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The relationship between the triplet- and singlet-pair interaction coefficients in the uniform singlet- and triplet-
pair extrapolation method recently suggested for extrapolatingab initio energies to the one-electron basis set
limit is analyzed. Based on the premise that such a ratio is invariant over the configuration space of the
molecule, generalizations of the method are investigated and their performance tested on extrapolations with
MP2, CCD, CCSD, and MRCI(Q) energies. The best variant requires raw energies calculated using augmented
correlated consistent basis sets with cardinal numbers up toX ) 6 at a single geometry. A scheme is also
suggested that performs better than the traditionalX-3 law and possibly the original uniform singlet- and
triplet-pair extrapolation method but requires data only up toX ) Q.

1. Introduction

It is well-established that the conventional correlated orbital-
based methods involve only even powers ofrij while the exact
wave function of an atomic or molecular system shows a linear
dependence in the interelectronic coordinaterij as this ap-
proaches zero.1,2 This is so whatever approach one uses to treat
correlation effects [Møller-Plesset perturbation theory (MP),
configuration interaction (CI), coupled cluster (CC) method, etc],
and explains the slow convergence of such methods with
increasing number of Slater determinants used to represent the
multi-electron wave function. In fact, this may explain why the
highest levels of accuracy in electronic structure calculations
have not been achieved via such methods but through uncon-
ventional ones such as the quantum Monte Carlo method3 or
wave functions that depend explicitly onrij.4-6 Yet, despite the
rising success of the latter approaches,7 the conventional CI
ansatz, the CC family of methods [CCD, CCSD, CCSD(T), CR-
CC(2,3), etc; for reviews, see ref 8 and a recent paper9 that
gives references to such methods as applied to the potential
energy surface (PES) of the water molecule] or MP2 perturba-
tion theory8 continue to be routine especially when combined
with extrapolation techniques. Indeed, the inclusion ofrij

coordinates in multireference (MR) approaches has only recently
been done using a novel variant of the explicitly correlated
multireference averaged coupled-pair functional method and
applied to the hydrogen fluoride molecule,10 with conventional
CI methods [usually with the popular degenerate Davidson
correction, CI(Q) or MRCI(Q)] proving essential for the
calculation of accurate PESs. The same holds for CC methods
which are known to treat electron correlation most efficiently,
and we will examine here CC results obtained both with the
inclusion of double excitations (CCD) and single and double
excitations as well as perturbative corrections for connected
triple excitations [CCSD and CCSD(T)].

An enormous progress in electronic structure calculations for
systems with small and moderate sizes arose with the introduc-
tion of correlated-consistent polarized valence basis sets11-14

(cc-pVXZ or VXZ), augmented ones (AVXZ) or even more

flexible basis sets now being routinely employed. Built in a
systematic manner that is intended to relate the correlation
energy to the cardinal numberX, such basis sets prompted the
search for laws to extrapolate the total energy or its components
to the complete basis set (CBS) limit8,15-28 (the list is by no
means exhaustive), a subject also addressed in the present work.

Extrapolation to the CBS limit finds support on the depen-
dence of the correlation energy on the partial wave quantum
number for two-electron atomic systems and second-order pair
energies in many-electron atoms.29-41 Specifically, the energy
has been shown to vary as an inverse power of the cardinal
number,

whereEX
cor is the correlation energy for the basis set of cardinal

numberX, andE∞
cor , Acor, andâ are parameters.16,17 Asymp-

totically one expects the value ofâ ) 3 , although Truhlar17

recommended optimal extrapolation exponents for MP242 (âMP2

) 2.2), CCSD and CCSD(T) [âCCSD ) âCCSD(T) ) 2.4]
calculations by minimizing the root-mean-square deviation
(rmsd) in fits to Halkier et al.16 estimated basis-set limits for
Ne, HF, and H2O. Since his main interests were to develop a
rule with potential interest for moderately large systems, such
extrapolations focused on small basis sets (D anT) and valence-
only limits, as for those systems changes in core correlation
energy upon bond formation are usually small compared to other
errors.43,44 The above numerical values have later been re-
evaluated by considering a larger set of reference data.18

Variable-exponent inverse-power laws have most recently been
also utilzed by Bakowies,28 who used the adjustableâ parameter
to quantify deviations from the asymptotic convergence behav-
ior, and analyzed both analytical examples (i.e., other asymptotic
expansions15,20,22,25,26) and numerical extrapolations to either
large but finite or CBS targets. He observed that deviations from
asymptotic convergence are most significant for extrapolations
from small basis sets but still noticeable for basis sets as large
as V5Z or V6Z. By further defining extrapolation exponents
âopt(X, X + 1, X + N) that are optimal for a given set of† E-mail address: varandas@qtvs1.qui.uc.pt.
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molecules, Bakowies28 suggested to varyâ such that the rmsd
between extrapolated and explicitly calculated energiesEX+N

become minimal. Thus, rather than providing a single optimal
exponent, he recommends specific exponents for specific
extrapolations. His strategy is therefore similar to the one utilized
by Schwenke,26 with the only formal difference being that the
involved scaling is performed analytically rather than numeri-
cally. However, the most popular dual-level CBS law that
warrants the correct asymptotic behavior is15

whereEX
cor andA3 are parameters commonly determined from

energies for the two highest affordable values ofX, and the
offset parameterR is fixed from some other condition.27 In fact,
the potential benefit of using such rules is well recognized,45

justifying that the search for improved extrapolation techniques
continues to be an active area of research. The reader is
addressed to ref 45 for a detailed analysis of the sources of
error in electronic structure calculations and a comparison of
the performance of eq 2 with a few other rules on small chemical
systems using VXZ basis sets.

Although also utilized for the total energy on the basis of
the dominance of the correlation energy lowering (ref 46, and
references therein), eq 2 finds its justification in the energy
increments of partial-wave expansions of atomic correlation
energies29-41 or similar expressions derived from the conver-
gence behavior of the principal expansion.8,32,47 From a MP2
study on arbitrary excited states of He-like atoms, where the
first-order wave functionψ behaves for smallr12 asψ ) (1 +
κr12)Φ + O(r12

