expert p to the ELL. The new vector of expert

coefficients θt+1
p is the one that maximizes Qt

ep(Θ), which is the solution of the following
weighted least squares problem

θt+1
p = arg min

θ∗p

1
2

n

∑
i=1

γt
pi(yi − xT

i θ∗p)
2 = (XTΓpX)−1XTΓpy, (10)

where Γp = diag
(

γt
p1, . . . , γt

pn

)
is the matrix of responsibilities of expert p. However,

in presence of collinearity, the inverse (XTΓpX)−1 becomes ill conditioned. To overcome
this situation, a EN regularization is added as follows to penalize the loss function

θt+1
p = arg min

θ∗p

1
2

n

∑
i=1

γt
pi(yi − xT

i θ∗p)
2 + λe

p

(
α ∑

i
|θ∗pi|+ (1− α)∑

i
|θ∗pi|2

)
, (11)

where λe
p is the regularization parameter that controls the sparsity of the solution, and α

is the EN penalty. The EN regularization allows the use of the Lasso penalty when α = 1,
the RR penalty when α = 0, or the EN penalty when α = 0.5 (a trade-off between Lasso and
RR). The Lasso penalty is known to promote sparse solutions by shrinking the regression
coefficient towards zero, being adequate when dealing with a large number of inputs.
However, the Lasso penalty does not consider the group effect, i.e. for correlated features,
it will tend to select one input while shrinking the coefficient of others to zero. The RR
penalty alleviates the ill posed problem of (XTΓpX + λe

pI)−1 by adding a regularization
factor to it. In RR, all coefficients will have a contribution to prediction. On the other hand,
the EN penalty integrates the benefits of both, it provides sparse solutions (Lasso penalty)
while considering the effect group problem (RR penalty).

The error variance update becomes the solution of the following maximization prob-
lem

σ2 t+1
p = arg max

σ2 ∗
p

n

∑
i=1

γt
pi logN

(
yi|xT

i θp, σ2 ∗
p

)
, (12)

which is equal to

σ2 t+1
p =

∑n
i=1 γt

pi(yi − xT
i θt+1

p )2

∑n
i=1 γt

pi
, (13)

where the updated θt+1
p is used to compute the updated variance term.

The maximization problem in Equation (11) can be achieved using the coordinate
gradient optimization descent algorithm, described in [34]. The coordinate gradient descent
algorithm minimizes the loss function for each coordinate at a time. It converges to the
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optimal value if the loss function is convex and differentiable, conditions that hold for the
loss function (11). The updated coefficient of variable j and expert p equals to

θt+1
pj =

S
(

∑n
i=1 γt

pixij(yi − ỹj
pi), λe

pα
)

∑n
i=1 γt

pix
2
ij + λe

p(1− α)
, (14)

where ỹj
pi = ∑d

l 6=j xilθpl is the fitted value of local expert p, without the contribution of
variable j. S(z, η) is the soft threshold operator, given by

S(z, η) = sign(z)(|z| − η)+ =


z− η, if z > 0 and η < |z|,
z + η, if z < 0 and η < |z|,
0, if η ≥ z.

(15)

Further details on the derivation of EN learning by coordinate gradient descent can
be found in [35]. For the experiments, the glmnet package [34] has been used. It is a
computationally efficient procedure that uses cyclical coordinate descent, computed along
a regularization path for solving the EN problem.

Another issue is to select a proper value of λe
p, which controls the overfitting and the

sparsity of the solution. For such purpose, here it is adopted the Bayesian information
criterion (BIC), which measures the trade off between accuracy and complexity, and has
the following format

BICe(λe
p, α) = ne

p log

(
n

∑
i=1

γt
pi

(
yi − xT

i θt+1
p

)2
)
+ log(ne

p)ψ
e
p, (16)

where np
e = ∑n

i=1 γt
pi is the number of effective samples of expert p, and ψe

p is the number
of the degree of freedom of expert p, and is the number of non zero elements in θ. The BIC
has a tendency to penalize complex models, due to the log(ne

p) multiplicative factor, giving
preference to simpler models. Thus, the selected value of λe

p is the one that minimizes the
value of BIC(λe

p, α).