2 ) with κ ) 1/2 (1/4) for singlet (triplet) states1,2

andΦ being the HF wave function, Kutzelnigg and Morgan39

established the following: for natural-parity singlet states, the
leading contribution at second-order of perturbation theory is
proportional to (l + 1/2)-4, with no contributing odd-terms
proportional either to (l + 1/2)-5 or (l + 1/2)-7 and the term (l
+ 1/2)-6 being universally-(5/4) that of (l + 1/2)-4; for all
triplet states, the leading term is proportional to (l + 1/2)-6; for
unnatural parity singlet states, the coefficient is proportional to
(l + 1/2)-8. Moreover, they have shown39 that the ratio of the
(l + 1/2)-6 and (l + 1/2)-4 coefficients for natural-parity singlet
states is not simply-(5/4) when the unperturbed wave function
is a Hartree-Fock one. Such results generalize to the Møller-
Plesset energy of atoms with any number of electrons.39,41Note
that the single-term extrapolation formula (2) on the cardinal
numberX (or L, the maximum partial wave numberlmax in a
partial wave expansion of the correlation energy) finds its
justification in the fact that the leading contribution at second-
order of perturbation theory is proportional to (l + 1/2)-4. Note
further that the use of just one term may be accuracy-limiting
as the subset of natural singlet-pairs in a MP2 calculation for
the Zn2+ ion has been found to contribute only 54.7% of the
total correlation energy.41 Although Klopper22 has utilized
distinct one-term expansions for the singlet and triplet pairs (thus
accounting for theX-3 andX-5 behavior, respectively), we have
chosen in our uniform singlet- and triplet-pair extrapolation
(USTE27) approach not to decompose the total correlation into
such contributions. We have done so, first, because it is
unnecessary for accurate results;27 second, because such a
decomposition scheme cannot be implemented for open-shell
CCSD calculations26 (the wave function is not a spin eigen-
function in practical implementations of CCSD theory) nor is
it commonly available in most CC codes; and third, because

such a decomposition is extraneous to MRCI calculations as a
single excitation out of the reference space can be counted either
as a singlet-pair or as a triplet-pair depending on the spin
coupling of theN - 1 part of the determinant.

In the present work, we follow our previous strategy27 by
seeking an analytic scheme that extrapolates accurately the
correlation energy irrespectively of the diversity of basis set
data used for the extrapolations while preserving the correct
asymptotic behavior. For practical reasons, it will be dual-level
type in the sense that reference calculations for two basis-sets
will suffice for the extrapolation; for a one-parameter rule (to
our knowledge, the only one available thus far), see ref 20. Since
the method is expected to allow reliable extrapolations from
energies calculated with any basis sets including those with small
X values, one hopes that it will capture the differences between
such bases in a realistic manner. In fact, although the angular
momentum is not a good quantum number for many-particle
systems, and the subsets of wave functions of different angular
momentum are difficult to saturate or even balance, it is also
true that extrapolations with fairly lowl values have shown
excellent results22,26,27for small molecules when using cc-type
basis sets.11-14 Indeed, this has been a major motivation for
carrying out the present work.

A final remark goes to the extrapolation of the uncorrelated
Hartree-Fock (HF) and complete-active-space-self-consistent-
field (CASSCF or simply CAS; uncorrelated in the sense of
lacking dynamical correlation) energies. Since it is a topic that
lies outside the scope of the present work, we will address the
reader to refs 27, 48, 49 (and references therein) for details.
Suffice it to say that both extrapolations are geometry-dependent,
and hence performed pointwise. Moreover, the use of HF
extrapolated energies plus correlation-scaling/USTE-extrapolated
ones50,51 has recently shown51,52 great promise in obtaining
accurate PESs at a low cost, a hybrid approach that will also
be of no concern to us here.

The paper is organized as follows. In section 2, we describe
the method, while the results are reported and discussed in
section 3. The conclusions are in section 4.

2. Method

The asymptotic limit in eqs 1 and 2 can be imposed by
expressing the correlation energy as a rational fraction, which
we write in the form

where thep’s and q’s are coefficients, andM g N ; for
convenience, we may also think ofX asX + R. The simplest
function of this type is obtained withM ) ∞, which assumes
the form of eqs 1 and 2 if one recalls that for largeX values a
Taylor expansion inX-1 yields limX-1f0 1/(1 + qNX-N) ∼ 1 -
qNX-N. Furthermore, ifN ) 3, one hasE∞

cor ) p0 , andA3 )
-p0q3. Another variant that will be discussed later consists of
limiting the numerator to odd powers, and keeping only the
term forM ) 5. In fact, such a continued fraction representation
proves to be general and reliable for representing the calculated
correlation energies. For example, withM ) ∞ and the two
parameters determined from the results for the two largest
cardinal numbers (9 and 10) used in ref 45 for the neon atom,
one getsE∞

cor,S ) -210.64 mEh andE∞
cor,T ) -104.88 mEh for

the singlet-pair and triplet-pair CCSD/VXZ energies, to be
compared with-210.61 mEh and-104.87 mEh from explicitly

EX
cor ) E∞

cor +
A3

(X + R)3
(2)

EX
cor )

p0 + pMX-M + pM+1X
-(M+1)...

1 + qNX-N
(3)
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correlated calculations (CCSD-R12) reported in the same paper.
Instead, if one choosesM ) 5 with the three parameters
determined from calculations forX ) 8-10 , one obtains for
the singlet-pair energyE∞

cor,S ) -210.63 mEh. In fact, the raw
nonfitted energies for small-X basis sets consistently show fair
to good agreement with the predicted values, thus supporting
the reliability of the extrapolation. The rational fraction (3) has
indeed been found to be accurate even when unusual asymptotic
dependences (M and N must then be appropriately chosen or
left as adjustable parameters) are found as with explicitly
correlated energies.53 Of course, related forms that preserve the
correct asymptotic behavior such asEX

cor ) A exp(-bX-3) may
perform similarly, with the data (partly due to the fact thatX is
not an exact quantum number) being often unable to discriminate
the one that performs best.

The USTE27 scheme has its basis on the simplest three-
parameter rule of the above general type in eq 3. Including the
offset parameterR , it assumes the form

whereE∞
cor, A3, andA5 are parameters to be determined from

energies calculated with correlation-consistent basis sets of
different cardinal numbers. For a fixed value ofR , eq 4 is then
transformed to the effective two-parameter USTE rule by
defining27

with the parametersA5
o ) A5(A3 ) 0) , c and m determined

from ab initio energies for a variety of systems. For example,
from anew27 MRCI(Q)/AV XZ calculations for 24 systems, as
well as MP2/VXZ, CCD/VXZ, and CCSD/VXZ energies avail-
able in the literature22 for cardinal numbers ranging fromX )
D to X ) 6 , the following sets of parameters have been obtained
with27 R ) -3/8: A5

o ) 0.003769,c ) -1.1784771 Eh
-5/4, and

m ) 5/4 for MRCI(Q);A5
o ) 0.1660699,c ) -1.4222512 Eh

-1,
andm ) 1 for the CC family of methods;A5

o ) 0.0960668,c
) -1.582009 andm ) 1 for MP2. It has further been shown27

that both the full correlation in systems studied by MP2 and
CC [CCD, CCSD, and CCSD(T)] methods and its dynamical
part in MRCI(Q) calculations52 or even correlation energies
obtained by correlation energy extrapolation via intrinsic
scaling54 could be accurately extrapolated to the CBS limit with
the USTE rule. Naturally, the above coefficients are likely to
vary with the method and the basis set. However, this
dependence should not be significant for methods and basis sets

that belong to related families, and we have even explored its
extendibility (“universality”) by showing that accurate results
could be obtained for systems not belonging to the calibrating
set.49,52

The USTE rule may also assume the form

with the ratioτ53 defined by

Having the correct asymptotic behavior, one expects eq 4 or eq
6 to be among the best three-parameter models to accurately fit
the data, and hence allow a reliable estimate of the ratioτ53 )
A5/A3 to be extracted from the reported correlation energies.
The values ofτ53 obtained in this way are reported in Table 1
for seven systems calculated by the MP2, CCD, and CCSD
methods with VXZ (X ) D,T,Q,5,6) basis sets, while Table 2
gathers the results for twenty systems calculated by the MRCI-

TABLE 1: Ratios τ53 from Valence Shell Correlation Energies Obtained with MP2, CCD and CCSD Calculationsa

MP2 CCD CCSD

system τ53
b τ53

DTQ c τ53
Q56 d τj53 ( ∆τj53

e τ53
b τ53

DTQ c τ53
Q56 d τj53 ( ∆τj53

e τ53
b τ53

DTQ c τ53
Q56 d τj53 ( ∆τj53

e

CH2 -1.33 -1.228513-1.319114-1.27( 0.05 -0.72 -0.945620-0.720395-0.83( 0.11 -0.68 -0.931833-0.707320-0.82( 0.11
CO -1.50 -1.374233-1.512582-1.44( 0.07 -1.24 -1.304091-1.241865-1.27( 0.03 -1.24 -1.287849-1.221248-1.26( 0.03
F2 -1.54 -1.342934-1.522513-1.43( 0.09 -1.33 -1.307606-1.302514-1.30( 0.00 -1.32 -1.304388-1.303390-1.30( 0.00
H2O -1.48 -1.308266-1.426115-1.37( 0.06 -1.18 -1.221478-1.108013-1.16( 0.06 -1.17 -1.219178-1.098821-1.16( 0.06
HF -1.50 -1.347506-1.483362-1.37( 0.06 -1.23 -1.304170-1.246653-1.28( 0.03 -1.22 -1.300331-1.245373-1.27( 0.03
N2 -1.50 -1.360448-1.498338-1.43( 0.07 -1.22 -1.260942-1.190430-1.23( 0.04 -1.21 -1.248841-1.179869-1.21( 0.03
Ne -1.51 -1.358759-1.564583-1.46( 0.10 -1.28 -1.350284-1.357015-1.35( 0.00 -1.27 -1.345554-1.348784-1.35( 0.00

a Although the ratiosτ53
DTQ andτ53

Q56 are reported in this table and Table 2 with six significant figures as actually employed in the calculations,
their average values and associated errors at midpoint (defined such as to embrace both estimates) are quoted for convenience up to two significant
figures.b Determined from eq 5 using the values ofA3 from ref 27.c Determined from a fit of eq 6 toX ) D, T, Q energies.d As in c but using
up to X ) 6 energies.e Average ofτ53

DTQ andτ53
Q56, and error; see the text.

EX
cor ) E∞

cor +
A3

(X + R)3
+

A5

(X + R)5
(4)

A5 ) A5
o + cA3

m (5)

TABLE 2: Ratios τ53 Extracted from MRCI(Q) Calculations

system τ53
a τ53

DTQ b τ53
Q56 c τj53

d

H2 -0.28 -0.182891 -0.151363 -0.17( 0.02
H3

+ -0.28 -0.348692 -0.380301 -0.36( 0.02
HeH+ -0.46 -0.805712 -0.751268 -0.78( 0.03
He2

++ -0.44 -0.680290 -0.624268 -0.65( 0.03

BH -0.68 -1.007223 -0.760193 -0.88( 0.12
CH -0.70 -0.796840 -0.636825 -0.72( 0.08
NH -0.82 -0.895582 -0.780484 -0.84( 0.06
OH -0.97 -1.137639 -1.056519 -1.10( 0.04
HF -1.08 -1.305956 -1.243364 -1.28( 0.03
SH -0.91 -0.803153 -0.879484 -0.84( 0.04
H2O -1.651679 -1.655947 -1.65( 0.00

B2 -0.56 -0.899805 -0.517532 -0.71( 0.19
C2 -0.89 -1.050512 -0.843869 -0.95( 0.10
N2 -1.06 -1.135105 -1.041680 -1.09( 0.05
O2 -1.16 -1.195966 -1.147989 -1.17( 0.02
F2 -1.28 -1.275911 -1.270502 -1.27( 0.00

BN -0.93 -1.102373 -0.922511 -1.01( 0.09
BO -0.99 -1.265508 -1.136348 -1.20( 0.07
CN -1.05 -1.095757 -0.971588 -1.03( 0.07
CO -1.08 -1.220184 -1.144859 -1.18( 0.04

a Determined from eq 5 using the values ofA3 reported in ref 27.
b Determined from a fit of eq 6 toX ) D, T, Q energies.c As in a but
using up toX ) 6 (X ) 5 in the case of H2O) energies.d Average of
τ53

DTQ andτ53
Q56, and error. See footnotea of Table 1.

EX
cor ) E∞

cor +
A3

(X + R)3 [1 +
τ53

(X + R)2] (6)

τ53 )
A5

o

A3
+ cA3

m-1 (7)
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(Q)/AVXZ removed method for the same cardinal numbers. Also
shown for comparison are the values obtained from eq 5 using
the rounded parameters from Table 1 (second entries) of ref
27. Two observations can be made. First, in the limitA3 f 0
[this coefficient vanishes for pure triplet-pair interactions such
as in He(3Pu) or H3

+(3Σu
+)], numerical problems may arise

when determiningE∞
cor andA3 due to the division byA3 in eq 7.

This can be overcome simply by adding a small constant (say
δ ) 10-16) to the denominator of eq 7. The second observation
is of physical nature and concerns the ratioτ53 itself, which
assumes the value27 of -0.75 for natural-parity singlet states
in the 1/Z expansion for various states of the He isoelectronic
series [using the standard notation, it corresponds to the ratio39

of the (l + 1/2)-6 and (l + 1/2)-4 terms,a2/a1 ) -5/4]. Note
that such a ratio may vary slightly if instead of the wave function
for the bare-nuclear Hamiltonian one uses a HF wave function,39

as it has actually been shown in MP2 studies of symmetry-
adapted pairs.41 Similarly, it may assume distinct values
(unknown thus far) for other levels of theory.39

We should observe at this point that the ratioτ53 involves
not only the (l + 1/2)-6 term arising from natural parity singlet
states but also the leading contribution with the same dependence
arising for triplet states. Thus, all electron pairs are essentially
involved. Equation 7 withm ) 1 gives for this ratioτ53 )
A5

o/A3 + c, thus predictingτ53 to depend both on the value of
the intersection at the origin and slopec in eq 5. ForA3 ) 1 ,
one gets the values of-1.18 for the MRCI(Q) energies,-1.26
for CCD or CCSD, and-1.49 for MP2, all differing signifi-
cantly from-0.75. If one uses instead the optimum values of
A3 determined in ref 27, the results in columns two, six and ten
of Table 1 as well as those in column two of Table 2 are
obtained. As one could anticipate, except for a few systems with
small values ofA3 (notably H2 , H3

+, HeH+, and He2++; see
comment above), the agreement between the USTE values and
the ones from the present work is generally good.