2.5. Regularization on Gates

On the experts’ update, the EN regularization was easily added to penalize the experts’
parameters (Section 2.4). On the other hand, during the gates learning, the application
of the regularization term is not explicit. The contribution of gates to the ELL, Qt

g(G), is
given by

Qt
g(G) =

n

∑
i=1

P

∑
p=1

γt
pi log gpi

=
n

∑
i=1

[
P

∑
p=2

γt
pix

T
i vp −

P

∑
p=1

γt
pi log

(
1 +

P

∑
k=2

exp
(

xT
i vk

))]
.

(17)

The solution for the new parameters Gt+1 by direct maximization of Equation (17)
is not straightforward. Instead, the iterative re-weighted least squares (IRLS) method
will be employed. The IRLS algorithm works in the following way. First, define the
following auxiliary variable v̂k

p as the auxiliary gate parameter in the k-th iteration of the
IRLS algorithm. It is updated as follows:

v̂k+1
p = v̂k

p +

[
∂2Qt

g(G)

∂vk
p(vk

p)
T

]−1[
∂Qt

g(G)

∂vk
p

]
, (18)

= (XTRpX)XTup = (XTRpX)XTRpẑk
p,
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where

Rp = diag
(

gp1
(
1− gp1

)
, . . . , gpn

(
1− gpn

))
,

up = [gp1 − γt
p1, . . . , gpn − γt

pn]
T ,

ẑk
p = Xv̂k

p −R−1
p up.

The IRLS algorithm runs until convergence. The employed convergence detection
condition is ||v̂k+1

p − v̂k
p||2 < ξ I . At the end of the algorithm, the new gate parameter is

updated as vt+1
p = v̂K

p , where K is the last iteration of the IRLS algorithm. In practice, few
K iterations are necessary in the IRLS algorithm. The IRLS solution can become unstable
due to the ill-conditioned inverse R−1

p . Many authors have proposed different alternatives
to IRLS, to overcome this problem, such as the proximal-Newton EM in [31] that avoids the
matrix inversion in the gates update. Here, a regularization term is added, which works
well in practice. Specifically, the regularization term ζI is added such that the inverse
becomes (Rp + ζI)−1. In experiments, ζ = 10−3 is used.

However, similarly to the experts, the solution for the gates at each iteration of IRLS
becomes ill conditioned in the presence of collinearity. Thus, through the closed form
solution of the inner loops of the IRLS algorithm in Equation (18), the results derived for
the experts are mimicked to the gates. By modifying so, the value of v̂k

p to be found at the
k-th IRLS algorithm iteration with the EN regularization added, becomes

v̂k+1
p = arg min

v̂∗p

1
2

n

∑
i=1

rpi(ẑk
pi − xT

i v̂∗p)
2 + λ

g
p

(
α ∑

i
|v̂∗pi|+ (1− α)∑

i
|v̂∗pi|2

)
. (19)

Then, at each iteration of IRLS, an EN penalty is added to the loss function. In total,
Kp EN maximization problems are computed. In a way similar to case of the experts,
the solution of (19) can be achieved by using the coordinate gradient descent algorithm,
described in [34]. In that case

vk+1
pj =

S
(

∑n
i=1 rpixij(ẑk

pi − z̃j
pi), λ

g
pα
)

∑n
i=1 rt

pix
2
ij + λ

g
p(1− α)

, (20)

where z̃j
pi = ∑d

l 6=j xilvpl is the fitted value of gate p, without the contribution of variable j.

The major issue here is to find the most appropriate λ
g
p for each gate p and at each

iteration of the IRLS algorithm, where the value of λ
g
p controls the sparsity of the solution.