In the present work, we conjecture thatτ53 is invariant over
(most) configuration space of the molecule, and hence generalize
the USTE model by constraining the extrapolation to reproduce
its best estimate as obtained from the fits via eq 6. Such a
procedure has the merit of alerting for the fact that systems with
similar values ofA3 may somehow have distinctA5 coefficients,
as shown39 for helium-like systems withA3 ) 0 where distinct
triplet electronic states are found to have different values of
A5. The simplest approach toward this generalization consists
of writing

whereη is a scaling constant that moves the curve in eq 5 up
or down parallel to the original law [A5(0) ) A5

o, with η ) 1]
such as to fit best the system under analysis. This is illustrated
in Figure 1 for the MP2 energies, with similar plots (including
He2) shown elsewhere55 for CC [CCD, CCSD, and CCSD(T)]
and CI [CI(Q) and MRCI(Q)] energies. Of course, this approach
will lead to the original three-parameter rule in eq 3 or eq 4
unless an auxiliary criterion is used to fix the system-dependent
η parameter. Note that a three-parameter model would require
three points per geometry to extrapolate a PES, which would
be hopelessly time-consuming in a multidimensional situation.
We envisage therefore an effective two-parameter generalized
USTE (GUSTE) rule.

The easiest way to fixη is by performing a calculation with
the X ) Q basis set to obtainτ53

DTQ, a variant denoted as
GUSTE/DTQ. Thus,

with the labelDTQ implying that only calculations with the
three smallest cardinal numbers are required. Table 1 gathers
the values so obtained. Naturally,A3 varies with the cardinal
numbers used for the extrapolation, and so doesηDTQ. Clearly,
if additional information is available, one may impose the ratio
obtained with the three highest affordable cardinal numbers,
τ53

Q56. It will then be preferable to avoid the three-point fit to a
three-parameter form by using the calculations for the whole
set ofX values, with larger weights given to increasingX values
as in ref 27. The use of the ratios so obtained (still denoted
τ53

Q56) leads to GUSTE/Q56 , while in GUSTE (we reserve the
unaltered acronym for this variant of the method) the average
ratio τj53 ) (τ53

DTQ + τ53
Q56)/2 is imposed instead. Note that both

ηQ56 andη (this refers to GUSTE) vary too with theX values
used for the extrapolation.

3. Results and Discussion

Table 3 illustrates how the GUSTE method performs when
the CCSD/VXZ (X e 10) energies of Feller et al.45 are utilized
for the neon atom. Since the singlet- and triplet-pair energies
are treated uniformly by GUSTE, we will consider only their
sum for the present analysis. Such raw energies are listed in
column two of Table 3, while the extrapolated energies are given
in columns six to eight. In turn, columns three to five list the
predicted energies for theX2 basis sets not involved in the fit.
Included for comparison are the results obtained from theX-3

law in eq 2 and the USTE27 rule. Since they are nearly
coincidental with the GUSTE ones, no further reference to them
will be needed. Two other remarks are in order. First, the
predicted energies from GUSTE show a tendency to slightly
overestimate the unsigned raw energies but never by more than
1 mEh. Conversely, eq 2 tends to underestimate those energies
at bothX2 ends, with deviations up to 5 mEh or so forX ) T.
Regarding the extrapolated energies, the GUSTE method is seen
to overestimate the unsigned CCSD-R12B45 explicitly correlated
energy by 0.20 mEh, while eq 2 underestimates it by 0.06 mEh.

Figure 1. A5 vs A3 plot27 for MP2 energies calculated with VXZ
correlated consistent orbital basis sets (X ) D,T,Q,5,6). The shadowed
area has been obtained by moving the fitted line27,52up and down such
as to encompass all calculated points: 0.023e ηA5

o e 0.141. Similar
plots for CC and CI(Q) energies are shown in ref 55.

ηDTQ ) A3(τ53
DTQ - cA3

m-1)/A5
o (9)

A5 ) ηA5
o + cA3

m (8)
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Since eq 2 also underestimates the target unsigned energy at
X2 ) 10 , and the CCSD-R12B energy is itself not free from
error, it will be impossible to say which estimate is more reliable.
However, the rms error in GUSTE is seen to be a factor of 4
smaller than for eq 2.

We now turn to Tables 4-9which compare the results
obtained from the GUSTE method with the USTE27 and
traditional X-3 laws for MP2, CCD, CCSD, and MRCI(Q)
energies. As in the previous paragraph, the GUSTE energies
provide a substantial improvement relative to the results from
eq 2 or GUSTE/DTQ. However, such improvements are
relatively small compared with the USTE results, except for

the (D,T) extrapolated energy that tends to lie closer to the (5,6)
result. A similar pattern is observed for GUSTE/Q56 , with the
improvements over USTE being now expected for extrapolated
energies with largerX values. Relatively small, albeit significant,
improvements arise though from GUSTE, but (as in GUSTE/
Q56) at the expense of knowingτ53

Q56 which implies calcula-
tions with the largest affordable cardinal numbers. For two
electron systems, where exact energies are available, the
differences between the GUSTE and USTE energies are
predicted to be in the micro- or submicrohartree range, amount-
ing at most to-3 µEh for HeH+. A favorable case is He2

++,

TABLE 3: Raw versus CBS Extrapolated Valence Shell CCSD Correlation Energies (in Millihartrees) for the Ground
Electronic State of the Neon Atom

X2 energies CBS extrapolated

(X1, X2)a rawb eq 2c USTE GUSTEd eq 2c USTE GUSTEd

(D,T) -266.34 -261.11 -267.33 -267.30
(T,Q) -294.68 -294.80 -295.35 -295.35 -312.03 -315.24 -315.22
(Q,5) -305.49 -305.49 -305.49 -305.49 -315.53 -316.36 -316.35
(5,6) -309.90 -309.90 -309.90 -309.90 -315.42 -315.68 -315.68
(6,7) -312.15 -312.04 -312.10 -312.10 -315.70 -315.81 -315.81
(7,8) -313.36 -313.20 -313.32 -313.31 -315.67 -315.72 -315.72
(8,9) -314.02 -313.89 -314.04 -314.04 -315.50 -315.52 -315.52
(9,10) -314.43 -314.32 -314.49 -314.49 -315.48 -315.49 -315.49
CCSD-R12B -315.48
rmsde 1.85 0.40 0.40 1.31 0.35 0.35

a (X1, X2) denotes the cardinal number pair used for CBS extrapolation.b From ref 45.c Using the offset parameterR ) -3/8. d Instead ofτ53
DTQ,

the ratioτ53
TQ5 ) -1.655690 has been used since the energy forX ) D is unavailable;45 τ53

Q56 ) -1.260341.e Root mean squared deviation with
respect to CCSD-R12B.

TABLE 4: CBS Extrapolated Valence Shell MP2, CCD and CCSD Correlation Energies (in Millihartrees) for the Ground
Electronic States of CH2, CO, F2, H2O, N2, and Ne

MP2 CCD CCSD

system (X1, X2)a Klopperb eq 2c USTEd GUSTEe Klopperb eq 2c USTEd GUSTEe Klopperb eq 2c USTEd GUSTEe

CH2 (D,T) -147.5 -156.8 -155.6( 0.7f -171.4 -173.7 -174.7( 0.7g -172.3 -174.4 -175.6( 0.7f

(T,Q) -154.5 -153.9 -155.0 -155.0( 0.1 -175.3 -174.9 -175.4 -175.4( 0.1 -176.2 -175.8 -176.2 -176.3( 0.1
(Q, 5) -155.4 -155.2 -155.2 -155.5( 0.0 -174.8 -174.7 -174.8 -174.8( 0.0 -175.8 -175.6 -175.7 -175.8( 0.0
(5,6) -155.6 -155.4 -155.5 -155.5( 0.0 -174.7 -174.7 -174.8 -174.8( 0.0 -175.7 -175.6 -175.6 -175.7( 0.0

CO (D,T) -376.6 -406.9 -403.6( 3.7f -373.9 -390.4 -392.0( 1.0g -378.1 -394.4 -395.7( 1.1f

(T,Q) -397.7 -396.9 -400.5 -400.4( 0.2 -391.1 -390.5 -392.9 -393.0( 0.1 -394.9 -394.3 -396.7 -396.7( 0.1
(Q,5) -402.1 -401.7 -402.7 -402.7( 0.1 -392.3 -391.9 -392.5 -392.5( 0.0 -396.1 -395.8 -396.4 -396.4( 0.0
(5,6) -402.9 -402.6 -403.0 -402.9( 0.0 -392.0 -392.2 -392.2 -392.2( 0.0 -395.8 -395.7 -395.9 -395.9( 0.0

F2 (D,T) -562.4 -624.4 -612.0( 8.9f -559.1 -597.7 -596.1( 0.2g -564.3 -603.1 -601.6( 0.0f

(T,Q) -599.1 -598.3 -605.2 -604.6( 0.5 -592.0 -591.1 -596.4 -596.2( 0.0 -597.2 -596.5 -601.7 -601.6( 0.0
(Q,5) -608.5 -608.1 -610.0 -609.8( 0.1 -596.3 -596.1 -597.5 -597.4( 0.0 -601.6 -601.3 -602.7 -602.6( 0.0
(5,6) -609.9 -609.5 -610.2 -610.1( 0.0 -596.0 -595.8 -596.2 -596.2( 0.0 -601.2 -601.2 -601.6 -601.6( 0.0

H2O (D,T) -280.1 -306.0 -300.5( 2.3f -283.7 -297.2 -296.7( 1.3g -284.9 -298.3 -297.9( 1.4f

(T,Q) -296.4 -295.8 -298.8 -298.5( 0.2 -296.7 -296.1 -298.1 -298.0( 0.1 -297.9 -297.4 -299.3 -299.3( 0.1
(Q,5) -299.8 -299.6 -300.4 -300.3( 0.0 -297.3 -297.1 -297.8 -297.6( 0.0 -298.6 -298.3 -298.8 -298.8( 0.0
(5,6) -300.0 -299.8 -300.1 -300.1( 0.0 -296.8 -296.8 -297.0 -297.0( 0.0 -298.1 -298.0 -298.2 -298.2( 0.0

HF (D,T) -293.5 -324.8 -317.3( 2.7g -293.5 -311.1 -312.6( 1.0g -294.8 -312.3 -313.9( 1.0f

(T,Q) -313.8 -313.3 -316.9 -316.5( 0.2 -311.5 -310.8 -313.5 -313.5( 0.1 -312.8 -312.1 -314.7 -314.8( 0.1
(Q,5) -318.5 -318.1 -319.1 -319.0( 0.0 -313.2 -313.0 -313.6 -313.7( 0.0 -314.4 -314.4 -315.0 -315.0( 0.0
(5,6) -318.9 -318.6 -318.9 -318.9( 0.0 -312.8 -312.7 -312.8 -312.9( 0.0 -314.1 -314.0 -314.1 -314.2( 0.0

N2 (D,T) -394.8 -424.6 -420.6( 3.5g -387.6 -403.5 -403.8( 1.0g -391.5 -407.3 -407.5( 1.0f

(T,Q) -414.9 -414.3 -417.8 -417.6( 0.2 -403.0 -402.5 -404.8 -404.8( 0.1 -406.8 -406.2 -408.4 -408.4( 0.1
(Q,5) -419.2 -418.8 -419.7 -419.7( 0.1 -404.1 -404.0 -404.5 -404.5( 0.0 -407.8 -407.7 -408.2 -408.2( 0.0
(5,6) -420.9 -419.8 -420.1 -420.1( 0.0 -403.9 -403.8 -403.9 -403.9( 0.0 -407.6 -407.5 -407.6 -407.6( 0.0

Ne (D,T) -288.8 -324.6 -321.0( 6.8g -289.5 -310.9 -314.9( 0.2f -290.3 -311.7 -315.6( 0.1g

(T,Q) -312.1 -311.5 -315.7 -315.6( 0.4 -312.0 -311.2 -314.4 -314.7( 0.0 -312.8 -312.1 -315.3 -315.6( 0.0
(Q,5) -318.2 -317.9 -319.1 -319.0( 0.1 -314.9 -314.7 -315.6 -315.6( 0.0 -315.8 -315.5 -316.4 -316.4( 0.0
(5,6) -319.0 -318.8 -319.2 -319.2( 0.0 -314.8 -314.6 -314.9 -314.9( 0.0 -315.6 -315.4 -315.6 -315.7( 0.0

a (X1, X2) denotes the cardinal number pair used for CBS extrapolation.b Reference 22. See this reference for further comparisons.c Using the
offset parameterR ) -3/8. d Reference 27.e This work, with the error defined such as to encompass the results from GUSTE/DQT and GUSTE/
Q56. f The lower bound for this system is obtained withηDTQ. g The lower bound for this system is obtained withηQ56.
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where the total energy (the CAS energy has been taken from
our best estimate in ref 27) is predicted to be-3681.456 mEh,
in excellent agreement with Wolniewicz’s56 result. Note that
the requirement of knowingτ53

Q56 should pose no significant
limitation for many systems of interest, since our experience
suggests that calculations at a single geometry should suffice
to calibrate the method. Note especially that the conjecture that
τ53 is (approximately) invariant over the molecule configuration
space finds support in exploratory calculations for diatomic
molecules where the extrapolated energies appear to be predicted
reliably from the repulsive wing of the potential curve up to
dissociation. In fact, although the number of coupled electron
pairs is expected to diminish upon bond breaking, such a
fluctuation is likely to be small. Moreover, their number should
vary smoothly with separation, suggesting that any small change
in the scaling factor used for the extrapolation may largely be
irrelevant. Unfortunately, we are not aware of any rigorous study
of this problem for a polyatomic molecule.