For such purpose, it is adopted the BIC, which measures the trade off between accuracy
and complexity, and for the gates, it has the following format

BICg(λ
g
p, α) = ng

p log

(
n

∑
i=1

rpi

(
zpi − xT

i vk
p

)2
)
+ log(ng

p)ψ
g
p, (21)

where ng
p =

(
∑i rpi

)
is the number of effective samples of gate p, and ψ

g
p is the degrees

of freedom of expert p which is equal to the number of non zero elements in v. Thus,
the selected value of λ

g
p is the one that minimizes the value of BICg(λ

g
p, α). The IRLS

algorithm with EN penalty is described in Algorithm 2.
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Algorithm 2 Iterative re-weighted least squares (IRLS) with elastic net (EN) regularization.

1: procedure IRLS-EN(vt
p, ξ I ,up,Rp,λg

p,α )
2: Initialize v̂0

p ← vt
p, k← 0, Done← FALSE

3: while not Done do
4: ẑk

p ← Xv̂k
p −R−1

p up

5: v̂k+1
p = arg minv̂∗p

1
2 ∑n

i=1 rpi(ẑk
pi − xT

i v̂∗p)2 + λ
g
p

(
α ∑i |v̂∗pi|2 + (1− α)∑i |v̂∗pi|

)
6: if ||v̂k+1

p − v̂k
p||2 ≤ ξ I then

7: Done←TRUE
8: end if
9: k← k + 1

10: end while
11: return vt+1

p = v̂k
p . t: EM index; k: IRLS index.

12: end procedure

2.6. Model Selection and Stop Condition

In ordinary MoLE learning, the ELL is employed as the measure of convergence. Here,
in addition to ELL, the BIC criterion will be employed to select the best MoLE architecture
along the EM iterations. In that case, the parameters Ω to be selected is the ones were the
BIC is minimal, instead of ELL. For this purpose, at each EM iteration, the BIC criterion
is computed:

BIC(Ω) = m log

(
∑n

i=1(yi − ŷi)
2

m

)
+ log(m)

P

∑
p=1

(
ψe

p + ψ
g
p

)
. (22)

Smaller values of BIC means better models. The BIC will increase as the complexity
of the MoLE architecture increases. That selection allows the selection of less complex
architectures, and overcome the problem of overfitting in the prediction phase. The ELL
measures the convergence of the MoLE, while the BIC is considered as the criteria to select
the best model. Here, the number of experts selected is not considered a concern, it is
assumed that this information is known a priori, and comes from the process to be modeled.
However, this criterion can also be employed for model selection. In [36], there is a short
discussion on different modeling selections for MoE.

2.7. Different Regularized MoLE

The regularized MoLE learning, presented in previous sections will be used to derive
three main regularized MoLE models for the experimental part. First, α = 1 is considered
to derive the MoLE-Lasso; then α = 0.5 is used to derive the MoLE-EN; and α = 0 is used
to derive the MoLE-RR. The selection for regularized MoLE regularization parameters will
follow the BIC procedure, as previously discussed. The source code will be made available
at the author’s github page (www.github.com/faasouza (accessed on 19 February 2021)).

3. Experimental Results

This section presents the experimental results of using a real industrial polymer-
ization dataset from [8]. The goal in this case study was the estimation of two quality
variables related to the resin production in a batch polymerization process. These variables
are two chemical properties: the resin acidity number (NA) and the resin viscosity (µ).
The datasets comprise a total of 34 variables measured over the course of the process,
such as temperatures, pressures, valve openings, and controller set-points (manually ad-
justed). The provided dataset contains data from 33 batches (16 months of operating effort).
The data were divided into two subsets: 26 batches constitute the training set, and the
remaining 6 represent the test set. The properties of dataset are detailed in Table 1.

www.github.com/faasouza
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Table 1. Properties of the polymerization dataset.