The only piece of data at our disposal to test the above
conjecture refers to the MRCI(Q)/AVXZ energies for the ground
electronic states of H2O and OH, as the latter can be a
dissociation product of the former (for a recent accurateab initio
study on the water molecule that also addresses CBS extrapola-
tion, see ref 57). Although the calculatedτ53 values seem to
bear little relation to each other, we alert for the fact that they
have been estimated using different sets of cardinal numbers.
In an attempt to assess the performance of the GUSTE method
for H2O, we have therefore examined in some detail the
dependence inX of the dynamical correlation energy. The
atypical pattern illustrated in panel (a) of Figure 2 may be
rationalized as due to the fact that the basis is saturated faster
for OH than H2O. This can be understood by considering the
dynamical correlation per electron. For H2O, we will first divide
the total dynamical correlation by 10 electrons (valence plus

core) as the calculations on this molecule included core-
correlation effects: the lowest-energy molecular orbital (∼1s
orbital of oxygen) was optimized in the CASSCF calculations,
but unlike active orbitals that change occupations it remained
doubly occupied in all reference determinants defining the
CASSCF and MRCI wave functions. The calculated dynamical
correlation energy per electron so obtained varies from-18.24
mEh for X ) D to -24.26 mEh for X ) T and-28.62 mEh for
X ) 5. However, not all the core-valence correlation has been
recovered due to having kept closed the 1s orbitals in the
CASSCF and MRCI calculations. Thus, one may consider that
the calculated dynamical correlation is essentially of the valence
type, yielding for the dynamical correlation energy per valence
electron the values of-22.79,-30.33, and-35.78 mEh in the
above order. For OH (and all other systems listed in Tables
6-8), core correlation has been ignored, with the valence
dynamical correlation per electron varying from-22.95 mEh
for X ) D to -29.11 mEh for X ) T and-31.71 mEh for X )
5. As could be expected,8 this is generally smaller for the open-
shell hydroxyl radical than for the closed-shell water molecule,
where all electrons are paired. Another indicator that the basis
is saturated faster for OH than H2O is the corresponding fraction
of recovered correlation energy forX ) D, T, and 5: 71, 90,
and 98% of the (5,6) valence dynamical correlation energy for
OH; 61, 81, and 96% of the (Q,5) extrapolated (mostly valence)
dynamical correlation for H2O. This may even be inferred from
the slightly distinct slopes displayed forX g 4 by the curves in
Figures 2 and 3 for the CBS extrapolations in H2O and OH,

TABLE 5: Extrapolated MRCI(Q) Dynamical Correlation
Energies (in Millihartrees) for the Ground Electronic States
of Some Two-Electron Systemsa

system (X1, X2)b eq 2c USTEd GUSTEe

H2 (D,T) -22.249 -22.363 -22.310( 0.006f

(T,Q) -22.307 -22.321 -22.315( 0.001
(Q,5) -22.320 -22.324 -22.322( 0.000
(5,6) -22.307 -22.308 -22.308( 0.000

H3
+ (D,T) -13.031 -13.067 -13.165( 0.007g

(T,Q) -13.140 -13.154 -13.159( 0.001
(Q,5) -13.194 -13.198 -13.199( 0.000
(5,6) -13.161 -13.162 -13.163( 0.000

HeH+ (D,T) -23.295 -23.428 -23.889( 0.032f

(T,Q) -23.836 -23.880 -23.919( 0.003
(Q,5) -23.890 -23.902 -23.910( 0.001
(5,6) -23.886 -23.890 -23.893( 0.000

He2
++ (D,T) -16.614 -16.853 -17.063( 0.027f

(T,Q) -17.025 -17.064 -17.088( 0.003
(Q,5) -17.079 -17.089 -17.094( 0.001
(5,6) -17.065 -17.068 -17.070( 0.000

a Similar to ref 27, we quote the extrapolated MRCI(Q) energies
with microhartree accuracy. The error indicated in the last column of
this and the following tables (Table 2 included as well) measures the
variation associated with the use ofτ53

DTQ andτ53
Q56 which should not be

confused with the error relative to the exact nonrelativistic energy (or
the true CBS limit for systems with more electrons) that is difficult to
obtain for all but few-electron systems (see ref 54).b (X1,X2) denotes
the cardinal number pair used for extrapolation.c Using the offset
parameterR ) -3/8. d Reference 27.e This work. f The lower bound
for this system is obtained withηDTQ. g The lower bound for this system
is obtained withηQ56.

TABLE 6: Extrapolated MRCI(Q) Valence Dynamical
Correlation Energies (in Millihartrees) for the Ground
Electronic States of Some Hydrides (For the Water
Molecule, the Core-Correlation Energy Has Also Been
Included)

system (X1,X2)a eq 2b USTEc GUSTEd

BH (D,T) -49.398 -49.696 -50.527( 0.265e

(T,Q) -50.621 -50.721 -50.788( 0.028
(Q,5) -50.585 -50.607 -50.621( 0.006
(5,6) -50.547 -50.554 -50.558( 0.002

CH (D,T) -100.353 -102.160 -102.189( 0.304e

(T,Q) -102.212 -102.475 -102.475( 0.034
(Q,5) -102.265 -102.325 -102.326( 0.007
(5,6) -102.191 -102.209 -102.210( 0.002

NH (D,T) -153.701 -157.232 -157.345( 0.403e

(T,Q) -157.205 -157.717 -157.723( 0.042
(Q,5) -157.484 -157.606 -157.608( 0.009
(5,6) -157.338 -157.374 -157.375( 0.003

OH (D,T) -217.260 -223.989 -226.198( 0.655e

(T,Q) -225.550 -226.643 -226.817( 0.059
(Q,5) -226.361 -226.629 -226.667( 0.013
(5,6) -226.208 -226.289 -226.302( 0.004

FH (D,T) -276.841 -286.828 -292.672( 0.916e

(T,Q) -291.304 -293.116 -293.546( 0.072
(Q,5) -292.706 -293.152 -293.244( 0.015
(5,6) -292.704 -292.844 -292.874( 0.005

SH (D,T) -186.417 -192.449 -191.662( 0.384e

(T,Q) -190.617 -191.387 -191.327( 0.038
(Q,5) -191.453 -191.651 -191.635( 0.009
(5,6) -191.568 -191.633 -191.628( 0.003

H2O (D,T) -261.355 -272.809 -298.786( 0.190f

(T,Q) -293.458 -296.888 -298.606( 0.010
(Q,5) -297.486 -298.399 -298.755( 0.002

a (X1,X2) denotes the cardinal number pair used for extrapolation.
b Using the offset parameterR ) -3/8. c Reference 27.d This work.
e The lower bound for this system is obtained withηDTQ. f The lower
bound for this system is obtained withηQ56.
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respectively. Thus, a balanced level of description is obtained
faster for OH than H2O, which may explain the small plateau
in plot (a) of Figure 2. We should note that removing theX )
D or T energies from the fit will not change the above pattern.
A more typical trend may, however, be obtained if the AVDZ
energy is replaced by-147 mEh or so rather than the actually
calculated value of-182.34 mEh; see panel (b) of Figure 2.
Using the former, the following extrapolated correlation energies
are obtained for the water molecule (format as in Table 6):
-298.782 ( 2.123 (D,T), -296.988 ( 0.155 (T,Q), and
-298.405( 0.035 (Q,5). They correspond toτ53

DTQ ) 1.21 and
τ53

Q56 ) 1.30, in somewhat closer agreement withτ53
Q56(OH).

The improvement is striking for the (D,T) extrapolation, while
remaining good for (Q,5) when comparing with USTE. Fur-

thermore, if these ratios are used for the extrapolations in OH,
one gets using the same units-229.220 ( 0.919 (D,T),
-227.058( 0.066 (T,Q), and -226.317( 0.004 (5,6), in
slightly better agreement with the best estimate than USTE but
slightly worse than GUSTE. Finally, one wonders about the
error obtained ifτ53

Q56(OH) were used for the extrapolations in
H2O. The results (in mEh) are -273.8 (D,T), -296.4 (T,Q),
and-298.3 (Q,5), in good agreement with the USTE values.
Keeping in mind the slightly different level of correlation
description used for H2O and OH, two observations are in order
from the above results. First, H2O is the only system where the
GUSTE (Q,5) and USTE (Q,5) predictions differ by more than
0.1 mEh. This reinforces our belief that the (Q,5) extrapolated
MRCI(Q) energy from eq 2 may be 1 mEh or so in error due to
a poor balanced level of description: a higher accuracy may
require improvements on the basis or in the correlation
description or both. Second, and perhaps most interesting, it
suggests that in chemical reactions where the chemical bonds
are broken (like H2O splitting into OH and H), it is advantageous
to chooseτ53 somewhere in the middle between the reactant
and the product values for the most balanced description of the
PES using the GUSTE approach. Finding the optimal balance
for the A5/A3 ratio in both systems (in this case, H2O and OH
+ H) simultaneously may then be an important step for
accurately describing a PES with GUSTE.

TABLE 7: Extrapolated MRCI(Q) Valence Dynamical
Correlation Energies (in Millihartrees) for the Ground
Electronic States of First-Row Homonuclear Diatomics

system (X1, X2)a eq 2b USTEc GUSTEd

B2 (D,T) -88.242 -89.971 -89.995( 0.707e

(T,Q) -90.440 -90.712 -90.705( 0.083
(Q,5) -90.212 -90.266 -90.268( 0.016
(5,6) -90.092 -90.108 -90.109( 0.005

C2 (D,T) -160.492 -165.857 -166.374( 1.128e

(T,Q) -166.614 -167.447 -167.476( 0.114
(Q,5) -166.718 -166.904 -166.914( 0.024
(5,6) -166.554 -166.610 -166.614( 0.007

N2 (D,T) -266.477 -278.039 -278.824( 1.043e

(T,Q) -278.057 -279.774 -279.815( 0.095
(Q,5) -279.149 -279.561 -279.572( 0.020
(5,6) -278.914 -279.038 -279.044( 0.006

O2 (D,T) -404.121 -423.215 -423.456( 0.841e

(T,Q) -421.529 -424.245 -424.244( 0.071
(Q,5) -423.502 -424.163 -424.164( 0.015
(5,6) -423.397 -423.601 -423.605( 0.005

F2 (D,T) -506.577 -537.208 -536.722( 0.151e

(T,Q) -532.692 -536.891 -536.861( 0.012
(Q,5) -536.420 -537.478 -537.464( 0.003
(5,6) -536.431 -536.761 -536.762( 0.001

a (X1,X2) denotes the cardinal number pair used for extrapolation.
b Using the offset parameterR ) -3/8. c Reference 27.d This work.
e The lower bound for this system is obtained withηDTQ.

TABLE 8: Extrapolated MRCI(Q) Valence Dynamical
Correlation Energies (in Millihartrees) for the Ground
Electronic States of BN, BO, CN and CO

system (X1, X2)a) eq 2b USTEc GUSTEd

BN (D,T) -178.383 -184.495 -185.592( 1.186e

(T,Q) -185.696 -186.671 -186.749( 0.115
(Q,5) -186.021 -186.244 -186.264( 0.024
(5,6) -185.775 -185.840 -185.848( 0.007

BO (D,T) -215.559 -224.710 -228.659( 1.544e

(T,Q) -228.267 -229.878 -230.167( 0.132
(Q,5) -229.087 -229.465 -229.529( 0.027
(5,6) -228.967 -229.083 -229.104( 0.008

CN (D,T) -219.324 -227.470 -228.322( 1.016e

(T,Q) -228.002 -229.240 -229.294( 0.096
(Q,5) -228.639 -228.930 -228.945( 0.021
(5,6) -228.426 -228.513 -228.519( 0.006

CO (D,T) -266.510 -277.805 -280.941( 0.987e

(T,Q) -279.831 -281.660 -281.879( 0.084
(Q,5) -281.147 -281.593 -281.641( 0.018
(5,6) -281.015 -281.152 -281.169( 0.005

a (X1,X2) denotes the cardinal number pair used for extrapolation.
b Using the offset parameterR ) -3/8. c Reference 27.d This work.
e The lower bound for this system is obtained withηDTQ.

TABLE 9: A Comparison of the Calculated GUSTE/DTQ
and GUSTE/DD+T Extrapolated CCSD Correlation Energies
(in Millihartrees) and Other Parameters for the Ground
Electronic States of CH2, CO, F2, H2O, HF, N2, and Ne

system (X1,X2)a GUSTE/DTQ ηDTQ
b GUSTE/DD+T τ53

DD+T c

CH2 (D,T) -176.4 0.751 -175.9 -0.864
(T,Q) -176.4 0.751 -176.3 -0.886
(Q,5) -175.8 0.660 -175.7 -0.811
(5,6) -175.7 0.631 -175.7 -0.784

CO (D,T) -396.8 0.694 -386.7 -0.864
(T,Q) -396.8 0.694 -396.2 -1.013
(Q,5) -396.5 0.678 -396.3 -1.017
(5,6) -395.9 0.630 -395.8 -0.991

F2 (D,T) -601.6 1.197 -581.0 -0.864
(T,Q) -601.6 1.197 -600.2 -1.019
(Q,5) -602.6 1.236 -602.3 -1.046
(5,6) -601.6 1.158 -601.5 -1.025

H2O (D,T) -299.4 0.860 -292.5 -0.864
(T,Q) -299.4 0.860 -298.9 -0.987
(Q,5) -298.8 0.823 -298.7 -0.980
(5,6) -298.2 0.740 -298.1 -0.934

HF (D,T) -314.9 0.671 -303.8 -0.864
(T,Q) -314.9 0.671 -314.1 -1.018
(Q,5) -315.1 0.678 -314.9 -1.036
(5,6) -314.2 0.608 -314.1 -0.996

N2 (D,T) -408.5 0.843 -399.9 -0.864
(T,Q) -408.5 0.843 -408.0 -0.998
(Q,5) -408.2 0.826 -408.1 -1.003
(5,6) -407.6 0.760 -407.6 -0.971