Property Values

# batches train 25
# batches test 6

# samples per batches train 13, 17, 22, 16, 17, 19, 26, 18, 19, 17, 16, 20, 14,
13, 16, 18, 20, 21, 23, 17, 16, 18, 23, 20, 19, 18

average samples per batches train 18
# samples per batches test 23, 21, 24, 20, 19, 20

average samples per batches test 21

The average number of samples per batch for training data is 18 samples, while for
the test is 20. The total samples for the test dataset are 127 samples.

3.1. Experimental Settings

The results are divided into two steps. In the first step, the behavior of different
regularized MoLEs is evaluated in different scenarios (different numbers of batches of
data for training). The objective in this step is to understand the effects of samples in
the stability/performance of each MoLE model with different penalties. In the second
step, the mixture models that were trained on the full training data are compared to
other predictive models by assessing the performance on the test dataset. The predictive
performance is measured by the normalized root mean square error (NRMSE) and the
coefficient of determination (R2). The definitions of these metrics are as follows:

NRMSE =

√
1
n ∑n

i=1(yi − ŷi)2

max(y)−min(y)
, (23)

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 , (24)

where ŷi is the predicted output and y is the sample mean of output y: y = 1
n ∑n

i yi. Lower
values of NRMSE mean better models, while higher values of R2 mean better models. R2

can be interpreted as the rate of explained variance of the output to be predicted by the
model, with bounds 0 ≤ R2 ≤ 1, where 1 means perfect fit.

3.2. Comparison of a Regularized Mixture of Expert Models

In this section, the performances of different regularized mixture of experts, MoLE-
Lasso, MoLE-EN, MoLE-RR, and Mix-PLS, are compared when using different numbers
of samples for training. For this purpose, from the total of the 27 batches, 1, 5, 10, 15,
and 20 batches were chosen randomly to compose the training dataset for training the
MoLE models, while the original test set of six batches was kept fixed for evaluating the
performance. The same procedure was repeated 10 times for each experiment, and then the
R2 metric was computed for each repetition. The average results for each of the 10 trials are
shown in Table 2, for each model and for the different number of batches in the trainning
dataset.
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Table 2. Average R2 values of different regularized MoLE models trained with different numbers of
batches on acidity and viscosity datasets. The bold marked values indicate the best performance.

Acidity Viscosity

MoLE MoLE MoLE Mix-PLS MoLE MoLE MoLE Mix-PLSLasso RR EN Lasso RR EN

1 batch 0.484 0.345 0.365 0.325 0.614 0.463 0.760 0.385
5 batches 0.814 0.843 0.792 0.651 0.928 0.910 0.920 0.772
10 batches 0.910 0.883 0.891 0.817 0.930 0.920 0.924 0.821
15 batches 0.924 0.909 0.924 0.905 0.944 0.925 0.943 0.905
20 batches 0.927 0.914 0.928 0.924 0.945 0.923 0.941 0.949

To complement the analysis, the boxplots of R2 between predictions and test data
under a different number of batches for acidity and viscosity are presented in Figure 2.
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Figure 2. Boxplot for the different MoLE models trained with different numbers of batches for (a)
resin viscosity prediction and (b) resin acidity number prediction. +: They are part of box plot, they
are outliers in the residuals.
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From Table 2, the results of training with 1 batch for resin acidity number prediction,
show that MoLE-Lasso performs better with an average R2 = 0.44. On the other hand,
the performance of resin viscosity prediction with 1 batch has better results for MoLE-EN,
with a value of R2 = 0.76. This shows that the resin viscosity can be predicted even
with few data for training. From the boxplot, Figure 2, the MoLE-Lasso and MoLE-EN
have the lowest variance on resin viscosity prediction, while for resin acidity number the
variance of prediction is higher. Figure 2, exhibits that the performance of all models
increases with the number of batches used for training, as well the variance decreases.
An interesting observation is related to the Mix-PLS performance, which shows a high
variance of performance for small batches, which decreases as the number of training
batches increases. For 20 batches it performs quite similar to, or even better than, Lasso
regularization. This suggests that Mix-PLS can be a valid option when dealing with a large
number of samples (in our experiment, more than 400 samples). Overall, RR regularization
performs poorly among the experiments. This is reinforced by results in Table 2, where
MoLE-RR provides the worst results in the majority of experiments.

Overall, all regularized MoLE performed well in the experiments. The MoLE-Lasso
has shown to be more stable along the experiments, mainly when dealing with small
number of batches, as concluded from the prediction performance and from inspecting the
boxplot’s results.

3.3. Comparison with Other Predictive Models

To compare the predictive performance of MoLE-Lasso, MoLE-EN, and MoLE-RR
with other predictive algorithms, all models were run in the training dataset of 25 batches
and tested on the test dataset. For comparison purposes, the following models were
implemented: a multivariate linear regression model with Lasso, EN, and RR penalties, an
artificial neural network (ANN), a support vector regression, with radial basis kernel (SVR),
with hyper-parameters γ (kernel width) and C (Gain), a decision tree (DT), and partial least
squares (PLS). The parameters of Lasso, EN, RR, and PLS were selected so as to minimize
the BIC criterion. The number of hidden nodes Nh of the ANN and the regularization
parameter γLS-SVR and the Gaussian kernel parameter σLS-SVR of the SVR were determined
using a 10-fold cross validation. Table 3 shows the parameters obtained for the PLS, ANN
and SVR models.

Table 3. Parameters selected for PLS, ANN, and SVR models for each data set.

Dataset PLS ANN LS-SVR

Viscosity LV = 10 Nh = 3 γLS-SVR = 50, σLS-SVR = 10

Acidity LV = 17 Nh = 3 γLS-SVR = 50, σLS-SVR = 25

Table 4 shows the prediction performance on the resin acidity number and resin
viscosity, for all models, on the test dataset. Table 4, shows that the regularized MoLE
models perform better among all datasets. On the other hand, nonlinear models such as
ANN, SVM and DT have the worst results. Indeed, according to the results, the performance
results have shown that for viscosity this is essentially a linear modeling problem, while
for the acidity, there is a clear benefit of using the regularize MoLE methods. As the MoLE
models can capture the different phases of the process, it could increase the performance
over the linear and nonlinear models.
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Table 4. Performance results of all methods on the polymerization dataset, normalized root mean
square error (NRMSE), and R2.

Acidity

MoLE MoLE MoLE Mix-PLS Lasso RR EN PLS ANN SVR DTLasso RR EN

NRMSE 3.64 4.60 6.82 3.62 6.81 6.95 6.91 7.01 4.25 5.94 6.85
R2(%) 0.973 0.958 0.965 0.974 0.960 0.939 0.959 0.962 3.63 0.929 0.908

Viscosity

MoLE MoLE MoLE Mix-PLS Lasso RR EN PLS ANN SVR DTLasso RR EN

NRMSE 7.41 8.62 8.31 8.90 7.57 8.38 7.41 7.60 9.95 12.38 10.01
R2(%) 0.941 0.921 0.927 0.916 0.934 0.925 0.942 0.931 0.909 0.890 0.910

4. Conclusions

This paper derived different regularized MoLE models for multiphase-multimode
modeling. For this purpose, a MoLE algorithm that integrates Lasso, EN, or RR penalties,
was derived and used in the experiments. In the presented case study, the MoLE-Lasso
has shown to provide the most stable performance, even when learning with few samples.
The other regularized MoLE was shown to have less stability when learning with few
samples—for instance, take the MoLE-RR and the Mix-PLS—but they have provided
consistent results when increasing the number of training samples. The performance-
regularized MoLE is problem dependent, and they all must be a valid option when dealing
with multimode data.

Future work will check the performance of MoLE on feature selection on industrial
data and new ways to improve the stability of MoLE learning. Future works will also
address the comparison of regularized MoLE on different domain problems, with vari-
ety with respect to the sample size and the number of input variables and compare its
performance against state-of-art-machine learning models.
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