Ne (D,T) -315.6 0.511 -300.8 -0.864
(T,Q) -315.6 0.511 -314.6 -1.035
(Q,5) -316.4 0.532 -316.2 -1.065
(5,6) -315.7 0.497 -315.6 -1.044

a (X1, X2) denotes the cardinal number pair used for extrapolation.
b Results obtained with the following constrained values ofτ53

DTQ:
-0.932 for CH2; -1.288 for CO;-1.304 for F2; -1.219 for H2O;
-1.300 for HF;-1.249 for N2; -1.346 for Ne.c Ratios obtained when
the following ηDD+T values are fixed (by fitting theX ) D,D+,T
energies): 0.813 for CH2; 1.979 for CO; 3.824 for F2; 1.743 for H2O;
2.081 for HF; 1.942 for N2; 2.397 for Ne; see the text.
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A further remark is in order concerning GUSTE/DTQ.
Although this requires only an extra calculation withX ) Q ,
one wonders whether this third energy could be for the range
D - T or 2 e X e 3. Since anab initio approach poses
difficulties in specifying the basis set for a non-integer-X
calculation, the alternative is to predict the required energy from
the results forX ) D and T with an independent rule. For

example, Truhlar17 has proposed the lawEX ) E∞ + b/X2.4

optimized for (D,T) extrapolations from CCSD and CCSD(T)
energies. The extra point (denoted asD+) may then be generated
from such a rule, withτ53

DD+T and henceηDD+T determined
(jointly with E∞ andA3) by fitting theX ) D,D+,T energies to
eqs 4 and 5. Two approaches may then be followed. The first
consists of keeping fixed the scaling factorηDD+T for all
extrapolations. Such an approach has been found55 to perform
well for He2 using raw energies calculated with both the CC
[CCSD and CCSD(T)] and CI(Q) methods. Indeed, it finds
support in Figure 4, which shows that the values ofηDTQ actually
obtained by imposingτ53

DTQ assume similar values for all
extrapolations (note that the plotted scaling factors have been
divided by their averaged value for all extrapolations in a given
system). Except in one or two cases that justify the rule, the
results obtained from the raw MP2, CCD, and CCSD energies
deviate typically by 10 to 20%, a fluctuation that may likely be
absorbed by theE∞ and A3 fitting parameters. Note that no
extrapolation rule has been reported17 for MRCI(Q) energies.
Given that aX-2.4 dependence seems to yield acceptable results
for He2 when using CC energies, this suggests that a similar
power-law may, once the exponent is optimized, be also valid
for MRCI(Q) energies. Indeed, ifâCI is defined fromX ) D -
6 fits for the subset of systems studied27 by MRCI(Q) that
overlaps with Klopper’s22 one, namely H2O, HF, N2, CO and
F2, the result will beâCI ) 2.2 (this value decreases to 1.9 if
the fit covers only theD - Q range of cardinal numbers).

To illustrate how theη-fixed method works, we have
considered the seven systems studied in ref 22 with the CCSD/
VXZ method. However, rather than using the scaling values
that mimicτ53

DTQ, we have utilized those that reproduceτ53
DD+T,

with the energy forX ) D+ obtained by fitting Truhlar’s17 X-2.4

law to Klopper’s CCSD data forX ) D,T. The results are
collected in Table 9. For comparison, we give also in the third
column of this table the extrapolated energies predicted from
GUSTE/DTQ , where the ratioA5/A3 is constrained to beτ53

DTQ.
Moreover, we list in column four the corresponding scaling
factors ηDTQ , while column six reports theτ53

DD+T ratios
predicted whenηDD+T is fixed at its optimum value in the fit to
the X ) D,D+,T energies. Although the extrapolated energies
from GUSTE/DD+T (in column five) show an improved
accuracy when compared with those obtained from the tradi-
tional rule (2) (cf. Table 1), they are poorer than the GUSTE/
DTQ or GUSTE/Q56 or GUSTE ones. In fact, the only
exception is CH2, which is due to the fact thatηDD+T ∼ ηDTQ

for this system. Note that similar results are obtained if the value
of τ53

DD+T associated with theX ) D,D+,T energies (τ53
DD+T )

-0.864) is imposed, rather thanηDD+T. This is not surprising
sinceηDD+T and τ53

DD+T ) -0.864 are equivalent attributes of
Truhlar’s17 law. Despite the somewhat modest results, it is
interesting to note that the GUSTE/DD+T rule employs raw
energies only up toX ) T but shows a performance better than
the traditional law (2) when using the same cardinal numbers
for the extrapolation.

4. Concluding Remarks

We summarize a few properties that the GUSTE rule here
developed satisfies:

1. It extrapolates reliably the (full or dynamical) correlation
energy to the CBS limit, irrespectively of the cardinal numbers
used for the extrapolation.

2. Once calibrated the scheme is dual-level as it requires only
two ab initio calculations with distinct basis sets for extrapolat-
ing the correlation energy.

Figure 2. Extrapolations of the dynamical correlation energy for
H2O: (a) using the calculated MRCI(Q)/AVXZ (X ) D,T,Q,5) energies;
(b) as in (a) but using a tentative MRCI(Q)/AVDZ energy. For clarity,
the curves referring to USTE will not be shown as they lie close to the
GUSTE ones. See the text.

Figure 3. Extrapolations of the dynamical correlation energy for OH
using the calculated MRCI(Q)/AVXZ (X ) D,T,Q,5,6) energies. For
clarity, the curves referring to USTE will not be shown as they lie
close to the GUSTE ones. See the text.

1848 J. Phys. Chem. A, Vol. 112, No. 8, 2008 Varandas



3. The calibration requires the least possible amount of
calculations with high cardinal numbers at a single geometry
(without exceedingX ) Q in GUSTE/DTQ), although the
accuracy of the method is enhanced when such data is available.

4. The calibration does not utilize data alien to the rawab
initio energies (information from other laws may, however, be
utilized as discussed in section 3).

5. The method reduces to the original USTE scheme whenη
) 1 in eq 8.

In summary, we have analyzed generalizations of the USTE
rule that can improve even further the accuracy of the
extrapolated energies, especially when usingX ) D andT basis
sets. Such generalizations are based on the premise that the ratio
of the triplet-pair (see section 2) to singlet-pair contributions
does not vary significantly over the configuration space of the
molecule. Work to test this assertion would be valuable though
conceptually difficult at regions where more than one electronic
configuration plays a role. Finally, the new scheme affords
enough flexibility to treat different singlet/triplet-pair situations,
and hence is expected to be valid for both ground and excited
electronic states. This may help to enhance the development of
methods50-52 that allow the calculation of accurate potential
energy surfaces at an unprecedented low computational cost.
Parallel to this, it may open the way for calculating molecular
properties that may be sensitive to small energy differences and
therefore to quality of the treatment of electron correlation. In
particular, its use for studying static electric response properties
of molecules or groups or molecules, which are formally

developed via energy derivatives and hence are intrinsic to
features of electronic structure,58 may be worth pursuing in
future work.
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